CONTENTS

List of tables xvi
Preface xix
Preface to first edition xxi

CHAPTER 1
FOUNDATIONS 1

Introduction 1
Voltage, current, and resistance 2
1.01 Voltage and current 2
1.02 Relationship between voltage and current: resistors 4
1.03 Voltage dividers 8
1.04 Voltage and current sources 9
1.05 Thévenin’s equivalent circuit 11
1.06 Small-signal resistance 13

Signals 15
1.07 Sinusoidal signals 15
1.08 Signal amplitudes and decibels 16
1.09 Other signals 17
1.10 Logic levels 19
1.11 Signal sources 19

Capacitors and ac circuits 20
1.12 Capacitors 20
1.13 RC circuits: V and I versus time 23
1.14 Differentiators 25
1.15 Integrators 26

Inductors and transformers 28
1.16 Inductors 28
1.17 Transformers 28
Impedance and reactance 29
1.18 Frequency analysis of reactive circuits 30
1.19 RC filters 35
1.20 Phasor diagrams 39
1.21 “Poles” and decibels per octave 40
1.22 Resonant circuits and active filters 41
1.23 Other capacitor applications 42
1.24 Thévenin’s theorem generalized 44

Diodes and diode circuits 44
1.25 Diodes 44
1.26 Rectification 44
1.27 Power-supply filtering 45
1.28 Rectifier configurations for power supplies 46
1.29 Regulators 48
1.30 Circuit applications of diodes 48
1.31 Inductive loads and diode protection 52

Other passive components 53
1.32 Electromechanical devices 53
1.33 Indicators 57
1.34 Variable components 57

Additional exercises 58

CHAPTER 2
TRANSISTORS 61

Introduction 61

2.01 First transistor model: current amplifier 62

Some basic transistor circuits 63
2.02 Transistor switch 63
2.03 Emitter follower 65
CONTENTS

2.04 Emitter followers as voltage regulators 68
2.05 Emitter follower biasing 69
2.06 Transistor current source 72
2.07 Common-emitter amplifier 76
2.08 Unity-gain phase splitter 77
2.09 Transconductance 78

Ebers-Moll model applied to basic transistor circuits 79

2.10 Improved transistor model: transconductance amplifier 79
2.11 The emitter follower revisited 81
2.12 The common-emitter amplifier revisited 82
2.13 Biasing the common-emitter amplifier 84
2.14 Current mirrors 88

Some amplifier building blocks 91

2.15 Push-pull output stages 91
2.16 Darlington connection 94
2.17 Bootstrapping 96
2.18 Differential amplifiers 98
2.19 Capacitance and Miller effect 102
2.20 Field-effect transistors 104

Some typical transistor circuits 104

2.21 Regulated power supply 104
2.22 Temperature controller 105
2.23 Simple logic with transistors and diodes 107

Self-explanatory circuits 107

2.24 Good circuits 107
2.25 Bad circuits 107
Additional exercises 107

CHAPTER 3
FIELD-EFFECT TRANSISTORS 113

Introduction 113

3.01 FET characteristics 114
3.02 FET types 117
3.03 Universal FET characteristics 119
3.04 FET drain characteristics 121
3.05 Manufacturing spread of FET characteristics 122

Basic FET circuits 124
3.06 JFET current sources 125
3.07 FET amplifiers 129
3.08 Source followers 133
3.09 FET gate current 135
3.10 FETs as variable resistors 138

FET switches 140
3.11 FET analog switches 141
3.12 Limitations of FET switches 144
3.13 Some FET analog switch examples 151
3.14 MOSFET logic and power switches 153
3.15 MOSFET handling precautions 169

Self-explanatory circuits 171

3.16 Circuit ideas 171
3.17 Bad circuits 171 vskip6pt

CHAPTER 4
FEEDBACK AND OPERATIONAL AMPLIFIERS 175

Introduction 175

4.01 Introduction to feedback 175
4.02 Operational amplifiers 176
4.03 The golden rules 177

Basic op-amp circuits 177
4.04 Inverting amplifier 177
4.05 Noninverting amplifier 178
4.06 Follower 179
4.07 Current sources 180
4.08 Basic cautions for op-amp circuits 182

An op-amp smorgasbord 183
4.09 Linear circuits 183
4.10 Nonlinear circuits 187

A detailed look at op-amp behavior 188
4.11 Departure from ideal op-amp performance 189
4.12 Effects of op-amp limitations on circuit behavior 193
4.13 Low-power and programmable op-amps 210
A detailed look at selected op-amp circuits 213
4.14 Logarithmic amplifier 213
4.15 Active peak detector 217
4.16 Sample-and-hold 220
4.17 Active clamp 221
4.18 Absolute-value circuit 221
4.19 Integrators 222
4.20 Differentiators 224

Op-amp operation with a single power supply 224
4.21 Biasing single-supply ac amplifiers 225
4.22 Single-supply op-amps 225

Comparators and Schmitt trigger 229
4.23 Comparators 229
4.24 Schmitt trigger 231

Feedback with finite-gain amplifiers 232
4.25 Gain equation 232
4.26 Effects of feedback on amplifier circuits 233
4.27 Two examples of transistor amplifiers with feedback 236

Some typical op-amp circuits 238
4.28 General-purpose lab amplifier 238
4.29 Voltage-controlled oscillator 240
4.30 JFET linear switch with R_{ON} compensation 241
4.31 TTL zero-crossing detector 242
4.32 Load-current-sensing circuit 242

Feedback amplifier frequency compensation 242
4.33 Gain and phase shift versus frequency 243
4.34 Amplifier compensation methods 245
4.35 Frequency response of the feedback network 247

Self-explanatory circuits 250
4.36 Circuit ideas 250
4.37 Bad circuits 250

Additional exercises 251

CHAPTER 5
ACTIVE FILTERS AND OSCILLATORS 263
Active filters 263
5.01 Frequency response with RC filters 263
5.02 Ideal performance with LC filters 265
5.03 Enter active filters: an overview 266
5.04 Key filter performance criteria 267
5.05 Filter types 268

Active filter circuits 272
5.06 VCVS circuits 273
5.07 VCVS filter design using our simplified table 274
5.08 State-variable filters 276
5.09 Twin-T notch filters 279
5.10 Gyrator filter realizations 281
5.11 Switched-capacitor filters 281

Oscillators 284
5.12 Introduction to oscillators 284
5.13 Relaxation oscillators 284
5.14 The classic timer chip: the 555 286
5.15 Voltage-controlled oscillators 291
5.16 Quadrature oscillators 291
5.17 Wien bridge and LC oscillators 296
5.18 LC oscillators 297
5.19 Quartz-crystal oscillators 300

Self-explanatory circuits 303
5.20 Circuit ideas 303

Additional exercises 303

CHAPTER 6
VOLTAGE REGULATORS AND POWER CIRCUITS 307
Basic regulator circuits with the classic 723 307
CHAPTER 7
PRECISION CIRCUITS AND LOW-NOISE TECHNIQUES 391

Precision op-amp design techniques 391

7.01 Precision versus dynamic range 391
7.02 Error budget 392
7.03 Example circuit: precision amplifier with automatic null offset 392
7.04 A precision-design error budget 394
7.05 Component errors 395
7.06 Amplifier input errors 396
7.07 Amplifier output errors 403
7.08 Auto-zeroing (chopper-stabilized) amplifiers 415

Differential and instrumentation amplifiers 421

7.09 Differentiating amplifiers 421
7.10 Standard three-op-amp instrumentation amplifier 425

Amplifier noise 428

7.11 Origins and kinds of noise 430
7.12 Signal-to-noise ratio and noise figure 433
7.13 Transistor amplifier voltage and current noise 436
7.14 Low-noise design with transistors 438
7.15 FET noise 443
7.16 Selecting low-noise transistors 445
7.17 Noise in differential and feedback amplifiers 445

Noise measurements and noise sources 449

7.18 Measurement without a noise source 449
7.19 Measurement with noise source 450
7.20 Noise and signal sources 452
7.21 Bandwidth limiting and rms voltage measurement 453
7.22 Noise potpourri 454
Interference: shielding and grounding 455

7.23 Interference 455
7.24 Signal grounds 457
7.25 Grounding between instruments 457

Self-explanatory circuits 466

7.26 Circuit ideas 466
Additional exercises 466

CHAPTER 8
DIGITAL ELECTRONICS 471

Basic logic concepts 471

8.01 Digital versus analog 471
8.02 Logic states 472
8.03 Number codes 473
8.04 Gates and truth tables 478
8.05 Discrete circuits for gates 480
8.06 Gate circuit example 481
8.07 Assertion-level logic notation 482

TTL and CMOS 484

8.08 Catalog of common gates 484
8.09 IC gate circuits 485
8.10 TTL and CMOS characteristics 486
8.11 Three-state and open-collector devices 487

Combinational logic 490

8.12 Logic identities 491
8.13 Minimization and Karnaugh maps 492
8.14 Combinational functions available as ICs 493
8.15 Implementing arbitrary truth tables 500

Sequential logic 504

8.16 Devices with memory: flip-flops 504
8.17 Clocked flip-flops 507
8.18 Combining memory and gates: sequential logic 512
8.19 Synchronizer 515

Monostable multivibrators 517

8.20 One-shot characteristics 517
8.21 Monostable circuit example 519
8.22 Cautionary notes about monostables 519
8.23 Timing with counters 522

Sequential functions available as ICs 523

8.24 Latches and registers 523
8.25 Counters 524
8.26 Shift registers 525
8.27 Sequential PALs 527
8.28 Miscellaneous sequential functions 541

Some typical digital circuits 544

8.29 Modulo-\(n\) counter: a timing example 544
8.30 Multiplexed LED digital display 546
8.31 Sidereal telescope drive 548
8.32 An \(n\)-pulse generator 548

Logic pathology 551

8.33 dc problems 551
8.34 Switching problems 552
8.35 Congenital weaknesses of TTL and CMOS 554

Self-explanatory circuits 556

8.36 Circuit ideas 556
8.37 Bad circuits 556
Additional exercises 556

CHAPTER 9
DIGITAL MEETS ANALOG 565

CMOS and TTL logic interfacing 565

9.01 Logic family chronology 565
9.02 Input and output characteristics 570
9.03 Interfacing between logic families 572
9.04 Driving CMOS and TTL inputs 575
9.05 Driving digital logic from comparators and op-amps 577
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.06</td>
<td>Some comments about logic inputs</td>
</tr>
<tr>
<td>9.07</td>
<td>Comparators</td>
</tr>
<tr>
<td>9.08</td>
<td>Driving external digital loads from CMOS and TTL</td>
</tr>
<tr>
<td>9.09</td>
<td>NMOS LSI interfacing</td>
</tr>
<tr>
<td>9.10</td>
<td>Opto-electronics</td>
</tr>
<tr>
<td>9.11</td>
<td>On-board interconnections</td>
</tr>
<tr>
<td>9.12</td>
<td>Intercard connections</td>
</tr>
<tr>
<td>9.13</td>
<td>Data buses</td>
</tr>
<tr>
<td>9.14</td>
<td>Driving cables</td>
</tr>
<tr>
<td>9.15</td>
<td>Introduction to A/D conversion</td>
</tr>
<tr>
<td>9.16</td>
<td>Digital-to-analog converters (DACs)</td>
</tr>
<tr>
<td>9.17</td>
<td>Time-domain (averaging) DACs</td>
</tr>
<tr>
<td>9.18</td>
<td>Multiplying DACs</td>
</tr>
<tr>
<td>9.19</td>
<td>Choosing a DAC</td>
</tr>
<tr>
<td>9.20</td>
<td>Analog-to-digital converters</td>
</tr>
<tr>
<td>9.21</td>
<td>Charge-balancing techniques</td>
</tr>
<tr>
<td>9.22</td>
<td>Some unusual A/D and D/A converters</td>
</tr>
<tr>
<td>9.23</td>
<td>Choosing an ADC</td>
</tr>
<tr>
<td></td>
<td>Some A/D conversion examples</td>
</tr>
<tr>
<td>9.24</td>
<td>16-Channel A/D data-acquisition system</td>
</tr>
<tr>
<td>9.25</td>
<td>$3\frac{1}{2}$-Digit voltmeter</td>
</tr>
<tr>
<td>9.26</td>
<td>Coulomb meter</td>
</tr>
<tr>
<td></td>
<td>Phase-locked loops</td>
</tr>
<tr>
<td>9.27</td>
<td>Introduction to phase-locked loops</td>
</tr>
<tr>
<td>9.28</td>
<td>PLL design</td>
</tr>
<tr>
<td>9.29</td>
<td>Design example: frequency multiplier</td>
</tr>
<tr>
<td>9.30</td>
<td>PLL capture and lock</td>
</tr>
<tr>
<td>9.31</td>
<td>Some PLL applications</td>
</tr>
<tr>
<td></td>
<td>Pseudo-random bit sequences and noise generation</td>
</tr>
<tr>
<td>9.32</td>
<td>Digital noise generation</td>
</tr>
<tr>
<td>9.33</td>
<td>Feedback shift register sequences</td>
</tr>
<tr>
<td>9.34</td>
<td>Analog noise generation from maximal-length sequences</td>
</tr>
<tr>
<td>9.35</td>
<td>Power spectrum of shift register sequences</td>
</tr>
<tr>
<td>9.36</td>
<td>Low-pass filtering</td>
</tr>
<tr>
<td>9.37</td>
<td>Wrap-up</td>
</tr>
<tr>
<td>9.38</td>
<td>Digital filters</td>
</tr>
<tr>
<td></td>
<td>Self-explanatory circuits</td>
</tr>
<tr>
<td>9.39</td>
<td>Circuit ideas</td>
</tr>
<tr>
<td>9.40</td>
<td>Bad circuits</td>
</tr>
<tr>
<td></td>
<td>Additional exercises</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 10</td>
</tr>
<tr>
<td></td>
<td>MICROCOMPUTERS</td>
</tr>
<tr>
<td>10.01</td>
<td>Computer architecture</td>
</tr>
<tr>
<td>10.02</td>
<td>Assembly language and machine language</td>
</tr>
<tr>
<td>10.03</td>
<td>Simplified 8086/8 instruction set</td>
</tr>
<tr>
<td>10.04</td>
<td>A programming example</td>
</tr>
<tr>
<td>10.05</td>
<td>Bus signals and interfacing</td>
</tr>
<tr>
<td>10.06</td>
<td>Programmed I/O: data out</td>
</tr>
<tr>
<td>10.07</td>
<td>Programmed I/O: data in</td>
</tr>
<tr>
<td>10.08</td>
<td>Programmed I/O: status registers</td>
</tr>
<tr>
<td>10.09</td>
<td>Interrupts</td>
</tr>
<tr>
<td>10.10</td>
<td>Interrupt handling</td>
</tr>
<tr>
<td>10.11</td>
<td>Interrupts in general</td>
</tr>
<tr>
<td>10.12</td>
<td>Direct memory access</td>
</tr>
<tr>
<td>10.13</td>
<td>Summary of the IBM PC's bus signals</td>
</tr>
<tr>
<td>10.14</td>
<td>Synchronous versus asynchronous bus communication</td>
</tr>
<tr>
<td>10.15</td>
<td>Other microcomputer buses</td>
</tr>
<tr>
<td>10.16</td>
<td>Connecting peripherals to the computer</td>
</tr>
</tbody>
</table>
Software system concepts 714
10.17 Programming 714
10.18 Operating systems, files, and use of memory 716

Data communications concepts 719
10.19 Serial communication and ASCII 720
10.20 Parallel communication: Centronics, SCSI, IPI, GPIB (488) 730
10.21 Local area networks 734
10.22 Interface example: hardware data packing 736
10.23 Number formats 738

CHAPTER 11
MICROPROCESSORS 743
A detailed look at the 68008 744
11.01 Registers, memory, and I/O 744
11.02 Instruction set and addressing 745
11.03 Machine-language representation 750
11.04 Bus signals 753

A complete design example: analog signal averager 760
11.05 Circuit design 760
11.06 Programming: defining the task 774
11.07 Programming: details 777
11.08 Performance 796
11.09 Some afterthoughts 797

Microprocessor support chips 799
11.10 Medium-scale integration 800
11.11 Peripheral LSI chips 802
11.12 Memory 812
11.13 Other microprocessors 820
11.14 Emulators, development systems, logic analyzers, and evaluation boards 821

CHAPTER 12
ELECTRONIC CONSTRUCTION TECHNIQUES 827

Prototyping methods 827
12.01 Breadboards 827
12.02 PC prototyping boards 828
12.03 Wire-Wrap panels 828

Printed circuits 830
12.04 PC board fabrication 830
12.05 PC board design 835
12.06 Stuffing PC boards 838
12.07 Some further thoughts on PC boards 840
12.08 Advanced techniques 841

Instrument construction 852
12.09 Housing circuit boards in an instrument 852
12.10 Cabinets 854
12.11 Construction hints 855
12.12 Cooling 855
12.13 Some electrical hints 858
12.14 Where to get components 860

CHAPTER 13
HIGH-FREQUENCY AND HIGH-SPEED TECHNIQUES 863

High-frequency amplifiers 863
13.01 Transistor amplifiers at high frequencies: first look 863
13.02 High-frequency amplifiers: the ac model 864
13.03 A high-frequency calculation example 866
13.04 High-frequency amplifier configurations 868
13.05 A wideband design example 869
13.06 Some refinements to the ac model 872
13.07 The shunt-series pair 872
13.08 Modular amplifiers 873

Radiofrequency circuit elements 879
13.09 Transmission lines 879
CONTENTS

13.10 Stubs, baluns, and transformers 881
13.11 Tuned amplifiers 882
13.12 Radiofrequency circuit elements 884
13.13 Measuring amplitude or power 888

Radiofrequency communications:
AM 892

13.14 Some communications concepts 892
13.15 Amplitude modulation 894
13.16 Superheterodyne receiver 895

Advanced modulation methods 897
13.17 Single sideband 897
13.18 Frequency modulation 898
13.19 Frequency-shift keying 900
13.20 Pulse-modulation schemes 900

Radiofrequency circuit tricks 902
13.21 Special construction techniques 902
13.22 Exotic RF amplifiers and devices 903

High-speed switching 904
13.23 Transistor model and equations 905
13.24 Analog modeling tools 908

Some switching-speed examples 909
13.25 High-voltage driver 909
13.26 Open-collector bus driver 910
13.27 Example: photomultiplier preamp 911

Self-explanatory circuits 913
13.28 Circuit ideas 913
Additional exercises 913

CHAPTER 14
LOW-POWER DESIGN 917

Introduction 917
14.01 Low-power applications 918

Power sources 920

14.02 Battery types 920
14.03 Wall-plug-in units 931
14.04 Solar cells 932
14.05 Signal currents 933

Power switching and micropower regulators 938
14.06 Power switching 938
14.07 Micropower regulators 941
14.08 Ground reference 944
14.09 Micropower voltage references and temperature sensors 948

Linear micropower design techniques 948

14.10 Problems of micropower linear design 950
14.11 Discrete linear design example 950
14.12 Micropower operational amplifiers 951
14.13 Micropower comparators 965
14.14 Micropower timers and oscillators 965

Micropower digital design 969
14.15 CMOS families 969
14.16 Keeping CMOS low power 970
14.17 Micropower microprocessors and peripherals 974
14.18 Microprocessor design example: degree-day logger 978

Self-explanatory circuits 985
14.19 Circuit ideas 985

CHAPTER 15
MEASUREMENTS AND SIGNAL PROCESSING 987

Overview 987

Measurement transducers 988

15.01 Temperature 988
15.02 Light level 996
15.03 Strain and displacement 1001
15.04 Acceleration, pressure, force, velocity 1004
15.05 Magnetic field 1007
15.06 Vacuum gauges 1007
15.07 Particle detectors 1008
15.08 Biological and chemical voltage probes 1012

Precision standards and precision measurements 1016

15.09 Frequency standards 1016
15.10 Frequency, period, and time-interval measurements 1019
15.11 Voltage and resistance standards and measurements 1025

Bandwidth-narrowing techniques 1026

15.12 The problem of signal-to-noise ratio 1026
15.13 Signal averaging and multichannel averaging 1026
15.14 Making a signal periodic 1030
15.15 Lock-in detection 1031
15.16 Pulse-height analysis 1034
15.17 Time-to-amplitude converters 1035

Spectrum analysis and Fourier transforms 1035

15.18 Spectrum analyzers 1035
15.19 Off-line spectrum analysis 1038

Self-explanatory circuits 1038
15.20 Circuit ideas 1038