David Griffiths

Introduction to Elementary Particles

Second, Revised Edition
Contents

Preface to the First Edition IX
Preface to the Second Edition XI
Formulas and Constants XIII

Introduction 1

1. **Historical Introduction to the Elementary Particles** 13
 1.1 The Classical ERA (1897–1932) 13
 1.2 The Photon (1900–1924) 15
 1.3 Mesons (1934–1947) 18
 1.4 Antiparticles (1930–1956) 20
 1.5 Neutrinos (1930–1962) 23
 1.6 Strange Particles (1947–1960) 30
 1.7 The Eightfold Way (1961–1964) 35
 1.8 The Quark Model (1964) 37
 1.10 Intermediate Vector Bosons (1983) 47
 1.11 The Standard Model (1978—?) 49

2. **Elementary Particle Dynamics** 59
 2.1 The Four Forces 59
 2.2 Quantum Electrodynamics (QED) 60
 2.3 Quantum Chromodynamics (QCD) 66
 2.4 Weak Interactions 71
 2.4.1 Neutral 72
 2.4.2 Charged 74
 2.4.2.1 Leptons 74
 2.4.3 Quarks 75
 2.4.4 Weak and Electromagnetic Couplings of W and Z 78
 2.5 Decays and Conservation Laws 79
 2.6 Unification Schemes 84

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40601-2
Contents

3 **Relativistic Kinematics** 89
 3.1 Lorentz Transformations 89
 3.2 Four-vectors 92
 3.3 Energy and Momentum 96
 3.4 Collisions 100
 3.4.1 Classical Collisions 100
 3.4.2 Relativistic Collisions 101
 3.5 Examples and Applications 102

4 **Symmetries** 115
 4.1 Symmetries, Groups, and Conservation Laws 115
 4.2 Angular Momentum 120
 4.2.1 Addition of Angular Momenta 122
 4.2.2 Spin ½ 125
 4.3 Flavor Symmetries 129
 4.4 Discrete Symmetries 136
 4.4.1 Parity 136
 4.4.2 Charge Conjugation 142
 4.4.3 CP 144
 4.4.3.1 Neutral Kaons 145
 4.4.3.2 CP Violation 147
 4.4.4 Time Reversal and the TCP Theorem 149

5 **Bound States** 159
 5.1 The Schrödinger Equation 159
 5.2 Hydrogen 162
 5.2.1 Fine Structure 165
 5.2.2 The Lamb Shift 166
 5.2.3 Hyperfine Splitting 167
 5.3 Positronium 169
 5.4 Quarkonium 171
 5.4.1 Charmonium 174
 5.4.2 Bottomonium 175
 5.5 Light Quark Mesons 176
 5.6 Baryons 180
 5.6.1 Baryon Wave Functions 181
 5.6.2 Magnetic Moments 189
 5.6.3 Masses 191

6 **The Feynman Calculus** 197
 6.1 Decays and Scattering 197
 6.1.1 Decay Rates 197
 6.1.2 Cross Sections 199
 6.2 The Golden Rule 203
 6.2.1 Golden Rule for Decays 204
6.2.1.1 Two-particle Decays 206
6.2.2 Golden Rule for Scattering 208
6.2.2.1 Two-body Scattering in the CM Frame 209
6.3 Feynman Rules for a Toy Theory 211
6.3.1 Lifetime of the A 214
6.3.2 A + A → B + B Scattering 215
6.3.3 Higher-order Diagrams 217

7 Quantum Electrodynamics 225
7.1 The Dirac Equation 225
7.2 Solutions to the Dirac Equation 229
7.3 Bilinear Covariants 235
7.4 The Photon 238
7.5 The Feynman Rules for QED 241
7.6 Examples 245
7.7 Casimir's Trick 249
7.8 Cross Sections and Lifetimes 254
7.9 Renormalization 262

8 Electrodynamics and Chromodynamics of Quarks 275
8.1 Hadron Production in e⁺e⁻ Collisions 275
8.2 Elastic Electron–Proton Scattering 279
8.3 Feynman Rules For Chromodynamics 283
8.4 Color Factors 289
8.4.1 Quark and Antiquark 289
8.4.2 Quark and Quark 292
8.5 Pair Annihilation in QCD 294
8.6 Asymptotic Freedom 298

9 Weak Interactions 307
9.1 Charged Leptonic Weak Interactions 307
9.2 Decay of the Muon 310
9.3 Decay of the Neutron 315
9.4 Decay of the Pion 321
9.5 Charged Weak Interactions of Quarks 324
9.6 Neutral Weak Interactions 329
9.7 Electroweak Unification 338
9.7.1 Chiral Fermion States 338
9.7.2 Weak Isospin and Hypercharge 342
9.7.3 Electroweak Mixing 345

10 Gauge Theories 353
10.1 Lagrangian Formulation of Classical Particle Mechanics 353
10.2 Lagrangians in Relativistic Field Theory 354
10.3 Local Gauge Invariance 358