Acronyms and Abbreviations

ADC analog digital converter
ADMX Axion Dark Matter eXperiment, USA
AGB asymptotic giant branch
AGS alternating gradient synchrotron
ALP axion-like particle
BBN big bang nucleosynthesis
BFRT Brookhaven-Fermilab-Rochester-Trieste
BNL Brookhaven National Laboratory, USA
BR branching ratio
BSMM beyond the SM model
CAST CERN Axion Solar Telescope, CERN Geneva
CCD charge coupled device
CDM cold dark matter
CKM Cabbibo-Kobayashi-Maskawa
CKT Csáki-Kaloper-Terning
CL confidence level
CMB cosmic microwave background
CMBR cosmic microwave background radiation
CMD cryogenic magnetic detector
CME Cotton-Mouton effect
COBE Cosmic Background Explorer, NASA
COMPASS Common Muon Proton Apparatus for Structure and Spectroscopy, CERN Geneva
CP charge conjugation transformation followed by parity transformation
DAMA Dark Matter Experiment, Laboratori Nationali del Gran Sasso, Italy
DAQ data acquisition
DFSZ Dine-Fischler-Schrednicki-Zhitnisky
DM dark matter
DRIFT Directional Recoil Identification From Tracks, Boulby Underground Laboratory, UK
EDM electric dipole moment
EoS equation of state
FCNC flavour changing neutral current
FET field-effect transistor
FFT fast Fourier transform
FIRAS Far Infrared Absolute Spectrophotometer, NASA
FP Fabry-Pérot
GECOSAX Geomagnetic Conversion of Solar Axions
HEP high energy physics
HERA Hadron-Electron Ring Accelerator Facility, DESY Hamburg
HERMES HERA measurement of spin, DESY Hamburg
HFET heterostructure field-effect transistor
IF intermediate frequency
IGM intergalactic medium
ILC International Linear Collider
ILIAS Integrated Large Infrastructures for Astroparticle Science
INFN Istituto Nazionale di Fisica Nucleare, Italy
KEK National Laboratory for High Energy Physics, Japan
KSVZ Kim-Shifman-Vainshtein-Zakharov
LHC Large Hadron Collider, CERN Geneva
LHe liquid helium
LHS left hand side
LLNL Lawrence Livermore National Laboratory, USA
LOI letter of intent
MDM magnetic dipole moment
MICROMEGAS Micromesh Gaseous Structure
NRAO National Radio Astronomy Observatory, USA
OSQAR Optical search for QED vacuum magnetic birefringence, Axions and photon regeneration; CERN Geneva
P parity transformation
PAC program advisory committee
PQ Peccei-Quinn
pQCD Perturbative Quantum Chromodynamics
PVLAS Polarizzazione del Vuoto con Laser, INFN, Italy
QCD quantum chromodynamics
QED quantum electrodynamics
QM quantum mechanics
QSO quasi stellar object – quasar
QWP quarter-wave-plate
RGB red giant branch
RHS right hand side
RXTE Rossi X-ray Timing Explorer
SM standard model
SN supernova
SNOC SuperNova Observation Calculator
SNR signal to noise ratio
SNS spallation neutron source
SOLAX Solar Axion Experiment, Sierra Grande, Argentinia
SOM stress optical modulator
SQUID superconducting quantum interference devices
SREDM Storage Ring EDM collaboration
SSB spontaneous symmetry breaking
SSM standard solar model
SUSY supersymmetry
T time reversal transformation
TE transverse electric
TES transition edge sensor
TM transverse magnetic
TPC time projection chamber
UCN ultra cold neutron
VEV vacuum expectation value
WIMP weakly interacting massive particle
WMAP Wilkinson Microwave Anisotropy probe
XIS X-ray Imaging Spectrometer
AGB stars, 59
ALPs, 85–91
 Dark matter, 90–91
 Photon coupling, 86
 PVLAS, 89
Axion
 Cosmic density, 20–44
 Couplings
 Fermion, 53
 Gluon, 52
 Photon, 52 84 116
 Decay rate, 53
 Domain wall, 32–35
 Energy density, 137
 Kaluza-Klein, 75–78
 Eff. Lagrangian, 75
 Mass, 78
 Search see KK-Axion search, 226
Limits, 65 85 205 207 209
Mass, 52 136
Miniclusters, 42
Models
 DFSZ, 12 15
 Invisible axion, 12 15
 KSVZ, 12 15
Solar
 Spectrum, 55 201 210
 Surface luminosity, 202
 Transition rate, 54
Strings, 28 22
 Thermal, 20 22
 Annihilation rate, 20
 Prod. cross section, 21
 Prod. process, 21
 Thermalization processes, 20
Birefringence, see PVLAS

Bragg condition, see Bagg diffraction 208
Bragg diffraction, 207 209
 Bragg condition, 208
 Cross section, 207
 Sensitivity, 208 209
Brightness, see Supernova

CAST
 see Helioscope search, 78
 see KK-Axion search, 78
Causal horizon, 24–32
Color excess, 122
COSME, 209
Cosmic microwave background
 Blackbody temperature, 125
 Cosmic microwave background, 126 126
Cosmological constant, 126
Cotton-Mutton effect, 118 175
DAMA, 209
Dark Matter
 Candidates, 135
 Evidence for, 136
Dichroism, see PVLAS
DRIFT, 230

Effective photon mass, 204
Electric Dipole Moment, 105
 CP Violation, 105
 Experimental techniques, 105
 Hadronic, 107
 Limits on, 107
 Neutron, 6 83 108
 Storage Ring, 109
 Supersymmetric, 108
Energy-loss argument, see Supernova
Extra dimensions
- Compactification radius, 74
- Kaluza-Klein states, 74
Extra dimensions, 73–81
- Hierarchy problem, 73
- Size, 74
Fabry Pérot resonator
- Finesse, 166
- Photon lifetime, 166
- Principle, 165
- Quality factor, 166
- Faraday rotation, 118
- Friedmann equation, 21
Geomagnetic axion conversion
- Conversion probability, 210
Geomagnetic axion conversion, 209–212
- Sensitivity, 212
Globular cluster
- Color magnitude diagram, 58
Globular cluster, 57–59
- Properties, 57–59
Helioscope search
- CAST, 207
Helioscope search, 54, 57, 203, 207
- Buffer gas, 204
- CAST, 206
- Coherence, 204, 205
- Conversion probability, 203, 204
- Momentum transfer, 204
- Tokyo, 206
Helioseismology, 55–56
Heterodyne detection, see PVLAS
Hierarchy problem, see Extra dimensions
Hubble diagram, 120
Hubble expansion rate, 20
Hubble rate, 21
Inflation, 20, 40
Infrared cutoff, 20
KK-Axion search, 78, 80, 226, 250
- CAST, 78, 80
- DRIFT, 227, 230
- Gravitationally trapped, 226, 227
Laser induced axions, 213
Lepton number symmetry, 85
Luminosity distance, see Supernova
Mexican hat potential, 32
Microwave Cavity
- Cavity modes, 142
- Conversion probability, 138
- Data acquisition, 144
- Data analysis, 147
- Experimental setup, 149
- Limits, 148
- Principle of, 138
- Signal to noise, 139
Mixing matrix, 117
Momentum transfer, see Helioscope, 204
Muon g, 2
- Experiment, 102
- Theory, 100
Nucleon bremsstrahlung, 61, 62
Photon regeneration, 190, 192
Photon splitting, 185
PVLAS
- Birefringence, 158, 159
- Data acquisition, 173, 175
- Data analysis, 173, 175
- Dichroism, 158, 160
- Ellipticity detection, 166
- Experimental setup, 170
- Gas line, 172
- Heterodyne detection, 166
- Magnet, 168
- Measured magnetic rotation, 178, 183
- Optics layout, 171
- Polarization measurement, 161, 165
- Principle of, 159, 161
- Rotation detection, 168
- Rotation signal, 185, 188
- Stress optical modulator, 167
- Vacuum system, 172
QCD vacuum, 3
QCD phase transition, 22, 32
Quasar, 127
Quater Wave Plate, 168

Refractive index, 208
Robertson-Walker metric, 24
RXTE, 210
Rydberg-atom detector, 152–153

Sachs-Wolfe effect, 45
SN 1987A, see Supernova
SOLAX, 209
Spin precession
 Angular velocity, 109
 Rate, 109
Spin precession rate, 102, 106
SQUID amplifiers, 150–151
Storage Ring
 see Electric Dipole Moment, 109
Strong CP Problem
 Introduction, 3 6
 Theoretical approaches, 6
 Theoretical solution, 8
Supernova, 60–62
 Axion energy-loss, 63
 Brightness, 119, 121
 Dimming, 119, 124
 Energy-loss argument, 60
 Luminosity distance, 121
 Luminosity distance, 119
SuperNova Observation Calculator, 127
Supersymmetry
 see Electric Dipole Moment, 108
Suzaku, 210
Tokyo helioscope, 206
Vacuum Realignment, 36–37
White-dwarf, 59, 60