ALAN CORNEY

ATOMIC AND LASER SPECTROSCOPY

CLARENDON PRESS • OXFORD
Contents

1. INTRODUCTION

1.1. Planck's radiation law 1
1.2. The photoelectric effect 4
1.3. Early atomic spectroscopy 5
1.4. The postulates of Bohr's theory of atomic structure 7
1.5. Development of quantum mechanics 9
1.6. Interaction of atoms and radiation 1926-39. ... 11
1.7. Optical physics since 1945 11
1.8. The present situation (1975) 12
Problems ... 13
References .. 15
General references and further reading 16

2. REVIEW OF CLASSICAL ELECTRODYNAMICS

2.1. Maxwell's equations 17
2.2. The electromagnetic wave equations 20
2.3. Plane wave solutions 22
2.4. Linear and circular polarizations 24
2.5. The energy density and the Poynting vector 28
2.6. Vector and scalar potentials 30
2.7. Electric dipole radiation 33
2.8. Rate of radiation by an electric dipole oscillator 39
2.9. Angular momentum of dipole radiation 40
2.10. Magnetic dipole radiation 43
2.11. Electric quadrupole radiation 44
2.12. Multipole fields 48
Problems ... 49
General references and further reading 51
3. REVIEW OF QUANTUM MECHANICS

3.1. The Schrödinger wave equation 52
3.2. Expectation values and matrix elements 55
3.3. Solution of Schrödinger's equation for spherically symmetric potentials 56
3.4. Orbital angular momentum 61
3.5. Hydrogenic wavefunctions 62
3.6. Spin angular momentum 67
3.7. Coupling of two angular momenta 69
3.8. Spin-orbit interaction and the vector model 73
3.9. Many-electron atoms 77
Problems 88
General references and further reading 92

4. THE SPONTANEOUS EMISSION OF RADIATION 93

4.1. The classical atomic model 93
4.2. Radiative lifetime of a classical atom 95
4.3. Spontaneous emission probability, A_{ki} 97
4.4. Spontaneous emission according to quantum electrodynamics 100
4.5. Spontaneous transitions between degenerate levels 102
4.6. Radiative lifetimes of excited atoms 103
4.7. Intensity of light emitted by optically thin sources 104
4.8. Oscillator strengths 106
4.9. The line strength, S_{ki} 109
4.10. Oscillator strengths in hydrogenic systems 109
4.11. Theoretical oscillator strengths in complex atoms 114
Problems 115
References 118
General references and further reading 118
Contents

5. Selection Rules for Electric Dipole Transitions

- **5.1. Introduction** 120
- **5.2. One-electron atoms without spin** 120
- **5.3. One-electron atoms with spin** 128
- **5.4. Tensor properties of the electric dipole operator** 129
- **5.5. Many-electron atoms** 131
- **5.6. Relative intensities in L-S coupling and forbidden transitions** 138

Problems 139
General references and further reading 141

6. Measurement of Radiative Lifetimes of Atoms and Molecules

- **6.1. The beam-foil method** 142
- **6.2. Fast beam experiments using laser excitation** 159
- **6.3. The delayed-coincidence method using electron excitation** 160
- **6.4. Delayed-coincidence experiments using optical excitation** 171

References 176
General references and further reading 177

7. Forbidden Transitions and Metastable Atoms

- **7.1. Magnetic dipole transitions** 178
- **7.2. Electric quadrupole radiation** 180
- **7.3. Selection rules for magnetic dipole and electric quadrupole transitions** 183
- **7.4. Two-photon decay of hydrogenic systems** 185
- **7.5. Forbidden transitions in helium-like systems** 189
- **7.6. Collision processes involving metastable atoms** 203

Problems 214
References 224
General references and further reading 226
8. THE WIDTH AND SHAPE OF SPECTRAL LINES

8.1. The natural or radiative lineshape
8.2. The pressure broadening of spectral lines
8.3. Doppler broadening
8.4. Comparison of Doppler, collision, and natural widths
8.5. Voigt profiles
8.6. Effect of the instrumental profile
8.7. Line profile measurements at low pressures and temperatures

Problems
References
General references and further reading

9. THE ABSORPTION AND STIMULATED EMISSION OF RADIATION

9.1. Classical description of absorption by electric dipole oscillator
9.2. Einstein's treatment of stimulated emission and absorption
9.3. The semi-classical treatment of absorption and induced emission
9.4. Einstein B-coefficients defined in terms of intensity
9.5. Relations between Einstein B-coefficients and f-values
9.6. The integral of the total absorption cross-section
9.7. Introduction of the atomic frequency response

Problems
References
General references and further reading

10. RADIATIVE TRANSFER AND THE FORMATION OF SPECTRAL LINES

10.1. Derivation of the equation of transfer
10.2. Solution of the transfer equation for uniformly excited sources
10.3. Non-uniform sources

cont.....
CONTENTS

Chapter 10 continued....

10.4. Equivalent widths of absorption lines 296
10.5. Measurement of relative f-values by absorption techniques 302
10.6. Determination of chemical composition and atomic densities by absorption techniques 308

Problems 315
References 317
General references and further reading 318

11. POPULATION INVERSION MECHANISMS IN GAS LASERS 319

11.1. Introduction 319
11.2. Population inversion and the atomic gain coefficient 321
11.3. Transient and steady state population inversion 325
11.4. Population inversion mechanisms in gas lasers 329

Problems 351
References 353
General references and further reading 354

12. RESONANT MODES OF OPTICAL CAVITIES 355

12.1. Introduction 355
12.2. Numerical solution of cavity mode problem 356
12.3. Approximate analytic solutions for transverse modes 361
12.4. Mode size and cavity stability 365
12.5. Design considerations for practical systems 368
12.6. Cavity Q-factor and resonance linewidth 370

Problems 372
References 375
General references and further reading 376
CONTENTS

13. SATURATION CHARACTERISTICS AND SINGLE-FREQUENCY OPERATION OF GAS LASERS

13.1. Frequencies of the resonant cavity modes 378
13.2. Gain required for oscillation 381
13.3. Gain saturation: homogeneously-broadened transitions 383
13.4. Gain saturation: inhomogeneously-broadened transitions 388
13.5. Measurement of gain coefficients 396
13.6. Mode-locking of gas lasers 399
13.7. Single-frequency operation of gas lasers 402
13.8. Output power versus tuning curves for single-frequency gas lasers 409
13.9. Saturated absorption spectroscopy using tunable gas lasers 414
13.10. Frequency stabilization of single-frequency gas lasers 420

Problems 432
References 436
General references and further reading 438

14. TUNABLE DYE LASERS AND ATOMIC SPECTROSCOPY 439

14.1. Introduction 439
14.2. Tunable organic dye lasers 440
14.3. Saturated absorption spectroscopy using tunable dye lasers 454
14.4. Two-photon absorption spectroscopy 462

References 470
General references and further reading 471

15. THE HANLE EFFECT AND THE THEORY OF RESONANCE FLUORESCENCE EXPERIMENTS 473

15.1. Resonance radiation and resonance fluorescence 474
15.2. Magnetic depolarization of resonance radiation - the Hanle effect 477

cont....
CONTENTS

Chapter 15 continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.</td>
<td>Excitation by electron impact</td>
<td>485</td>
</tr>
<tr>
<td>15.4.</td>
<td>Range and accuracy of lifetime measurements</td>
<td>491</td>
</tr>
<tr>
<td>15.5.</td>
<td>Theory of resonance fluorescence experiments</td>
<td>492</td>
</tr>
<tr>
<td>15.6.</td>
<td>Theory of the Hanle effect</td>
<td>501</td>
</tr>
<tr>
<td>15.7.</td>
<td>Theory of resonance fluorescence in the $J_e=1^+ J_g=0$ case</td>
<td>506</td>
</tr>
<tr>
<td>15.8.</td>
<td>Resonance fluorescence experiments using pulsed excitation</td>
<td>512</td>
</tr>
<tr>
<td>15.9.</td>
<td>Resonance fluorescence experiments using modulated excitation</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>General references and further reading</td>
<td>532</td>
</tr>
</tbody>
</table>

Chapter 16

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1.</td>
<td>Magnetic resonance and excited atoms</td>
<td>534</td>
</tr>
<tr>
<td>16.2.</td>
<td>Theory of the Brossel-Bitter experiment</td>
<td>539</td>
</tr>
<tr>
<td>16.3.</td>
<td>Discussion of the optical double-resonance method</td>
<td>548</td>
</tr>
<tr>
<td>16.4.</td>
<td>Radiation trapping and coherence narrowing</td>
<td>552</td>
</tr>
<tr>
<td>16.5.</td>
<td>Collision broadening in resonance fluorescence experiments</td>
<td>557</td>
</tr>
<tr>
<td>16.6.</td>
<td>Light modulation in double-resonance experiments</td>
<td>572</td>
</tr>
<tr>
<td>16.7.</td>
<td>Magnetic resonance in the density matrix formalism</td>
<td>576</td>
</tr>
<tr>
<td>16.8.</td>
<td>Expansion of the density matrix in terms of irreducible tensor opera-tors</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>586</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td>General references and further reading</td>
<td>590</td>
</tr>
</tbody>
</table>
17. OPTICAL PUMPING EXPERIMENTS

17.1. Introduction
17.2. Principles of optical pumping
17.3. Effect of relaxation processes
17.4. Investigation of longitudinal relaxation times
17.5. Spin-exchange collisions
17.6. Optical pumping of metastable atoms
17.7. Optical pumping and magnetic resonance
17.8. Transverse magnetization and Hertzian coherence in optical pumping experiments
17.9. Quantum theory of the optical pumping cycle

Problems
References
General references and further reading

18. THE HYPERFINE STRUCTURE OF ATOMS AND ITS INVESTIGATION BY MAGNETIC RESONANCE METHODS

18.1. Theory of hyperfine structure
18.2. Investigation of hyperfine structure of ground-state atoms by optical pumping
18.3. Hyperfine pumping and the measurement of ν_{HFS}
18.4. Optically pumped rubidium frequency standards
18.5. The atomic beam magnetic resonance technique
18.6. Hyperfine structure investigations by the atomic beam technique
18.7. Cesium beam atomic clock
18.8. Hyperfine structure of atomic hydrogen
18.9. Investigation of the hyperfine structure of excited states
18.10. Conclusion

Problems
References
General references and further reading
CONTENTS

APPENDIX: TABLE OF FUNDAMENTAL CONSTANTS 742

AUTHOR INDEX 745
SUBJECT INDEX 754