Suppression of High-\(p_T\) Neutral Pion Production in Central Pb+Pb Collisions at \(P_{\text{SN}} = 173\) GeV Relative to p+C and p+Pb Collisions

(W A 98 Collaboration)

21 University of Panjab, Chandigarh 160014, India
22 Variable Energy Cyclotron Centre, Calcutta 700064, India
41 University of Geneva, CH-1211 Geneva 4, Switzerland
54 RRC Kurchatov Institute*, RU-123182 Moscow, Russia
65 Joint Institute for Nuclear Research, RU-14190 Dubna, Russia
66 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372, USA
87 University of Jam mu, Jam mu 180001, India
98 University of Munich, D-85748 Munich, Germany
99 SUBATECH, Ecole des Mines, Nantes, France
110 University of Rajasthan, Jaipur 302004, Rajasthan, India
121 University of Lund, SE-221 08 Lund, Sweden
132 MIT Cambridge, MA 02139
143 Institute of Physics, Bhubaneswar 751005, India
154 University of Tsukuba, Ibaraki 305, Japan
1615 Universität zu Tübingen, NUKHEF, NL-3508 TA Utrecht, The Netherlands
1716 KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands
1817 Gesellschaft für Schwerionenforschung (GSI), D-64220 Darmstadt, Germany
1918 Nuclear Physics Institute, C-250 68 Rez, Czech Rep.
2019 Institute for Nuclear Studies, 00-681 Warsaw, Poland
2210 University of Tennessee, Knoxville, Tennessee 37966, USA

Dedicated

(Dated: June 2, 2013)

Neutral pion transverse momentum spectra were measured in p+C and p+Pb collisions at \(P_{\text{SN}} = 173\) GeV at mid-rapidity (\(2.3 < \eta < 3.0\)) over the range \(0.7 < p_T < 35\) GeV/c. The spectra are compared to \(p_T\) spectra measured in Pb+Pb collisions at \(P_{\text{SN}} = 173\) GeV in the same experiment. For a wide range of Pb+Pb centralities (\(N_{\text{part}} < 300\)) the yield of \(\pi^0\) with \(p_T > 2\) GeV/c is larger than or consistent with the p+C or p+Pb yields scaled with the number of nucleon-nucleon collisions (\(N_{\text{coll}}\)), while for central Pb+Pb collisions with \(N_{\text{part}} > 350\) the \(\pi^0\) yield is suppressed.

PACS numbers: 25.75.Dw

The study of hadron production at high transverse momentum \(p_T\) is a sensitive tool to characterize the matter created in ultrarelativistic heavy-ion collisions, and in particular, to detect the possible formation of a quark-gluon plasma (QGP), i.e., a thermally excited phase in which quarks and gluons are the relevant degrees of free-
Particles at high p_t result from quark and gluon scatterings with high momentum transfer ("hard scattering") which can be described by perturbative quantum chromodynamics (pQCD). The scattered quarks and gluons will traverse the created medium and fragment into the observable hadrons. High-p_t particle production in nucleus-nucleus ($A + A$) collisions was predicted to be suppressed as a consequence of the energy loss of the scattered partons in the dense medium ("jet quenching"). Such suppression was observed by experiments at the Relativistic Heavy Ion Collider (RHIC) in central Au+Au and Cu+Cu collisions at a center-of-mass energy of up to $s_{NN} = 200$ GeV. Within jet-quenching models the suppression can be related to medium properties, such as the initial gluon density or the transport coefficient (τ_0, ε).

A crucial test for the idea of parton energy loss in the hot and dense medium created in $A + A$ collisions is the measurement of the p_t dependence of high-p_t hadron production [π/\propto, η, η', ρ, ω]. In central $p + p$ collisions at the CERN SPS energy of $s_{NN} = 173$ GeV ($\langle p_{T}\rangle = 158$ A GeV/c) the initial energy density, as estimated from the measured transverse energy, is above the critical value $\varepsilon_c = 1$ GeV/fm3 for the transition to the QGP. On the other hand, the initial gluon density and the lifetime of a deconfined phase produced at $s_{NN} = 173$ GeV will be significantly reduced as compared to RHIC energies. Results at SPS energies thereby provide a sensitive test of jet quenching model predictions.

Results on high-p_t particle production in central $p + p$ and $ Pb + Pb$ collisions at the CERN SPS have already been published [1,2]. However, the interpretation of these data has been complicated by the lack of reference $p + p$ data to allow to quantify nuclear effects. Instead, parameterizations of $p + p$ data have been employed to search for nuclear effects [1,2], but with substantial systematic uncertainties. Moreover, hadron suppression due to parton energy loss might be corrected by an enhancement due to multiple soft scatterings of the incoming partons prior to the hard scattering process ("nucleark_T-enhancement" or "\langev\ et c."). Measurements in $p + A$ and $A + A$ collisions at different p_{T} suggest that such enhancement is significantly stronger at p_{T} = 20 GeV than at p_{T} = 200 GeV.

In the W A98 experiment π^0 yields were measured by detection of photons from the $\gamma \rightarrow \pi^0$ decay branch with a high-resolution lead-glass calorimeter. This detector was located 21.5 m downstream from the target and subtended the pseudorapidity range $2.3 < \eta < 3.0$. A 400 GeV/c proton beam from the CERN SPS was pioned on a beryllium production target to provide a $p + Pb$ secondary beam selected to have momentum of 160 GeV/c. The secondary beam consisted primarily of protons and pions with roughly equal content. Protons were identified with the use of two gas Cherenkov counters located upstream of the 1797 g/cm2 12C (495 g/cm2 208Pb) target. The W A98 minimum bias trigger condition required a m inimum amount of transverse energy (E_T) in the region $3 < \eta < 5.5$, measured with a sampling calorimeter with electromagnetic and hadronic sections. The measured $p + p$ minimum bias cross section σ_{pb} for $p + C$ ($p + Pb$) of 193 mb (1422 mb) corresponds to 86% (81%) of the total geometric cross section. The number of analyzed $p + p$ minimum bias events was 1.86 (18) $p + Pb$ events.

Neutral pion yields were determined statistically by counting photon pairs with invariant mass in the π^0 mass range after subtraction of the normalized background from uncorrelated pairs. The shape of this background was determined by modeling photons from di-electron events. Only photon pairs with an energy asymmetry $E_1\leq E_2$ < 0.7 were used in the analysis. A correction for geometrical acceptance and reconstruction efficiency was applied to the raw π^0 yields. The reconstruction efficiency takes into account the loss of π^0 due to the photon identity and energy asymmetry cuts. It also models the π^0 yield for the $p + C$ shift that results from the same energy resolution of the lead-glass calorimeter convoluted with the steeply falling p_T spectrum. Events of overlapping showers in the calorimeters, which were in part in central $p + Pb$ collisions, are negligible in $p + C$ and $p + Pb$ collisions. The dominant systematic uncertainties are listed in Table 3. The systematic uncertainties of the peak extraction, acceptance correction, and efficiency correction are approximately independent of p_T. The energy scale of the calorimeter was corrected by comparison of the measured p_T-dependent π^0 peak positions with GEANT simulations. The estimated uncertainty of 15% on the energy scale leads to an uncertainty on the π^0 yields that increases with p_T.

The spectra of the invariant π^0 yields in $p + C$ and $p + Pb$ collisions at $s_{NN} = 173$ GeV are shown in Fig. 1.
demonstrate that pQCD calculations cannot be used as a reliable reference at CERN SPS energies. The inset of Fig. 4 shows that the 0 yields per nucleon-nucleon collision measured in p+C are in good agreement with a parametrization of 0 spectra in p+p from Baltz et al. [23] that has been employed to study nuclear e effects in Pb+Pb collisions [13].

Nuclear e effects in 0 production can be quantified with the nuclear modification factor defined as

$$R_{AA}^0 = \frac{N_{coll}^d}{N_{part}^{10}N_{coll}^d}$$

In the absence of nuclear e effects R_{AA}^0 is expected to be unity for $p_t > 2$ GeV/c where hard scattering is expected to dominate particle production. N_{coll} was determined with a Glauber Monte Carlo calculation using an inelastic nucleon-nucleon cross section of $N_{inel} = 31.8 \pm 2$ mb [24]. The same Glauber calculation was used to extract N_{coll} values in Pb+Pb collisions. In the Glauber calculation the transverse energy E_T was modeled by sampling a negative binomial distribution to determine the E_T contribution of each participating nucleon [24]. The bias due to the trigger selection on the measured E_T was taken into account. For minimum bias p+C and p+Pb collisions, values of N_{coll} were 1.7 \pm 0.2 and N_{coll}^{p+Pb} was 3 ± 0.4 were obtained.

The N_{coll} values for Pb+Pb collisions were determined by applying cuts to the simulated E_T that corresponded to the same fraction of N_{part}^{PB} as the cuts applied to the measured E_T. These N_{coll} values are listed in Table I and agree with systematics uncertainties with those of Ref. [16] that were determined with the VENUS 4.12 event generator in which $N_{inel} = 29 \pm 3$ mb was used. With the large acceptance of the WA98 E_T measurement, and good description of the E_T distribution, including uctuations [14], a centrality class corresponding to the 1% most central Pb+Pb collisions could be defined to access very large N_{coll} values.

The transition between the minimum bias and the HEP sample occurs at $p_t = 1.7$ GeV/c. The p+C spectrum is compared to a next-to-leading-order (NLO) pQCD calculation for p+p at the same energy [23]. The calculation was performed with the CTEQ6M parton distribution functions and the Kniehl-Kam et al. (KKP) set of fragmentation functions [23] with renormalization and factorization scales set to be the same at $p_t = 2$, p_t or $2p_t$. For comparison with the p+C data the pQCD calculations have been scaled by the average number of nucleon-nucleon collisions in p+C. The pQCD calculation shows a large uncertainty related to the arbitrary choice of scale. It has been suggested that the NLO perturbative expansion is not sufficient at low energies and that threshold resummation corrections must be taken into account [23]. The large theoretical uncertainties demonstrate that pQCD calculations cannot be used as

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>total</td>
<td>14</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

The p+Pb 0 spectrum appears to be softer than the p+C spectrum (see Fig. 4). The ratio of the Ncoll-normalized p+Pb and p+C spectra is shown in Fig. 4. At low p_T (1 GeV/c) the ratio is consistent with scaling with the number of participating nucleons (N_{part}^{p+Pb}).
The N_{coll}-normalized ratio of $^0_\pi$ yields in $p+Pb$ and $p+C$ collisions. The box at R_{pPb}^{p+Pb} 0.9 represents the expectation for the case of scaling with N_{part} rather than N_{coll}. The box at unity indicates the N_{coll} systematic uncertainty. The error bars represent the systematic uncertainties of the statistical and remaining systematic uncertainties. The energy scale uncertainty was assumed to cancel.

![Image 1](image1.png)

FIG. 2:

The centralities of the average R_{AA}^0 yield in $p+Pb$ and $p+C$ collisions. The box at R_{pPb}^{p+Pb} 0.9 represents the expectation for the case of scaling with N_{part} rather than N_{coll}. The box at unity indicates the N_{coll} systematic uncertainty. The error bars represent the quadratic sum of the statistical and remaining systematic uncertainties. The N_{part} values for the full points were shifted by ±5 for better visibility.

![Image 2](image2.png)

FIG. 3:

R_{AA}^0 in $p+Pb$ collisions at $p_{T}=17.3$ GeV for three centrality classes using $p+C$ or $p+Pb$ spectra as a reference. The boxes around unity reflect the systematic uncertainties related to N_{coll}.

![Image 3](image3.png)

FIG. 4:

Centralities of the average R_{AA}^0 for $2 < p_T < 2.5$ GeV/c and $2.5 < p_T < 3$ GeV/c is shown in Fig. 4. The $^0_\pi$ yields in $p+Pb$ in these p_T ranges are not suppressed for $N_{\text{part}} < 300$ ($R_{AA}^0 > 1$). For more central $p+Pb$ collisions R_{AA}^0 decreases with centrality indicating significant suppression of the high p_T yield. The apparent lack of suppression, or enhancement even, for $N_{\text{part}} > 300$ may be due to competing effects of suppression due to parton energy loss and nuclear k_T-enhancement.

In summary, $^0_\pi$ spectra were measured in minimum bias $p+C$ and $p+Pb$ collisions at $p_{T}=17.3$ GeV in the range $0.7 < p_T < 3.5$ GeV/c. Based on these spectra, the nuclear modification factors R_{AA}^0 for $p+Pb$ collisions at CERN SPS energies could be determined using a measured $p+A$ reference. In very central $p+Pb$ collisions (0% of p^+p) a significant suppression of the high-p_T neutral pions was observed ($R_{AA}^0 < 0.5$). The pion suppression reported here, together with the results at higher energies from RHIC, constrain jet-quenching models and may help clarify the behavior of the energy loss of partons in strongly interacting matter.
We would like to thank the CERN-SPS accelerator crew for the excellent beam provided and the Laboratoire National Satu-
ratre for the loan of the magnet Goliath. We thank W. Vogelsang for providing the QCD calculation shown in this paper. This work was sup-
ported jointly by the German BM BF, DFG, and the Hein-holtz-Gemeinschaft (V1VH-146), the U.S. DOE, the Swedish NFR, the Dutch Stichting FOM, the Swiss National Fund, the Humboldt Foundation, the Stiftung für deutsch-polnische Zusammenarbeit, the Department of Atomic Energy, the Department of Science and Technology and the University Grants Commission of the Government of India, the Indo-FRG Exchange Programme, the PPE division of CERN, the NTAS under contract INTAS-97-0158, the Polish KBN under the grant 2P03B16815, the Grant-in-Aid for Scientific Research (Specially Promoted Research & International Scientific Research) of the Ministry of Education, Science, Sports and Culture, JSPS Research Fellowships for Young Scientists, the University of Tsukuba Special Research Projects, and ORISE. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.