Nuclear modification at $P_{SNN} = 173$ GeV, measured at NA49

Andras Laszlo, for the NA49 Collaboration

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Transverse momentum spectra up to 45 GeV/c were measured around midrapidity in Pb+Pb reactions at $P_{SNN} = 173$ GeV, for p, p, and K, by the NA49 experiment. The nuclear modification factors R_{AA}, R_{AA-pA} and R_{CP} were extracted and compared to RHIC results at $P_{SNN} = 200$ GeV. The modification factor R_{AA} shows a rapid increase with transverse momentum in the covered region. The modification factor R_{CP} shows saturation well below unity in the central channel. The extracted R_{CP} values follow the 200 GeV RHIC results closely in the available transverse momentum range for all particle species. For above 25 GeV/c transverse momentum, the measured suppression is smaller than that observed at RHIC. The nuclear modification factor R_{AA-pA} for K stays well below unity.

I. INTRODUCTION

One of the most interesting features discovered at RHIC is the suppression of particle production at high transverse momentum in central nucleus-nucleus reactions, relative to peripheral ones as well as to p + nucleus and to p + p collisions [2,3,4,6,7]. This is generally interpreted as a sign of parton energy loss in hot and dense strongly interacting matter.

The aim of the presented analysis is to investigate the energy dependence of these effects via a systematic study of Pb + Pb reactions at top ion-SPS energy, 158 GeV ($P_{SNN} = 173$ GeV), with the CERN-NA49 detector [2]. A similar study has been published by the CERN-WA98 collaboration for the p channel [4,5]. Our analysis extends the existing results to all charged particle channels, i.e., p, p, and K.

Invariant yields were extracted as a function of transverse momentum p_t in the range from 0.3 to 45 GeV/c in the rapidity interval 0.3 $\leq y \leq$ 0.7 (midrapidity), at different collision centralities [6,13]. Identification of particle types is crucial, because the particle composition of hadron spectra changes rapidly with transverse momentum and differs significantly from that observed at RHIC energies.

Using the identified single particle spectra from [2] and the charged pion spectra from [11,12,13], the nuclear modification factors were calculated. These are defined as

$$R_{A_1+A_2 \rightarrow A_3+A_4}^{s} = \frac{\text{yield}(A_3+A_4)}{\text{yield}(A_1+A_2)} \frac{\text{yield}(A_3+A_4)}{\text{yield}(A_1+A_2)},$$

$$R_{A_1+A_2 \rightarrow A_3+A_4}^{W} = \frac{\text{yield}(A_3+A_4)}{\text{yield}(A_1+A_2)} \frac{\text{yield}(A_3+A_4)}{\text{yield}(A_1+A_2)},$$

where $N_{s,c}$ and N_W are, respectively, the average number of binary collisions and wounded nucleons, calculated for the reactions $A_1 + A_2$ and $A_3 + A_4$ [14,15]. R_{AA}, R_{PA} and R_{CP} are used to denote the special cases $R_{A+A=p+p}$, R_{A+p+p} and $R_{central-peripheral}$ for $A + A$ reactions, whereas R_{AA-pA} abbreviates $R_{A+A+p+p}$. These were calculated and compared with the $P_{SNN} = 200$ GeV RHIC results [4,5].

Electronic address: laszlo@kik.kfki.hu
II. ANALYSIS DETAILS

Centrality of events was determined using the energy of projectile spectators deposited in a downstream Veto Chamber (VCAL). Careful study of the detector response and Glauber calculations were performed in order to obtain N_{part} and N_{ve} as a function of centrality [14,15].

Due to the rapid decrease of the p_T spectra, special care was taken to achieve good signal-to-noise ratio in the high-p_T region. Possible background tracks were rejected with a twofold filtering procedure: (1) discontinuous tracks were discarded, and (2) tracks originating from the acceptance border were rejected [16].

Particles were identified at the spectrum level, using specific ionization (dE/dx) to N_{part} [14,15].

The resulting particle spectra were corrected for feed-down, decay loss, tracking inefficiency, geometric acceptance, and non-target contribution. The fake rates, momentum missing, and momentum scale uncertainty proved to be negligible. The correction details are discussed in [1,15].

After full correction, the systematic errors are about 22% for $+$, and 37% for $+$, $+$, and 65% for $+$ [13].

III. RESULTS AND DISCUSSION

The inclusive particle spectra of N_{part}, N_{ve}, N_{part}, and N_{ve} for top ion-SPS energy. Additionally, a close-by energy data set [14] was considered for the $p+\bar{p}$/$p+p$ yield ratios. These results are compared to similar quantities at the top RHIC energy [1,13]. All of this is shown in Fig.1, along with pQCD-based energy loss model predictions for N_{ve} [13].

It is seen that the R_{AA} and the R_{PA} at the top ion-SPS energy increase monotonically with p_t in the covered region. This is sometimes referred to as the Cronin effect. A widely accepted explanation for this phenomenon is initial multiple scattering on either partonic or hadronic level depending on the valid particle production picture. It is also observed that the $R_{AA}^{p\bar{p}}$ points stay below $R_{PA}^{p\bar{p}}$, whereas the $R_{AA}^{p\bar{p}}$ points are above $R_{PA}^{p\bar{p}}$ both at top ion-SPS energy and at RHIC. The $R_{AA}^{p\bar{p}}$ and $R_{PA}^{p\bar{p}}$ stay close to unity at SPS energy, while $R_{AA}^{p\bar{p}}$ and $R_{PA}^{p\bar{p}}$ stay below unity at top ion-SPS energy, but show much less suppression than at the top RHIC energy in the channel above $p_t > 2\text{GeV}=c$. For other particle channels, the behavior of the $R_{AA}^{p\bar{p}}$ points at SPS and at RHIC seem to be rather similar, except for p, which data may be modulated by the large systematics errors due to the antiproton detection technique at the experiment NA49. The pQCD-based energy loss model seems to give a fair description of the N_{ve} data points at SPS energy.

To further test the predictions of the pQCD-based model, other particle ratios may also be looked at. It is found that the $p=$ data are not reproduced, as shown in Fig.2.

IV. SUMMARY

The measured R_{AA} and R_{PA} data show a monotonic increase in the covered p_t region at SPS energy. The $R_{AA}^{p\bar{p}}$ and $R_{PA}^{p\bar{p}}$ stay well below unity at top ion-SPS energy, but show much less suppression than at the top RHIC energy in the channel above $p_t > 2\text{GeV}=c$. For other particle channels, the behavior of the $R_{AA}^{p\bar{p}}$ points at SPS and at RHIC seem to be rather similar, except for p, which data may be modulated by the larger systematics errors due to the antiproton detection technique at the experiment NA49. The pQCD-based energy loss model seems to give a fair description of the $R_{AA}^{p\bar{p}}$ data points at SPS energy.

The $R_{AA}^{p\bar{p}}$ data start from one and $R_{AA}^{p\bar{p}}$ is above $R_{PA}^{p\bar{p}}$ both at SPS and at RHIC energy. The $R_{AA}^{p\bar{p}}$ data follow the RHIC points closely, except for p particles and for p at $p_t > 2\text{GeV}=c$.
FIG. 1: (Color online) R_{AA} (top left), R_{WA} (bottom left), and R_{CP} (right) nuclear modification factors, measured at $\sqrt{s_{NN}} = 17.3$ GeV (11, 12, 13) and compared to $\sqrt{s_{NN}} = 200$ GeV data (2, 3). To supplement the existing SPS energy data, $\sqrt{s_{NN}} = 194$ GeV $p+\text{W}/p+p$ data was also used (14). The dotted lines in the top left panel are drawn to guide the eye. The dotted lines in the right panel indicate a pQCD-based energy loss model prediction (14).

The R_{CP} points are explained by pQCD-based energy loss calculation as in (14), however the produced-baryon/meson ratios are not reproduced. Possibly pQCD is not applicable in this kinematic region.

Acknowledgments

This work was supported by the US Department of Energy Grant DE-FG-03-97ER 41020/A000, the Bundesministerium für Bildung und Forschung, Germany, the Virtual Institute VI-146 of
FIG. 2: (Color online) Produced-baryon to meson ratios in Pb+Pb collisions, at $\sqrt{s_{NN}} = 17.3$ GeV \cite{1}. The dotted lines indicate a pQCD-based energy loss model prediction \cite{17}.

References