Solution of the dynamic vacuum equation

1. We solve the dynamic vacuum equation

\[VP = F P I - (P - P_0) S' \] \hspace{1cm} (1)

under 3 conditions:
1) linear current rise
2) constant current
3) no current

\(P_0 \) is the base pressure, without current. \(V \) is the volume and \(S \) is the pumping speed, both taken per unit length. \(F \) is the gas load per unit length, pressure and current.

2. Linear current rise

We put \(I = \dot{I} t \), and introduce scaled variables \(p = P/P_0 \), and \(t = A \tau = \frac{S}{F} \tau \), and get a one-parameter equation:

\[\frac{dp}{d\tau} = a \left[p (\tau - 1) + 1 \right] \] \hspace{1cm} (2)

where \(a = ASV^{-1} = S^2/FIV \). We notice from the stationary solution of (1) that \(A \) is the time required to accumulate the critical current.

3. Equation (2) has been solved numerically for a few values of \(A \), up to \(\tau = 0.95 \) when the pressure is \(p_1 \). The result is shown in the attached figures.
4. **Constant current**

In the interval $\tau_1 < \tau < \tau_2$ we solve the following equation

\[
\frac{dp}{d\tau} = a \left[p (\tau_1 - 1) + 1 \right]
\]

(3)

with $p = p_1$ at $\tau = \tau_1$. The solutions are for $\tau \neq 1$

\[
p = (p_1 - \frac{1}{1 - \tau_1}) \exp \left[- a (1-\tau_1)(\tau - \tau_1)\right] + \frac{1}{1 - \tau_1}
\]

(4)

and for $\tau_1 = 1$

\[
p = p_1 + a (\tau - \tau_1)
\]

(5)

We notice that for $\tau_1 < 1$, $p \rightarrow (1 - \tau_1)^{-1}$ for $\tau \rightarrow \infty$ i.e. the pressure tends towards some constant. This may be a way of measuring the critical current by just measuring the pressure rise for one single current. For $\tau_1 > 1$, the pressure goes beyond all limits. This shows again that $\tau_1 = 1$, or $t = A$ is the time required to accumulate the critical current.

5. **Pressure drop after dumping**

Let the pressure at $\tau = \tau_2$ be p_2. For $\tau > \tau_2$ we solve the equation.

\[
\frac{dp}{d\tau} = a (1 - p)
\]

(6)

with the solution

\[
p = 1 + (p_2 - 1) \exp \left[- a (\tau - \tau_2)\right]
\]

(7)

6. **Experimental procedure**

From the equilibrium pressure rise one can find τ_1, and hence A. This fixes the time scale. From the pressure decay one can then find a, and, knowing A, one gets S/V. Then one can inspect A again, and, knowing I, one is able to find S/F.

One division gives \(\frac{S/V}{S/F} = F/V \). Since \(V \) is fairly accurately known, the gas load can be calculated.

7. Conclusion

The pressure was calculated as a function of time, assuming an additional gas load proportional to the pressure and to the current, and taking the pumping speed as independent of pressure.

E. KEIL