CP VIOLATION

I. I. BIGI

Physics Department, University of Notre Dame du Lac

A. I. SANDA

Physics Department, Kanagawa University

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface to the second edition
Preface to the first edition

Part I Basics of CP violation

1
Prologue

2
Prelude: C, P and T in classical dynamics

2.1 Classical mechanics

2.1.1 Parity

2.1.2 Time reversal

2.2 Electrodynamics

2.2.1 Charge conjugation

2.2.2 Parity

2.2.3 Time reversal

2.3 Résumé

Problems

3
C, P and T in non-relativistic quantum mechanics

3.1 Parity

3.2 Charge conjugation

3.3 Time reversal

3.4 Kramers’ degeneracy

3.5 Detailed balance

3.6 Electric dipole moments

3.6.1 The neutron EDM

3.6.2 Water molecules and atoms

3.6.3 Dumb-bells

3.6.4 Schiff’s theorem
3.7 Résumé 38
Problems 38

4 C, P and T in relativistic quantum theories 41
4.1 Notation 42
4.2 Spin-1 fields 43
4.3 Spin-0 fields 46
4.3.1 Parity 46
4.3.2 Charge conjugation 47
4.3.3 Time reversal 47
4.4 Spin-1/2 fields 48
4.4.1 Parity 49
4.4.2 Charge conjugation 51
4.4.3 Time reversal 52
4.5 CP and CPT transformations 53
4.6 Some consequences of the CPT theorem 56
4.7 ♠ Back to first quantization ♠ 58
4.8 ♠ Phase conventions for C and P ♠ 59
4.9 ♠ Internal symmetries ♠ 60
4.10 The role of final state interactions 62
4.10.1 T invariance and Watson’s theorem 62
4.10.2 Final state interactions and partial widths 64
4.10.3 ♠ T symmetry and final state interactions ♠ 67
4.11 Résumé and outlook 69
Problems 70

5 The arrival of strange particles 73
5.1 The discovery of strange particles 73
5.2 The $\theta - \tau$ puzzle 75
5.3 The $\Delta I = \frac{1}{2}$ rule 76
5.4 The existence of two different neutral kaons 77
5.5 CP invariant $K^0 - \bar{K}^0$ oscillations 79
5.6 Regeneration – which is heavier: K_L or K_S? 83
5.7 The quiet before the storm 84
5.8 The discovery of CP violation 85
Problems 89

6 Quantum mechanics of neutral particles 90
6.1 The effective Hamiltonian 90
6.2 Constraints from CPT, CP and T 93
6.3 Spherical coordinates 93
6.4 ♠ On phase conventions ♠ 95
6.5 ♠ ΔM and $\Delta \Gamma$ ♠ 97
6.6 Master equations of time evolution 99
6.7 CP violation: classes (A), (B) and (C) 102
6.8 ♠ On the sign of the CP asymmetry ♠ 106
6.9 What happens if you don’t observe the decay time? 107
6.10 Regeneration 108
6.11 The Bell–Steinberger inequality 110
6.12 Résumé on $P^0 - \bar{P}^0$ oscillations 111
Problems 113

Part II Theory and experiments 115

7 The quest for CP violation in K decays – a marathon 117
7.1 The landscape 117
7.2 $K_L \to \pi\pi$ decays 121
 7.2.1 Decay amplitudes 121
 7.2.2 Constraints on A_1 and \bar{A}_1 124
 7.2.3 Relating ϵ to $M - \frac{i}{2} \Gamma$ 125
 7.2.4 The phase of ϵ 126
7.3 Semileptonic decays 127
7.4 $\blacklozenge P_L$ in $K \to \pi\mu\nu$ decays \blacklozenge 129
7.5 $\blacklozenge K \to 3\pi \blacklozenge$
 7.5.1 $K_S \to 3\pi^0$ 133
 7.5.2 $K_S \to \pi^+\pi^-\pi^0$ 133
 7.5.3 $K^\pm \to \pi^\pm\pi^\pm\pi^0$ 138
7.6 \blacklozenge Hyperon decays \blacklozenge
7.7 The bard’s song 141
Problems 141

8 The KM implementation of CP violation 143
8.1 A bit of history 143
8.2 The Standard Model 145
 8.2.1 QCD 146
 8.2.2 The Glashow–Salam–Weinberg model 147
8.3 The KM ansatz 149
 8.3.1 The mass matrices 149
 8.3.2 Parameters of consequence 149
 8.3.3 Describing weak phases through unitarity triangles 151
8.4 A tool kit 154
 8.4.1 The angles of the unitarity triangle 156
8.5 The pundits’ judgement 157
Problems 158

9 The theory of $K_L \to \pi\pi$ decays 160
9.1 The $\Delta S = 1$ non-leptonic Lagrangian 160
9.2 Evaluating matrix elements 164
9.3 Chiral symmetry and vacuum saturation approximation 165
9.4 $K \to \pi\pi$ decays 167
9.5 ♠ Computation of ϵ'/ϵ ♠
 9.5.1 Determining matrix elements from data 169
 9.5.2 Numerical estimates 170
9.6 $\Delta S = 2$ amplitudes 172
 9.6.1 ΔM_K 174
 9.6.2 ϵ 175
9.7 ♠ SM expectations for $\langle P_\perp \rangle$ in K_{i3} decays ♠ 175
9.8 Résumé 176
Problems 177

10 Paradigmatic discoveries in B physics 180
 10.1 The emerging beauty of B hadrons 180
 10.1.1 The discovery of beauty 181
 10.1.2 The longevity of B mesons 183
 10.1.3 The fluctuating identity of neutral B mesons 185
 10.1.4 Another triumph for CKM dynamics 189
 10.2 What does the SM say about oscillations? 190
 10.2.1 Computation of ΔM 190
 10.3 ♠ On the sign of ΔM_B ♠ 192
 10.4 CP violation in B decays – like in K decays, only different 193
 10.5 From sweatshops to beauty factories 197
 10.5.1 Disappointment at a symmetric machine 199
 10.5.2 A crazy idea 199
 10.6 First reward – $B_d \to \psi K_S$ 200
 10.7 The second reward – $B_d \to \pi^+\pi^-$ 201
 10.8 More rewards – $B^0 \to K\pi$, $\eta'K_S$ 203
 10.8.1 $B \to K\pi$ 203
 10.8.2 $B_d \to \eta'K_S$ 205
 10.9 CPT invariance vs. T and CP violation 206
 10.10 Reflections 207
 10.10.1 On the virtue of ‘over-designing’ 207
 10.10.2 The ‘unreasonable’ success of CKM theory 208
 10.10.3 Praising hadronization 209
 10.10.4 EPR correlations – a blessing in disguise 210
 10.11 Résumé 211
Problems 212

11 Let the drama unfold – B CP phenomenology 215
 11.1 Pollution from water fowls and others 215
 11.2 Determining ϕ_1 218
 11.2.1 How clean is $B_d \to \psi K_S$? 218
 11.2.2 ♠ Other ways to get at ϕ_1 ♠ 219
11.3 Determining ϕ_2

11.3.1 Penguins in $B_d \to \pi\pi$ 222

11.3.2 Overcoming pollution 222

11.3.3 $B \to \pi\pi$ 223

11.3.4 $B \to \pi\rho, \rho\rho$ 224

11.4 Determining ϕ_3

11.4.1 Using doubly Cabibbo-suppressed decays 228

11.4.2 Dalitz plot analysis 228

11.5 Search for New Physics

11.5.1 Wrong-sign semileptonic decays: Class(B) 230

11.5.2 ♠ Theoretical estimate of A_{SL} ♠ 230

11.5.3 What can oscillations tell us about New Physics? 235

11.5.4 $B_s \to \psi\phi, \psi\eta(0), D_s^+D_s^-$: Class (C2) 236

11.5.5 $B_s \to K_S\rho^0$: Class (C1, C2) 238

11.5.6 $B_d \to \phi K_S, \eta K_S$: Class(C2) 238

11.5.7 $B_s \to D^\pm s \pm K$: Class (C1,C2) 240

11.6 Résumé

Problems 242

12 Rare K and B decays – almost perfect laboratories 248

12.1 Rare K decays

12.1.1 $K_L \to \mu^+\mu^-$ and $K^+ \to \pi^+e^+e^-$ 248

12.1.2 $K_L \to \pi^0l^+l^-$ 250

12.1.3 $K \to \pi\nu\bar{\nu}$ 251

12.1.4 ♠ $K \to \pi\pi\gamma^\ast$ ♠ 254

12.2 Beauty decays

12.2.1 $B \to X_s\gamma$ 258

12.2.2 $B \to \mu^+\mu^-$ 259

12.2.3 $B \to X + \nu\bar{\nu}$ 260

12.2.4 $B \to X_s + \mu^+\mu^-$ 261

12.3 Résumé

Problems 262

13 ♠ CPT violation – could it be in K and B decays? ♠ 265

13.1 Equality of masses and lifetimes 266

13.2 Theoretical scenarios 267

13.3 CPT phenomenology for neutral kaons 268

13.3.1 Semileptonic decays 269

13.3.2 Asymmetries 270

13.3.3 Non-leptonic neutral K decays 273

13.4 Harnessing EPR correlations

13.4.1 ϕ factory 279

13.4.2 Tests of CPT symmetry in B decays 281
Contents

13.5 The moralist's view
Problems

14 CP violation in charm decays – the dark horse

14.1 On the uniqueness of charm
14.2 $D^0 - \bar{D}^0$ oscillations
 14.2.1 Experimental evidence
 14.2.2 First résumé
 14.2.3 Theoretical expectations on ΔM_D & $\Delta \Gamma_D$
 14.2.4 New Physics contributions to ΔM_D and $\Delta \Gamma_D$?
 14.2.5 ♠ Numerical predictions for ΔM_D and $\Delta \Gamma_D$ ♠
14.3 CP violation
 14.3.1 Preliminaries
 14.3.2 CP asymmetries with out $D^0 - \bar{D}^0$ oscillations
 14.3.3 Oscillations – the new portal to CP violation
 14.3.4 Harnessing EPR correlations
14.4 Résumé and a call to action
Problems

15 The strong CP problem

15.1 The problem
15.2 Why $G \cdot \bar{G}$ matters and $F \cdot \bar{F}$ does not
15.3 ♠ The $U(1)_A$ problem ♠
15.4 QCD and quark masses
15.5 The neutron electric dipole moment
15.6 Are there escape hatches?
 15.6.1 Soft CP violation
15.7 Peccei–Quinn symmetry
15.8 The dawn of axions – and their dusk?
 15.8.1 Visible axions
 15.8.2 Invisible axions
15.9 The pundits' judgement
Problems

Part III Looking beyond the Standard Model

16 Quest for CP violation in the neutrino sector
16.1 Experiments
 16.1.1 Solar neutrinos
 16.1.2 Atmospheric neutrinos
 16.1.3 Man-made neutrinos
 16.1.4 Qualitative summary

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Basics of neutrino oscillations</td>
<td>343</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Mass hierarchy</td>
<td>345</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Estimating θ_{13} and θ_{12}</td>
<td>346</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Atmospheric neutrinos</td>
<td>347</td>
</tr>
<tr>
<td>16.3</td>
<td>Neutrino mixing parameters</td>
<td>347</td>
</tr>
<tr>
<td>16.4</td>
<td>The MSW effect</td>
<td>349</td>
</tr>
<tr>
<td>16.5</td>
<td>Neutrino masses</td>
<td>350</td>
</tr>
<tr>
<td>16.6</td>
<td>Neutrino mixing with Majorana neutrinos</td>
<td>353</td>
</tr>
<tr>
<td>16.7</td>
<td>Phases in the PMNS matrix</td>
<td>355</td>
</tr>
<tr>
<td>16.8</td>
<td>CP and T violation in ν oscillations</td>
<td>356</td>
</tr>
<tr>
<td>16.9</td>
<td>How to measure the Majorana phase?</td>
<td>358</td>
</tr>
<tr>
<td>16.10</td>
<td>The bard’s song</td>
<td>359</td>
</tr>
<tr>
<td>17</td>
<td>Possible corrections to the KM ansatz: right-handed currents and non-minimal Higgs dynamics</td>
<td>362</td>
</tr>
<tr>
<td>17.1</td>
<td>Left–right symmetric models</td>
<td>363</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Basics</td>
<td>363</td>
</tr>
<tr>
<td>17.1.2</td>
<td>The existing phenomenology in strange decays</td>
<td>367</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Electric dipole moments</td>
<td>372</td>
</tr>
<tr>
<td>17.1.4</td>
<td>Prospects for CP asymmetries in beauty decays</td>
<td>373</td>
</tr>
<tr>
<td>17.2</td>
<td>CP violation from Higgs dynamics</td>
<td>374</td>
</tr>
<tr>
<td>17.2.1</td>
<td>A simple example</td>
<td>375</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Sources of CP violation</td>
<td>376</td>
</tr>
<tr>
<td>17.2.3</td>
<td>CP phenomenology with heavy fermions</td>
<td>389</td>
</tr>
<tr>
<td>17.3</td>
<td>The pundits' résumé</td>
<td>391</td>
</tr>
<tr>
<td>18</td>
<td>CP violation without non-perturbative dynamics – top quarks and charged leptons</td>
<td>396</td>
</tr>
<tr>
<td>18.1</td>
<td>Production and decay of top quarks</td>
<td>396</td>
</tr>
<tr>
<td>18.1.1</td>
<td>$\sigma(t_L\bar{t}_L) \text{ vs } \sigma(t_R\bar{t}_R)$</td>
<td>398</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Final state distributions in $e^+e^- \rightarrow t\bar{t}H^0$</td>
<td>399</td>
</tr>
<tr>
<td>18.2</td>
<td>On CP violation with leptons</td>
<td>400</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Positronium</td>
<td>401</td>
</tr>
<tr>
<td>18.2.2</td>
<td>μ decays</td>
<td>402</td>
</tr>
<tr>
<td>18.2.3</td>
<td>τ decays</td>
<td>403</td>
</tr>
<tr>
<td>18.2.4</td>
<td>τ production</td>
<td>407</td>
</tr>
<tr>
<td>18.3</td>
<td>Résumé on top and τ transitions</td>
<td>408</td>
</tr>
<tr>
<td>19</td>
<td>SUSY-providing shelter for Higgs dynamics</td>
<td>412</td>
</tr>
<tr>
<td>19.1</td>
<td>The virtues of SUSY</td>
<td>413</td>
</tr>
<tr>
<td>19.2</td>
<td>Low-energy SUSY</td>
<td>416</td>
</tr>
<tr>
<td>19.2.1</td>
<td>The MSSM</td>
<td>417</td>
</tr>
</tbody>
</table>
19.3 Gateways for CP violation
 19.3.1 A first glance at CP phases in MSSM 421
 19.3.2 Squark mass matrices 422
 19.3.3 Beyond MSSM 425

19.4 Confronting experiments
 19.4.1 Electric dipole moments 426
 19.4.2 SUSY contributions to \(\Delta S \neq 0 \neq \Delta B \) transitions 428
 19.4.3 Bounds on MI SUSY parameters 431
 19.4.4 Can SUSY be generic? 432

19.5 The pundits’ résumé 433
Problems 434

20 Minimal flavour violation and extra dimensions 436
20.1 On minimal flavour violation 436
 20.1.1 Defining, implementing and probing MFV 437
20.2 Extra (space) dimensions 440
20.3 The pundits’ call 443

21 Baryogenesis in the universe 444
21.1 The challenge 444
21.2 The ingredients 445
21.3 GUT baryogenesis 446
21.4 Electroweak baryogenesis 448
21.5 Leptogenesis driving baryogenesis 451
21.6 Wisdom – conventional and otherwise 452

Part IV Summary 455

22 Summary and perspectives 457
22.1 The cathedral builder’s paradigm 459
 22.1.1 Present status and general expectations 460
 22.1.2 A look back 461
22.2 Agenda for the future 462
22.3 Final words 463

References 465

Index 478