Nuclear Physics in a Nutshell

Carlos A. Bertulani
Contents

Introduction
0.1 What is Nuclear Physics? 1
0.2 This Book 3

1 Hadrons
1.1 Nucleons 4
1.2 Nuclear Forces 5
1.3 Pions 7
1.4 Antiparticles 8
1.5 Inversion and Parity 8
1.6 Isospin and Baryonic Number 10
1.7 Isospin Invariance 13
1.8 Magnetic Moment of the Nucleons 14
1.9 Strangeness and Hypercharge 15
1.10 Quantum Chromodynamics 21
1.11 Exercises 29

2 The Two-Nucleon System
2.1 Introduction 31
2.2 Electrostatic Multipoles 32
2.3 Magnetic Moment with Spin-orbit Coupling 34
2.4 Experimental Data for the Deuteron 36
2.5 A Square-well Model for the Deuteron 38
2.6 The Deuteron Wavefunction 41
2.6.1 Angular momentum coupling 41
2.6.2 Two particles of spin $\frac{1}{2}$ 42
2.6.3 Total wavefunction 43
Contents

2.7 Particles in the Continuum: Scattering 46
2.8 Partial Wave Expansion 49
2.9 Low Energy Scattering 53
2.10 Effective Range Theory 59
2.11 Proton-Proton Scattering 61
2.12 Neutron-Neutron Scattering 64
2.13 High Energy Scattering 65
2.14 Laboratory and Center of Mass Systems 65
2.15 Exercises 68

3 The Nucleon-Nucleon Interaction 71
3.1 Introduction 71
3.2 Phenomenological Potentials 72
3.3 Local Potentials 72
  3.3.1 Nonlocal potential 78
3.4 Meson Exchange Potentials 80
  3.4.1 Yukawa and Van der Waals potentials 80
  3.4.2 Field theory picture 84
  3.4.3 Short range part of the NN interaction 86
  3.4.4 Chiral symmetry 87
  3.4.5 Generalized boson exchange 89
  3.4.6 Beyond boson exchange 91
3.5 Effective Field Theories 95
3.6 Exercises 96

4 General Properties of Nuclei 98
4.1 Introduction 98
4.2 Nuclear Radii 98
4.3 Binding Energies 101
4.4 Total Angular Momentum of the Nucleus 104
4.5 Multipole Moments 104
4.6 Magnetic Dipole Moment 106
4.7 Electric Quadrupole Moment 109
4.8 Excited States of Nuclei 111
4.9 Nuclear Stability 114
4.10 Exercises 116

5 Nuclear Models 119
5.1 Introduction 119
5.2 The Liquid Drop Model 119
5.3 The Fermi Gas Model 124
5.4 The Shell Model 128
5.5 Residual Interaction 142
9.2 Quantization of Electromagnetic Fields  
9.2.1 Fields and gauge invariance  
9.2.2 Normal modes  
9.2.3 Photons  
9.3 Interaction of Radiation with Matter  
9.3.1 Radiation probability  
9.3.2 Long wavelength approximation  
9.4 Quantum and Classical Transition Rates  
9.5 Selection Rules  
9.6 Estimate of the Disintegration Constants  
9.7 Isomeric States  
9.8 Internal Conversion  
9.9 Resonant Absorption—The Mössbauer Effect  
9.10 Exercises

10 Nuclear Reactions—I  
10.1 Introduction  
10.2 Conservation Laws  
10.3 Kinematics of Nuclear Reactions  
10.4 Scattering and Reaction Cross Sections  
10.5 Resonances  
10.6 Compound Nucleus  
10.7 Mean Free Path of a Nucleon in Nuclei  
10.8 Empirical Optical Potential  
10.9 Compound Nucleus Formation  
10.10 Compound Nucleus Decay  
10.11 Exercises

11 Nuclear Reactions—II  
11.1 Direct Reactions  
11.1.1 Theory of direct reactions  
11.2 Validation of the Shell Model  
11.3 Photonuclear Reactions  
11.3.1 Cross sections  
11.3.2 Sum rules  
11.3.3 Giant resonances  
11.4 Coulomb Excitation  
11.5 Fission  
11.6 Mass Distribution of Fission Fragments  
11.7 Neutrons Emitted in Fission  
11.8 Cross Sections for Fission  
11.9 Energy Distribution in Fission
11.10 Isomeric Fission
11.11 Exercises

12 Nuclear Astrophysics
12.1 Introduction
12.2 Astronomical Observations
  12.2.1 The Milky Way
  12.2.2 Dark matter
  12.2.3 Luminosity and Hubble’s law
12.3 The Big Bang
12.4 Stellar Evolution
  12.4.1 Stars burn slowly
  12.4.2 Gamow peak and astrophysical S-factor
12.5 The Sun
  12.5.1 Deuterium formation
  12.5.2 Deuterium burning
  12.5.3 \(^3\)He burning
  12.5.4 Reactions involving \(^7\)Be
12.6 The CNO Cycle
  12.6.1 Hot CNO and rp process
12.7 Helium Burning
12.8 Red Giants
12.9 Advanced Burning Stages
  12.9.1 Carbon burning
  12.9.2 Neon burning
  12.9.3 Oxygen burning
  12.9.4 Silicon burning
12.10 Synthesis of Heaviest Elements
12.11 White Dwarfs and Neutron Stars
12.12 Supernova Explosions
12.13 Nuclear Reaction Models
  12.13.1 Microscopic models
  12.13.2 Potential and DWBA models
  12.13.3 Parameter fit
  12.13.4 Statistical models
12.14 Exercises

13 Rare Nuclear Isotopes
13.1 Introduction
13.2 Light Exotic Nuclei
  13.2.1 Halo nuclei
  13.2.2 Borromean nuclei
13.3 Superheavy Elements 395
13.4 Exercises 400

Appendix A  Angular Momentum 401
A.1 Orbital Momentum 401
A.2 Spherical Functions 402
A.3 Generation of Rotations 402
A.4 Orbital Rotations 403
A.5 Spin 404
A.6 Ladder Operators 406
A.7 Angular Momentum Multiplets 409
A.8 Multiplets as Irreducible Representations 412
A.9 SU(2) Group and Spin \( \frac{1}{2} \) 413
A.10 Properties of Spherical Harmonics 414
  A.10.1 Explicit derivation 414
  A.10.2 Legendre polynomials 415
  A.10.3 Completeness 416
  A.10.4 Spherical functions as matrix elements of finite rotations 417
  A.10.5 Addition theorem 417

Appendix B  Angular Momentum Coupling 419
B.1 Tensor Operators 419
  B.1.1 Transformation of operators 419
  B.1.2 Scalars and vectors 420
  B.1.3 Tensors of rank 2 421
  B.1.4 Introduction to selection rules 422
B.2 Angular Momentum Coupling 423
  B.2.1 Two subsystems 423
  B.2.2 Decomposition of reducible representations 424
  B.2.3 Tensor operators and selection rules revisited 426
  B.2.4 Vector coupling of angular momenta 427
  B.2.5 Wigner-Eckart theorem 428
  B.2.6 Vector Model 429

Appendix C  Symmetries 432
C.1 Time Reversal 432
C.2 Spin Transformation and Kramer's Theorem 433
C.3 Time-conjugate Orbits 435
C.4 Two-component Neutrino and Fundamental Symmetries 436
C.5 Charge Conjugation 437
C.6 Electric Dipole Moment 438
C.7 CPT-Invairance 439
Appendix D  Relativistic Quantum Mechanics

D.1 Lagrangians
   D.1.1 Covariance
D.2 Electromagnetic Field
D.3 Relativistic Equations
   D.3.1 Particle at rest
   D.3.2 Covariant form: γ matrices
D.4 Probability and Current
D.5 Wavefunction Transformation
   D.5.1 Bilinear Covariants
   D.5.2 Parity
D.6 Plane Waves
   D.6.1 Summary of plane wave spinor properties
   D.6.2 Projection operators
D.7 Plane Wave Expansion
D.8 Electromagnetic Interaction
D.9 Pauli Equation
   D.9.1 Spin-orbit and Darwin terms

Appendix E  Useful Constants and Conversion Factors

E.1 Constants
E.2 Masses
E.3 Conversion Factors

References
Index