HOMMAGE À LA MEMOIRE DE NIELS BOHR

par Victor F. Weisskopf

23 novembre 1962
Chers Amis et Collaborateurs,

Nous sommes réunis cet après-midi pour rendre hommage à Niels Bohr. Niels Bohr est pour nous le symbole, la source et l'architecte principal de nos travaux. C'est grâce à lui, par lui et avec lui que les bases sur lesquelles reposent nos travaux et notre existence ont été créées. C'était un grand homme. Comment définir la grandeur? Celui qui ouvre de nouvelles voies et qui crée une nouvelle façon de penser peut être qualifié de grand homme; en vérité, Niels Bohr, par sa personne et par sa vie, répond à cette définition. L'influence de ses travaux est ressentie dans chaque aspect de notre vie. La science moderne a transformé notre monde. Elle est devenue le facteur prédominant de notre pensée, de notre culture, de la politique même, et elle commande l'orientation de l'humanité pour les prochaines décades. Nous ne pouvons pas encore évaluer la signification réelle du développement engendré par les travaux de Niels Bohr. Nous sommes trop proches de sa vie. On ne réalise que de loin combien le Mont-Blanc domine les autres montagnes des Alpes.

C'est en 1885 que naquit Niels Bohr. Sa carrière de savant débuta en 1905 environ et continua jusqu'à sa mort. Quelle époque pour un physicien! Il commença ses travaux alors qu'on ne connaissait rien de la structure de l'atome et les termine lorsque la physique atomique, créée par lui, avait atteint sa maturité. En 1905, la science et notamment la physique n'étaient pas ce qu'elles sont à l'heure actuelle. Examinons comment se présentait la physique à cette époque.

C'était une époque intéressante. C'était l'année où Einstein énonça son concept de la relativité spéciale et où une multitude de phénomènes nouveaux étaient découverts, mais non expliqués. C'était l'époque - quelques années plus tard seulement - de la grande découverte du quantum d'action par Planck. Rares étaient ceux qui avaient remarqué le nouveau document de Planck et encore plus rares ceux qui en avaient saisi la signification. C'était une époque où les domaines de la chimie et de la physique étaient éloignés l'un de l'autre. La chimie, d'une part, représentait la science de la matière et de ses propriétés spécifiques. L'atome était un concept de chimie - les atomes de l'or, de l'oxygène, de l'argent constituait autant d'entités spécifiques dont l'existence était admise sans être comprise. La physique, d'autre part, était une science de propriétés générales: du mouvement, du rapport de la tension à la déformation, des champs électriques et magnétiques. Les deux disciplines étaient très éloignées l'une de l'autre. On ne pouvait pas encore répondre à la question: "Quelle est la source des propriétés de la matière?". Bohr eut la grande chance de se trouver là au début, peut-être devrions-nous dire plutôt que l'humanité eut la grande chance qu'il fût là à ce moment crucial.
Les travaux de Niels Bohr peuvent être divisés en trois périodes. Au cours de chacune d’elles, il exerça une influence considérable sur le développement de la science moderne, de trois manières différentes et à trois moments différents. La première période s’étend de 1912, année de sa rencontre avec Rutherford, à 1923. Elle débute en 1913 avec la publication de ses travaux sur les orbites quantiques de l’atome d’hydrogène. Bohr se proposait d’expliquer les propriétés inconnues de l’atome en utilisant le concept des états quantiques - un concept déjà établi par Planck et Einstein, et qu’il appliqua à la structure de l’atome. Je ne pense pas qu’il existe dans la littérature de la physique un document qui engendra un si grand nombre d’idées nouvelles et duquel découleraient autant de découvertes. Il est difficile de rencontrer un object plus révolutionnaire. Son concept des états quantiques de l’atome était selon toute évidence en contradiction totale avec le schéma du système planétaire que les expériences de Rutherford avaient permis d’établir. Mais les réponses aux principaux problèmes fondamentaux étaient contenues dans cette contradiction même.

Ce document célèbre marqua le début d’une série de nouvelles découvertes. Au cours des dix années qui suivirent sa parution, plusieurs phénomènes jusqu’alors inexpliqués trouvèrent leur place: la structure des spectres des éléments, le processus d’absorption et d’émission de la lumière, les causes qui régissent le schéma périodique des éléments, la séquence curieuse des propriétés des 92 différents éléments atomiques. C’est la période où la qualité, la spécificité des substances chimiques ont été réduites à des données quantitatives, au nombre d’électrons qui gravitaient autour de chaque atome. Tout cela reposait sur l’hypothèse des quanta appuyée par Bohr, qui n’était alors qu’une hypothèse provisoire. Toutefois, les contemporains de Bohr adoptèrent à la lettre les orbites quantifiées de l’électron permises ou non, bien que Bohr les ait mis en garde dans ses documents et à des réunions que cela ne pouvait être l’explication finale, que la découverte d’un principe fondamental s’imposait d’abord pour comprendre réellement le processus de la quantification de l’atomes.

Nous abordons maintenant la deuxième période de ses travaux: les années 1923 à 1932. Ce fut la grande période pendant laquelle le principe du quantum fut expliqué. Une période héroïque, sans pareille dans l’histoire de la science, la plus fructueuse et la plus passionnante de la physique moderne. On ne trouvait aucun document écrit par Niels Bohr seul pour caractériser cette période comme le document de 1913 pour la première période. Bohr avait trouvé une nouvelle méthode de travail. Il ne travaillait plus seul, mais en collaboration avec d’autres savants. Sa plus grande force était de rassembler autour de lui les physiciens les plus actifs, les plus doués, les plus intuitifs du monde. Pendant cette période, on trouve aux côtés de Bohr, dans son célèbre Institut
de Physique théorique à Copenhague, des hommes comme Klein, Kramers, Pauli, Heisenberg, Ehrenfest, Gamov, Bloch, Casimir, Landau et d'autres encore. C'est à ce moment et avec ces physiciens que les bases de la théorie des quantas furent jetées, que le principe d'incertitude fut énoncé et discuté pour la première fois, que l'antinomie particule-onde fut comprise pour la première fois. Les problèmes fondamentaux relatifs à la structure de la matière furent éclaircis au cours de discussions animées entre deux ou plusieurs personnes. C'est là que l'influence de Bohr se fit le mieux sentir. C'est là qu'il créa son "Kopenhagener Geist", style qu'il imposa à la physique - un style d'un caractère très particulier. On pouvait le voir, le premier entre ses égaux, travaillant, discutant, vivant avec un groupe de personnes jeunes, optimistes, enjouées et enthousiastes, abordant les plus importants problèmes de la nature avec un esprit d'attaque, un esprit libre de tout lien conventionnel, avec une allégresse qu'il est difficile de décrire. Lorsqu'on lui fit observer que les plaisanteries qui se glissaient dans les discussions semblaient refléter un manque de respect, Niels Bohr répondit: "Certaines choses sont tellement sérieuses que l'on ne peut qu'en plaisanter."

Durant cette période marquante de la physique, Bohr et ses disciples pénétrent les secrets profonds de l'univers. Les secrets de la Nature cachés jusqu'à ce jour furent percés par les facultés intellectuelles de l'homme. La théorie des états quantiques fut solidement établie, son intégralité fondamentale, son indivisibilité qui pourtant échappe à l'observation ordinaire d'une manière particulière, puisque le fait même de l'observer ferait disparaître les conditions de son existence. Bohr, dont les capacités pénétrantes d'analyse contribuèrent à un tel degré à éclaircir ces problèmes, appela cette situation extraordinaire "la complémentarité". Ce mot met au défi une description imagée en nos termes classiques habituels de physique, mais révèle du même coup un monde beaucoup plus riche que notre expérience classique ne nous permet de percevoir.

Lorsque les principes fondamentaux de la mécanique atomique furent établis, il se révéla possible de comprendre et de calculer presque tous les phénomènes du monde des atomes tels que les radiations atomiques, la liaison chimique, la structure des cristaux, l'état métallique et de nombreux autres. Avant cette époque, le monde se composait de nombreuses forces: électrique, adhésive, chimique et élastique; dès lors, toutes ces forces se trouveraient rassemblées en une seule: la force électromagnétique. En quelques années seulement, les bases d'une science des phénomènes atomiques furent jetées et engendrèrent les connaissances profondes que nous possédons aujourd'hui. Jamais auparavant, tant ne fut réalisé par si peu d'hommes en si peu de temps.
Vint ensuite la troisième période des travaux de Bohr: les années 1932 à 1940. L'année 1932 fut importante pour le développement de la physique: on enregistra la découverte du neutron, du positron et de la radioactivité artificielle, et le premier accélérateur de particules entra en service. L'Institut de Bohr, de renommée mondiale à l'heure actuelle, devint le centre des études de physique théorique. Le problème fondamental du quantum ayant été résolu, les travaux de physique théorique continuèrent dans deux direction. La première était l'application des théories des quanta dans le domaine des champs électromagnétiques d'abord et nucléaires par la suite. Les travaux entrepris dans cette direction ne sont pas encore terminés à l'heure actuelle et de nombreux problèmes fondamentaux relatifs à la structure des particules élémentaires, qui sont à l'origine des champs, ne sont pas encore résolus. Pendant cette période, ces travaux se poursuivirent activement à Copenhague en étroite collaboration avec Pauli, Dirac et Heisenberg. Bohr, lui-même, dans un document célèbre publié en collaboration avec Rosenfeld, établit la base physique des nouveaux concepts de quantification des champs. Ce document constitue un exemple typique de l'intérêt que Bohr témoignait à la teneur en physique des théories mathématiques.

La deuxième direction dans laquelle étaient orientées les recherches était l'exploration de la partie la plus secrète de l'atome, le noyau atomique. Antérieurement, on considérait que le noyau était seulement la masse centrale de l'atome. Au cours de la troisième période, la structure du noyau suscita un vif intérêt, car un nombre toujours plus grand de faits relatifs aux phénomènes étroitement liés avec les parties les plus secrètes de l'atome furent révélés. Ces faits étaient troublants à l'origine, mais, sous la conduite active de Bohr, on découvrit rapidement que l'univers du noyau était gouverné par les mêmes lois que la mécanique quantique. Toutefois, dans ce cas, on se heurta à un problème plus complexe en raison de l'apparition de forces nouvelles et plus puissantes qui maintenaient l'unité du noyau, à savoir les forces nucléaires. Lorsque le nombre considérable des états quantiques trouvés dans les réactions nucléaires posa des problèmes au monde des physiciens, ce fut encore le concept de Bohr du "noyau composé" qui permit de comprendre comment le grand nombre d'états est lié à l'interaction forte entre les parties composantes du noyau. Les travaux de Bohr et l'esprit stimulant issus des discussions qui avaient lieu à l'Institut de Bohr créèrent une nouvelle science de la structure nucléaire qui permit de comprendre les phénomènes nucléaires et aussi un problème déjà ancien: les sources d'énergie du soleil et des étoiles.

Nous approchons maintenant de l'année 1940, le début de la deuxième guerre mondiale. Les épisodes qui suivront dans la vie de Bohr sont, sous certains aspects, un témoignage encore plus important de la grandeur de cet homme. On ne peut les décrire en termes
purement scientifiques. Bohr n'était pas seulement un grand savant, il était aussi un homme d'une sensibilité exceptionnelle à l'égard du monde qui l'entourait. Les rapports entre l'homme et la science revêtaient pour lui une importance capitale. Il fut conscient, avant les autres, du rôle décisif que la physique atomique jouait et continuerait à jouer dans la civilisation et le destin de l'homme - que la science ne pouvait pas être isolée du reste du monde. Par la suite, les événements de l'histoire du monde confirmèrent ce point de vue plus tôt qu'on ne l'aurait pensé. Dans les années 1930 déjà, une brèche s'ouvrit dans la tour d'ivoire de la science pure. Le régime nazi dirigeait l'Allemagne et un flot de savants se réfugièrent à Copenhague où Bohr les reçut et les secourut. Il demanda à certains d'entre eux de rester avec lui; pour James Frank, Hevesy, Flacze, Frisch et beaucoup d'autres, Copenhague fut un havre où ils purent continuer leurs travaux scientifiques. En outre, l'Institut de Bohr était le centre pour tous ceux qui s'intéressaient à la science et qui avaient besoin d'aide, et plus d'un savant put obtenir un refuge - en Angleterre ou aux États-Unis - grâce à l'assistance accordée personnellement par Bohr. Puis vinrent les années de guerre; le Danemark fut occupé en avril 1940 par les nazis; la science pure était morte. Bohr travaillait étroitement avec la résistance danoise. Il refusa de collaborer avec les autorités nazies. Il fut bientôt obligé de quitter le Danemark, de fuir en Suède et arriva aux États-Unis en passant par l'Angleterre. Aux États-Unis, à Los Alamos, il se joignit à un groupe important de savants qui travaillaient alors à des recherches sur l'exploitation de l'énergie nucléaire à des fins militaires. Il ne se déroba pas à cet aspect le plus problématique des activités scientifiques. Il aborda le problème carrément comme une nécessité; mais parallèlement, c'est son idéalisme, son esprit de prévoyance et son espoir en la paix qui incitèrent de nombreuses personnes de ce centre militaire à penser à l'avenir et à préparer leurs esprits pour les travaux futurs. Il nous aida à voir que malgré la mort et la destruction, un avenir positif existait pour l'humanité que les connaissances scientifiques avaient transformées. Il fit encore plus. Il eut des contacts avec les hommes qui tenaient le pouvoir; il vit Roosevelt, il vit Churchill. Il fit une foule de choses qui, aujourd'hui, nous paraîtraient naïves. Nous étions d'ailleurs tous naïfs lorsqu'on nous pensionait que la bombe serait abolie après la guerre et qu'une paix durable serait établie; mais c'est cette naïveté même qui permet d'avoir l'espoir et la force nécessaires à un avenir pacifique. Nous devons être conscients à l'heure actuelle que c'est cette attitude ainsi que les discussions et les activités qui s'effectuèrent grâce à cet espoir qui ont contribué aux réalités actuelles et peut-être au fait que nous sommes encore vivants et capables de regarder l'avenir avec confiance.

Puis vinrent les années d'après-guerre: de 1945 à sa mort. La physique n'avait plus le même aspect. La guerre avait fait ressortir, de manière cruelle, que la science est d'une importance immédiate et
directe pour chacun. Le caractère de la physique avait changé. La physique devint une vaste entreprise; pour effectuer des recherches dans ce domaine, il fallait beaucoup de monde et de grandes machines. Bohr admit ce changement comme une suite logique des travaux qu'il avait entrepris avec ses amis. Les nouvelles idées qu'il avait émises dépassaient la tour d'ivoire des universités dans lesquelles certains auraient souhaité enfermer leurs connaissances. Il comprit que de ces idées se développerait une grande réalisation qui couvrirait tous les domaines des activités humaines; il vit ainsi la nécessité de faire de la physique sur une grande échelle, voire même sur une échelle internationale. Dans aucun autre effort humain, les limites étroites imposées par les nationalités et la politique ne sont plus désuètes et ridicules que dans le domaine de la science. Bohr était donc toujours conscient du rôle important que la science doit jouer en créant un lien durable qui dépasse les limites nationales et politiques et en créant les débuts d'une société supranationale d'êtres humains sur la terre. Voilà pourquoi il s'occupa activement de la création de centres internationaux de recherche scientifique: le centre scandinave, NORDITA à Copenhague, et enfin le centre dans lequel nous travaillons. C'est grâce à Bohr que le CERN existe. C'est la personnalité de Niels Bohr, son influence et ses travaux qui ont permis de créer le Laboratoire. D'autres savants éminents conjurent l'idée du CERN. Leur enthousiasme et leurs idées n'auraient pas suffi s'ils n'avaient pas été appuyés par un tel homme, qui ne se contentait pas seulement de les appuyer mais participait activement à chaque étape important de la création et du développement de cette œuvre, unis dans un commun effort avec les autres pour discuter et s'inquiéter de chaque détail. Voilà ce qu'était Niels Bohr.

La grandeur de cet homme se fait sentir dans cette période plus que dans toute autre. A soixante ans, Bohr était pleinement conscient des nouveaux développements de la physique, de la nouvelle phase commencée dix ans plus tôt, lorsque la possibilité d'obtenir des faisceaux de hautes énergies permit d'aller plus loin que la structure du noyau et d'explorer la structure des constituants du noyau: le proton et du neutron. Cette nouvelle étape de la science n'est que la suite du courant immense que les travaux de Bohr avaient engendré. Bohr en était conscient et c'était la raison pour laquelle il avait donné l'appui de son enthousiasme, de sa joie de vivre, de son attitude positive à ce nouveau développement et en particulier à la nouvelle poussée de la physique fondamentale en Europe. On comprend difficilement comment un homme de cet âge pouvait avoir cette énergie, cet intérêt enthousiaste de la vie; c'était toutefois une condition nécessaire pour que se réalisent ses travaux. Il nous a donné cet accroissement immense de notre vision de la réalité, qui fit trembler les fondations du monde, mais par ailleurs c'est son optimisme et son enthousiasme qui nous permettent de surmonter les difficultés auxquelles nous nous heurtons.
Avec la mort de Niels Bohr, une époque s'achève - l'époque des grands hommes qui créèrent notre science. Mais Niels Bohr lui-même a participé à la création des bases pour la continuation future de travaux dans son esprit; l'existence du CERN en est un témoignage. Il nous contraint à continuer du mieux que nous le pourrons les travaux qu'il entreprit pendant sa vie.

Qu'une telle vie ait été vécue et puisse l'être à l'heure actuelle est un grand encouragement pour nous tous.