Pseudo-goldstone higgs from 5D

Adam Falkowski
1 CERN, Theory Division, CH 1211, Geneva 23, Switzerland
2 Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland

Abstract. I discuss radiative generation of the higgs potential in 5D models of gauge-higgs unification.

PACS. 12.60.Fr Extensions of electroweak Higgs sector

1 Introduction

The LHC will soon probe the mechanism that breaks the electroweak symmetry and gives mass to the standard model particles. While in the standard model, the electroweak breaking sector consists of one scalar multiplet with a potential that induces its vacuum expectation value (vev), a simple picture is consistent with all experimental data so far, our theoretical prejudice from studies of more elaborate mechanisms. The reason is that, in the standard model, no symmetry forbids the higgs mass paramet er so that it receives UV sensitive quantum corrections. Once the standard model is extended in some more fundamental theory, it is difficult to understand how the electroweak scale could be separated from the scale of new physics without much fine-tuning. This suggests that new physics should become manifest close to the TeV scale. Moreover, we expect that the new physics includes a symmetry protecting the higgs potential and that the electroweak breaking scale is calculable in terms of microscopic parameters defining the fundamental theory. This kind of reasoning sets the main line of attack in physics beyond the standard model.

One interesting possibility is that higgs is a pseudo-goldstone boson. In such a scenario, the higgs potential is protected by an approximate shift symmetry that arises after spontaneous breaking of a global symmetry. The pseudo-goldstone mechanism has been already seen at work in high energy physics; it protects the masses of pions in QCD.

In the pseudo-goldstone scenario, much of the low-energy physics is fixed by the pattern of the global symmetry and its spontaneous breaking. However, several important issues, for example the scale of the global symmetry breaking, depends on the dynamics. While it is possible that this dynamics is weakly coupled and governed by another higgs sector, the most likely option is that it is strongly coupled (as in QCD).

Some insight into strong dynamics can be gained by studying 5D theories in a warped background that are conjectured to be dual to strongly coupled theories.

2 Methods

Consider a 5D gauge theory propagating in a warped background with the line element given by

\[ds^2 = a^2(t,y) dx^2 + dy^2 \]

(1)
The fifth dimension is an interval, $\mathbb R^2 \times 0L$, in which a superstring is placed. We refer to $y = 0L$ as the UV (IR) brane. The function $a(y)$ is called the warp factor. We $x(a(0)) = 1$. For $a(y) = 1$, we recover $5D$ at space, while for $a(y) = e^{ky}$ corresponds to a slice of A dS$_5$. In the following discussion, we keep the warp factor arbitrary.

The bulk contains gauge fields $A_{\mu} = A_{\mu}^a T^a$. The 5D gauge symmetry is broken to a subgroup by imposing Dirichlet boundary conditions: $A_{\mu}(0) = 0$ and $A_{\mu}(L) = 0$ for some of the generators (while the remaining ones obey Neumann boundary conditions). Now, for a gauge field with Dirichlet boundary conditions on both branes, the 5th component contains a physical mode that is massless at tree level. This is our gauge-higgs field. We assume that it acquires a vev:

$$h_{A5} = T^a a^2(y) R_0 a^2 1 - 2\zeta$$

where we singled out one generator T^a along which the vev resides. The normalization factors are chosen such that oscillations around the vev, v, areCodenhed, and correspond to a canonically normalized scalar in the 4D effective theory. This field plays the role of the higgs boson.

Next, we consider a 5D fermion multiplet charged under the gauge group. The quadratic action in the warped background reads

$$Z = Z_L n \int_0^L d\zeta \frac{1}{\sqrt{a^2(5D_y M)}}$$

where $\mathcal{D}_y = \delta_y \int dy a^2 \frac{1}{\sqrt{a^2(5D_y M)}}$ and $\mathcal{D}_y = \delta_y + 2a^2 d\zeta$. We expand the fermion in the basis of Kaluza-Klein (KK) mass eigenstates:

$$L(x,y) = f_{L_n (y)} (y) f_{L_n (y)}$$
$$R(x,y) = f_{R_n (y)} (y) f_{R_n (y)}$$

The modes satisfy the equations of motion:

$$\mathcal{D}_y f_{L_n (y)} (y) = m_n (y) a^2 f_{L_n (y)}$$
$$\mathcal{D}_y f_{R_n (y)} (y) = m_n (y) a^2 f_{R_n (y)}$$

that depend on the gauge-higgs vev. Furthermore, the modes satisfy the boundary conditions that determine the particular model. The KK expansion allows us to rewrite the 5D quadratic action as a 4D action that is diagonal in the KK basis:

$$Z = \int d^4x \frac{1}{\sqrt{a^2(5D_y M)}}$$

The masses of the fermionic modes depend on the gauge-higgs vev. This implies that, at the quantum level, the higgs will acquire a non-trivial potential. The potential is calculated from the usual Coleman-Wilson formula:

$$V(y) = \frac{N_c}{4} \int_0^L dp^3 \log \left[1 + \frac{m_n^2 (y)}{\zeta^2} \right]$$

where the summation goes over all fermionic eigenstates in the theory. The 5D origin of this formula is manifest in the presence of the 5D K K tower. Remarkably enough, one can rewrite Eq. 8 to a form where the KK summation is absent and where it resembles a 4D Coleman-Wilson potential:

$$V(y) = \frac{N_c}{4} \int_0^L dp^3 \log \left[1 + \frac{m_n^2 (y)}{\zeta^2} \right]$$

where the spectral function (s) is any analytic function whose simple zeros on the positive real axis encode the spectrum in the presence of the gauge-higgs vev: $\ln s^2 (y) = 0$. A tower of KK particles in 5D is a holographic manifestation of a composite structure in 4D.

In order to find the spectral function we need to solve the equations of motion with appropriate boundary conditions. To this end, we first introduce the auxiliary (hatted) profiles by

$$f_{L_n (y)} (y) = a^2 (y) e^{iky} f_{L_n (y)}$$
$$f_{R_n (y)} (y) = a^2 (y) e^{iky} f_{R_n (y)}$$

The Wilson-line matrix is defined as

$$\langle y | \hat{a} | x > = e^{iky} a_{x}$$

and its role is to rotate away the higgs vev from the equations of motion. The hatted profiles satisfy simpler equations:

$$\hat{a} f_{L_n (y)} = m_n (y) a_1 e^{iky} f_{L_n (y)}$$
$$\hat{a} f_{R_n (y)} = m_n (y) a_1 e^{iky} f_{R_n (y)}$$

that do not depend on v other than through the mass eigenvalues. From the above follow the second order differential equations:

$$ae^{iky} \hat{a} f_{L_n (y)} + m_n (y) f_{L_n (y)} = 0$$
$$ae^{iky} \hat{a} f_{R_n (y)} + m_n (y) f_{R_n (y)} = 0$$

with $m = m_n (y)$. We denote two independent solutions of the 4th equation as $C_n (y)$ and $S_n (y)$. We solve these equations such that they satisfy $C_n (0) = 1$, $S_n (0) = 0$. The notation is to stress the similarity to the familiar sines and cosines (to which these functions reduce for a warp factor and $M = 0$). The warped generalization of $\sin^2 + \cos^2 = 1$ is the Wenzlian function $S_n (y)$:

$$C_n (y) = ma (y) e^{iky} S_n (y)$$
$$S_n (y) = ma (y) e^{iky} S_n (y)$$

where $m = m_n (y)$. We analyze the 4th equation to find solutions of the form $C_n (y)$ and $S_n (y)$. We pick up these solutions such that they satisfy $C_n (0) = 1$, $S_n (0) = 0$, $S_n (0) = m$. The notation is to stress the similarity to the familiar sines and cosines (to which these functions reduce for a warp factor and $M = 0$). The warped generalization of $\sin^2 + \cos^2 = 1$ is the Wenzlian function $S_n (y)$:

$$C_n (y) = ma (y) e^{iky} S_n (y)$$
$$S_n (y) = ma (y) e^{iky} S_n (y)$$

We then find the auxiliary profiles for computing spectral functions following s. The 4th equation has solutions of the form $C_n (y)$ and $S_n (y)$, where the constant m depend on the UV boundary conditions and the gauge field ϕ.
2) Find the proles $f(\omega y)$ from Eq. (3). Write down IR boundary conditions and solve for λ. In the 5D models the solution exists for a discrete set of m_n. The equation that sets the quantization condition can be employed as the spectral function.

3 Applications: $SO(5)$

We apply the general methods outlined in the previous section in the context of electroweak breaking driven by quarks with quantum numbers of the standard model top quark. The gauge group is chosen to be $SO(5) = U(1)_k$, as it is the simplest possibility that incorporates the electroweak group, the correct W einberg angle and the custodial symmetry. The last is indispensable in 5D warped models in order to keep the Peskin-Takeuchi T parameter under control. $SO(5)$ has 10 generators: T^a_5 from the $SU(2)_L$ subgroup (identical with the standard model $SU(2)_L$), T^a_6 from the $SU(2)_R$ subgroup (identical with the custodial symmetry) and the remaining four generators T^a_5 belong to the $SO(5) = SO(4)$ coset. The gauge symmetry on the UV brane is reduced down to $SU(2)_L$, $U(1)_y$, $U(1)_x$. The hypercharge being a combination of T^a_5 and $U(1)_y$, on the IR brane the symmetry is reduced down to $SO(4) = SU(2)_L \times SU(2)_R$. The four generators from the $SO(5) = SO(4)$ coset have Dirichlet boundary conditions on both branes, so that the ch componens of the corresponding gauge fields host the Higgs doublet. The y is chosen along the T^a_4 generator. The electroweak breaking scale is $V = f \sin(\psi = f)$ where $f^2 = 2g_5^2 \frac{v^2}{m_{P}}$ sets the global symmetry breaking scale.

I will investigate the one-loop induced Higgs potential in the model with the top quark embedded in the spinorial 4 representation of $SO(5)$ [2]. 4 is the smallest $SO(5)$ representation and the spectral functions end up being less complicated than in models based on other $SO(5)$ representations. Although models based on the spinorial representation cannot be made fully realistic because of excessive contributions to the Zbb vertex [8], they are most suitable for an illustrative purpose. Spectral functions in the models with top quarks embedded in the fundamental SO(5) representation are discussed in Ref. [10].

3.1 Minimal model

Consider a 5D Einstein-Euler Q with a bulk mass M_5, transforming in the spinorial 14 representation of $SO(5)$. The two SM top quark chiralities are embedded as

$$Q = (q; \bar{q}) = (t_R \xi t; \bar{t}^c; \bar{b}^c)$$

The boundary conditions for the top quark [2] are

$$t_R(0) = \bar{t}^c(0) = 0 \quad t_R(L) = \bar{t}^c(L) = 0$$

In this simple set-up we can readily dispaly all steps leading to the spectral function. We first write down the auxiliary proles that satisfy the UV boundary conditions:

$$\bar{\xi}_{\mu, n}^c = t_{\mu}C_{\mu}(y) \quad \bar{\xi}_{\mu, n} = t_{\mu}S_{\mu}(y)$$

To derive the full proles $f(\omega y)$ we use Eq. (3) with the W ison-line matrix for the spinorial representation given by:

$$\{L\} = \begin{pmatrix} \cos(\psi = 2f) \sin(\psi = 2f) \\ \sin(\psi = 2f) \cos(\psi = 2f) \end{pmatrix}$$

The IR boundary conditions imply:

$$t_{\mu}c \cos(\psi = 2f) S_{\mu}(L) + \sin(\psi = 2f) t_{\mu}C_{\mu}(L) = 0$$

$$t_{\mu} \sin(\psi = 2f) C_{\mu}(L) + \cos(\psi = 2f) t_{\mu}S_{\mu}(L) = 0$$

The determinant of this equation is the quantization condition. We write the spectral function as

$$\left(m^2 \right) = 1 - \frac{\sin^2(\psi = 2f)}{\sinh^2(\psi = 2f)}$$

As discussed in [5], this spectral function can be well approximated by

$$\left(p^2 \right) \sim 1 + \frac{\gamma_c^2 f^4}{m_{KK}^2 \sinh^2(\psi = 2f)}$$

where $\gamma_c = \frac{1}{2} \alpha_1 \frac{L}{a} \frac{S_M}{S_{M,0}} \frac{S_M}{L} \frac{S_{M,0}}{L}$ plays the role of the top Yukawa coupling and $M_{KK} = \frac{1}{2} \frac{L}{a} \frac{S_M}{S_{M,0}} \frac{S_{M,0}}{L}$ sets the resonance scale. It follows that, at small momenta, $\left(p^2 \right) \sim 1 + \frac{\gamma_c^2 f^4}{m_{KK}^2 \sinh^2(\psi = 2f)}$, which is appropriate for a 4D top quark with the mass $m_{t,0} = \gamma_c f \sin(\psi = 2f)$. The effect of the resonance tower is to exponentially suppress the Higgs dependence of spectral function for Euclidean momenta larger than M_{KK}. This implies that the coupling of the top quark to the Higgs becomes very soft at high energies, which cuts o divergent corrections of the Higgs potential. From the holographic point of view, the softness can be explained as a consequence of a com positive structure of the Higgs.

Investigation of the Higgs potential with this spectral function reveals a minimum at $\sin^2(\psi = 2f) = 1$. This result can be simply understood. The Higgs potential is dominated by the light top quark contribution whose quadratic divergence is cut o at the resonance scale, which leads to $V(\psi) \sim m_{t,0}^2 \left(\frac{\gamma_c f}{M_{KK}} \right)^2$. Energetically the most favourable is to make the top quark as heavy as possible, which is achieved when $\sin^2(\psi = 2f)$ is maximized. Thus the minimal model has too simple a structure to generate a realistic Higgs potential

realized (see Ref. [7]), we do not expect large contributions to the Higgs potential because of the small bottom quark coupling to the Higgs.
3.2 Shadow Multiplet

The problem with the Higgs potential of the minimal set-up can be solved by introducing the so-called shadow multiplet, that is another 5D quark in a spinorial representation

\[
S = (\bar{C}f; \bar{C}^c) = (\bar{t}_L; \bar{t}^c_L; \bar{b}^c_L)
\]

with different boundary conditions in IR

\[
t_R(0) = \bar{t}_L(0) = 0 \quad \bar{t}_L(L) = \bar{t}^c_L(L) = 0:
\]

At zero gauge-Higgs vev the shadow multiplet does not yield any light modes below the resonance scale (hence the name "shadow", as opposed to "light"). However, a massless mode appears for \(\sin^2\theta = 2\), \(\theta = 2\pi/3\), as can be read off from the spectral function:

\[
\begin{align*}
(m^2) &= S_{M_0} (L) S_{M_0} (L) \sin^2 \theta \\
S_{M_0} (L) S_{M_0} (L) \cos^2 \theta
\end{align*}
\]

In this setup a correct electroweak breaking vacuum can be engineered. As before, the light multiplet tries to make \(m = M_0\) the minimum falls in the middle, for \(\sin^2\theta = 2\), \(\theta = 2\pi/3\). This is no good, as it corresponds to massless electroweak breaking, \(\theta = 0\), in which case the model is effectively Higgsless (a light scalar field does exist but it does not unitarize W W scattering) with all the usual problems. However, with a certain degree of \(\sin^2\theta\), the light multiplet achieves a minimum at \(\theta = 2\pi/3\), as found by electroweak precision tests. For example, a separation between \(\theta = 2\pi/3\) and \(\theta = \pi/3\) is achieved for \(\gamma = 1\) and \(\gamma = 3/4\). To get \(\theta = 2\pi/3\), the bulk masses have to be tuned at the 10% level.

3.3 Mass Mixing

There is a simple way to complicate the previous model. The symmetries of the Light-Shadow set-up permit the mass terms on the IR brane,

\[
\begin{align*}
L &= (L M^c a^4 (L) (\bar{L}_L; \bar{L}_R) & (\bar{t}_L; \bar{t}^c_L) \\
(L M^c a^4 (L) (\bar{t}^c_L; \bar{t}^c_R) & (\bar{b}^c_L; \bar{b}^c_R) + h.c.)
\end{align*}
\]

that mix the two multiplets. One reason to include the boundary masses is that they open new options for generating the correct electroweak breaking vacuum [14].

The spectral function takes the form

\[
(m^2) = [C_{M_0} (L) S_{M_0} (L) + M^c f e^{2 M_0} M^c_{M_0} (L) S_{M_0} (L) + \sin^2 \theta f_M M^c f + \sin^4 \theta M^c (L) S_{M_0} (L)]
\]

In general, the model with the IR mass mixing becomes immune to analytic treatment and one should resort to numerical methods as in [10]. This however goes beyond the scope of this presentation.

References