A Table of Frequently Used Radioisotopes

Only decays with the largest branching fractions are listed. For β emitters the maximum energies of the continuous β-ray spectra are given. ‘\rightarrow’ denotes the decay to the subsequent element in the table. EC stands for ‘electron capture’, a (= annus, Latin) for years, h for hours, d for days, min for minutes, s for seconds, and ms for milliseconds.

<table>
<thead>
<tr>
<th>isotope A</th>
<th>element Z</th>
<th>decay type</th>
<th>half-life</th>
<th>β resp. α energy (MeV)</th>
<th>γ energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>1</td>
<td>β^-</td>
<td>12.3 a</td>
<td>0.0186</td>
<td>no γ</td>
</tr>
<tr>
<td>2Be</td>
<td>11Na</td>
<td>EC, γ</td>
<td>53 d</td>
<td>–</td>
<td>0.48</td>
</tr>
<tr>
<td>10Be</td>
<td>14C</td>
<td>β^-</td>
<td>1.5×10^6 a</td>
<td>0.56</td>
<td>no γ</td>
</tr>
<tr>
<td>14C</td>
<td>22Na</td>
<td>β^+, EC</td>
<td>2.6 a</td>
<td>0.54</td>
<td>1.28</td>
</tr>
<tr>
<td>24Na</td>
<td>26Al</td>
<td>β^-, γ</td>
<td>15.0 h</td>
<td>1.39</td>
<td>1.37</td>
</tr>
<tr>
<td>26Al</td>
<td>32Si</td>
<td>β^-</td>
<td>172 a</td>
<td>0.20</td>
<td>no γ</td>
</tr>
<tr>
<td>32Si</td>
<td>32P</td>
<td>β^-</td>
<td>14.2 d</td>
<td>1.71</td>
<td>no γ</td>
</tr>
<tr>
<td>37Ar</td>
<td></td>
<td>EC</td>
<td>35 d</td>
<td>–</td>
<td>no γ</td>
</tr>
<tr>
<td>40K</td>
<td>40Cr</td>
<td>EC, γ</td>
<td>27.8 d</td>
<td>–</td>
<td>0.325</td>
</tr>
<tr>
<td>54Mn</td>
<td>54Mn</td>
<td>EC, γ</td>
<td>312 d</td>
<td>–</td>
<td>0.84</td>
</tr>
<tr>
<td>56Fe</td>
<td>57Co</td>
<td>EC</td>
<td>2.73 a</td>
<td>–</td>
<td>0.006</td>
</tr>
<tr>
<td>57Co</td>
<td></td>
<td>EC, γ</td>
<td>272 d</td>
<td>–</td>
<td>0.122</td>
</tr>
<tr>
<td>60Co</td>
<td>60Co</td>
<td>β^-, γ</td>
<td>5.27 a</td>
<td>0.32</td>
<td>1.17 & 1.33</td>
</tr>
<tr>
<td>66Ga</td>
<td>66Ga</td>
<td>β^+, EC, γ</td>
<td>9.4 h</td>
<td>4.15</td>
<td>1.04</td>
</tr>
<tr>
<td>68Ga</td>
<td>68Ga</td>
<td>β^-, EC, γ</td>
<td>68 min</td>
<td>1.88</td>
<td>1.07</td>
</tr>
<tr>
<td>85Kr</td>
<td>85Kr</td>
<td>β^-, γ</td>
<td>10.8 a</td>
<td>0.67</td>
<td>0.52</td>
</tr>
<tr>
<td>89Sr</td>
<td>89Sr</td>
<td>β^-</td>
<td>51 d</td>
<td>1.49</td>
<td>no γ</td>
</tr>
<tr>
<td>90Sr</td>
<td>90Y</td>
<td>β^-</td>
<td>28.7 a</td>
<td>0.55</td>
<td>no γ</td>
</tr>
<tr>
<td>90Y</td>
<td>99mTc</td>
<td>β^-</td>
<td>64 h</td>
<td>2.28</td>
<td>no γ</td>
</tr>
<tr>
<td>99mTc</td>
<td></td>
<td>γ</td>
<td>6 h</td>
<td>–</td>
<td>0.140</td>
</tr>
<tr>
<td>isotope</td>
<td>decay type</td>
<td>half-life</td>
<td>β resp. α energy (MeV)</td>
<td>γ energy (MeV)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>$^{106}{44}$Ru \rightarrow $^{106}{45}$Rh</td>
<td>β^-</td>
<td>1.0 a</td>
<td>0.04</td>
<td>no γ</td>
<td></td>
</tr>
<tr>
<td>$^{112}_{47}$Ag</td>
<td>β^-, γ</td>
<td>30 s</td>
<td>3.54</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>$^{109}_{48}$Cd \rightarrow</td>
<td>EC</td>
<td>1.27 a</td>
<td>–</td>
<td>no γ</td>
<td></td>
</tr>
<tr>
<td>$^{109m}_{47}$Ag</td>
<td>γ</td>
<td>40 s</td>
<td>–</td>
<td>0.088</td>
<td></td>
</tr>
<tr>
<td>$^{113}_{50}$Sn</td>
<td>EC, γ</td>
<td>115 d</td>
<td>–</td>
<td>0.392</td>
<td></td>
</tr>
<tr>
<td>$^{132}_{52}$Te</td>
<td>β^-, γ</td>
<td>77 h</td>
<td>0.22</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>$^{125}_{53}$I</td>
<td>EC, γ</td>
<td>60 d</td>
<td>–</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>$^{129}_{53}$I</td>
<td>β^-, γ</td>
<td>1.6×10^7 a</td>
<td>0.15</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>$^{131}_{53}$I</td>
<td>β^-, γ</td>
<td>8.05 d</td>
<td>0.61</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>$^{133}_{54}$Xe</td>
<td>β^-, γ</td>
<td>5.24 d</td>
<td>0.35</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>$^{134}_{55}$Cs</td>
<td>β^-, β^+, γ</td>
<td>2.06 a</td>
<td>0.65</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>$^{137}_{55}$Cs \rightarrow</td>
<td>β^-</td>
<td>30 a</td>
<td>0.51 & 1.18</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>$^{137m}_{56}$Ba</td>
<td>γ</td>
<td>2.6 min</td>
<td>–</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>$^{133}_{50}$Ba</td>
<td>EC, γ</td>
<td>10.5 a</td>
<td>–</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>$^{140}_{57}$La</td>
<td>β^-, γ</td>
<td>40.2 h</td>
<td>1.34</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>$^{144}_{58}$Ce \rightarrow</td>
<td>β^-, γ</td>
<td>285 d</td>
<td>0.32</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>$^{144}_{59}$Pr</td>
<td>β^-, γ</td>
<td>17.5 min</td>
<td>3.12</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>$^{144}_{60}$Nd</td>
<td>α</td>
<td>2.3×10^{15} a</td>
<td>1.80</td>
<td>no γ</td>
<td></td>
</tr>
<tr>
<td>$^{152}_{63}$Eu</td>
<td>EC, β^+, γ</td>
<td>13.5 a</td>
<td>0.68</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td>$^{192}_{77}$Ir</td>
<td>EC, β^-, γ</td>
<td>74 d</td>
<td>0.67</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>$^{198}_{79}$Au</td>
<td>β^-, γ</td>
<td>2.7 d</td>
<td>0.96</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>$^{200}_{81}$TI</td>
<td>β^-, EC</td>
<td>3.78 a</td>
<td>0.76</td>
<td>no γ</td>
<td></td>
</tr>
<tr>
<td>$^{207}_{83}$Bi</td>
<td>EC, γ</td>
<td>31.6 a</td>
<td>0.48</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>$^{222}_{86}$Rn \rightarrow</td>
<td>α, γ</td>
<td>3.8 d</td>
<td>5.48</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>$^{218}_{84}$Po \rightarrow</td>
<td>α, β^-</td>
<td>3.1 min</td>
<td>α: 6.00</td>
<td>no γ</td>
<td></td>
</tr>
<tr>
<td>$^{214}_{82}$Pb</td>
<td>β^-, γ</td>
<td>26.8 min</td>
<td>0.73</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>$^{214}_{83}$Bi</td>
<td>β^-, γ</td>
<td>19.9 min</td>
<td>1.51</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>$^{226}_{88}$Ra</td>
<td>α, γ</td>
<td>1600 a</td>
<td>4.78</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>$^{238}_{90}$Th</td>
<td>α, γ</td>
<td>1.9 a</td>
<td>5.42</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>$^{234}_{92}$U</td>
<td>α, γ</td>
<td>2.5×10^5 a</td>
<td>4.77</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>isotope $^{A}_{Z}$ element</td>
<td>decay type</td>
<td>half-life</td>
<td>β resp. α energy (MeV)</td>
<td>γ energy (MeV)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>$^{235}_{92}$U</td>
<td>α, γ</td>
<td>7.1×10^8 a</td>
<td>4.40</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>$^{238}_{92}$U</td>
<td>α, γ</td>
<td>4.5×10^9 a</td>
<td>4.20</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>$^{239}_{94}$Pu</td>
<td>α, γ</td>
<td>24 110 a</td>
<td>5.15</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>$^{240}_{94}$Pu</td>
<td>α, γ</td>
<td>6564 a</td>
<td>5.16</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>$^{241}_{95}$Am</td>
<td>α, γ</td>
<td>432 a</td>
<td>5.49</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>$^{252}_{98}$Cf</td>
<td>α, γ</td>
<td>2.6 a</td>
<td>6.11</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>$^{252}_{100}$Fm</td>
<td>α, γ</td>
<td>25 h</td>
<td>7.05</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>$^{268}_{109}$Mt</td>
<td>α</td>
<td>70 ms</td>
<td>10.70</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Explanatory note

The heavy α-ray-emitting radioisotopes can also decay by spontaneous fission. Half-lives for spontaneous fission are usually rather long. More detailed information about decay modes and level diagrams can be taken from nuclear data tables. Corresponding references are listed under ‘Further Reading’ in the section ‘Tables of Isotopes and Nuclear Data Sheets’. The most recent information on the table of isotopes can be found in the Internet under

http://atom.kaeri.re.kr/

and

B Examples of Exemption Limits for Absolute and Specific Activities

There are no universal international values for exemption limits for radioactive sources and radioactive material. Different countries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. The table below gives some examples which have been adopted by the new German radiation-protection ordinance in 2001. The corresponding limits in other countries are quite similar, although there are also some important differences in some national regulations.

If several sources each with activity A_i and corresponding exemption limit A_i^{max} are handled in a laboratory, the following condition must be fulfilled:

$$\sum_{i=1}^{N} \frac{A_i}{A_i^{\text{max}}} \leq 1 .$$

This prevents the acquisition of several sources each with an activity below the exemption limit thereby possibly circumventing the idea of the exemption limit.

<table>
<thead>
<tr>
<th>radioisotope</th>
<th>exemption limit</th>
<th>specific activity in Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{3}H</td>
<td>10^9</td>
<td>10^6</td>
</tr>
<tr>
<td>^{7}Be</td>
<td>10^7</td>
<td>10^3</td>
</tr>
<tr>
<td>^{14}C</td>
<td>10^7</td>
<td>10^4</td>
</tr>
<tr>
<td>^{24}Na</td>
<td>10^5</td>
<td>10</td>
</tr>
<tr>
<td>^{32}P</td>
<td>10^5</td>
<td>10^3</td>
</tr>
<tr>
<td>$^{40}\text{K}^*$</td>
<td>10^6</td>
<td>10^2</td>
</tr>
<tr>
<td>^{54}Mn</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>^{55}Fe</td>
<td>10^6</td>
<td>10^4</td>
</tr>
<tr>
<td>^{57}Co</td>
<td>10^6</td>
<td>10^2</td>
</tr>
<tr>
<td>^{60}Co</td>
<td>10^5</td>
<td>10</td>
</tr>
<tr>
<td>radioisotope</td>
<td>exemption limit activity in Bq</td>
<td>specific activity in Bq/g</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>$^{82}_{35}$Br</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>$^{89}_{38}$Sr</td>
<td>10^6</td>
<td>10^3</td>
</tr>
<tr>
<td>$^{90}_{38}$Sr†</td>
<td>10^4</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{99m}_{43}$Tc</td>
<td>10^7</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{106}_{44}$Ru†</td>
<td>10^3</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{110m}_{47}$Ag</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>$^{109}_{48}$Cd†</td>
<td>10^6</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{125}_{53}$I</td>
<td>10^6</td>
<td>10^3</td>
</tr>
<tr>
<td>$^{129}_{53}$I</td>
<td>10^5</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{131}_{53}$I</td>
<td>10^6</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{134}_{55}$Cs</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{137}_{55}$Cs†</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{133}_{56}$Ba</td>
<td>10^6</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{152}_{63}$Eu</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>$^{197}_{80}$Hg</td>
<td>10^7</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{204}_{81}$Tl</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{214}_{82}$Pb</td>
<td>10^6</td>
<td>10^2</td>
</tr>
<tr>
<td>$^{207}_{83}$Bi</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>$^{210}_{84}$Po</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{220}_{86}$Rn†</td>
<td>10^7</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{222}_{86}$Rn†</td>
<td>10^8</td>
<td>10</td>
</tr>
<tr>
<td>$^{226}_{88}$Ra†</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{227}_{89}$Ac†</td>
<td>10^3</td>
<td>0.1</td>
</tr>
<tr>
<td>$^{232}_{90}$Th†</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{233}_{92}$U</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{235}_{92}$U†</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{238}_{92}$U†</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>$^{239}_{94}$Pu</td>
<td>10^4</td>
<td>1</td>
</tr>
<tr>
<td>$^{240}_{94}$Pu</td>
<td>10^3</td>
<td>1</td>
</tr>
</tbody>
</table>
Exemption Limits for Absolute and Specific Activities

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Exemption Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activity in Bq</td>
</tr>
<tr>
<td>$^{241}_{95}$Am</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{244}_{96}$Cm</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{252}_{98}$Cf</td>
<td>10^4</td>
</tr>
</tbody>
</table>

* as naturally occurring isotope unlimited
† in equilibrium with its daughter nuclei; the radiation exposure due to these daughter isotopes is taken account of in the exemption limits
C Maximum Permitted Activity
Concentrations Discharged
from Radiation Areas

There are no universal international values for the limits of radioactive material that may be released from radiation areas. Different countries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. These limits generally refer to a maximum annual dose of 0.3 mSv that people from the general public may receive from such discharges. The table below gives some examples which have been adopted by the new German radiation protection ordinance in 2001. The corresponding limits in other countries are quite similar, but do vary in some national regulations.

<table>
<thead>
<tr>
<th>radioisotope</th>
<th>maximum permitted activity concentration in air in Bq/m³</th>
<th>maximum permitted activity concentration in water in Bq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>10^2</td>
<td>10^7</td>
</tr>
<tr>
<td>4Be</td>
<td>6×10^2</td>
<td>5×10^6</td>
</tr>
<tr>
<td>14C</td>
<td>6</td>
<td>6×10^5</td>
</tr>
<tr>
<td>24Na</td>
<td>90</td>
<td>3×10^5</td>
</tr>
<tr>
<td>32P</td>
<td>1</td>
<td>3×10^4</td>
</tr>
<tr>
<td>42K</td>
<td>2×10^2</td>
<td>2×10^5</td>
</tr>
<tr>
<td>54Mn</td>
<td>20</td>
<td>2×10^5</td>
</tr>
<tr>
<td>55Fe</td>
<td>20</td>
<td>10^5</td>
</tr>
<tr>
<td>57Co</td>
<td>30</td>
<td>3×10^5</td>
</tr>
<tr>
<td>60Co</td>
<td>1</td>
<td>2×10^4</td>
</tr>
<tr>
<td>82Br</td>
<td>50</td>
<td>10^5</td>
</tr>
<tr>
<td>89Sr</td>
<td>4</td>
<td>3×10^4</td>
</tr>
<tr>
<td>90Sr</td>
<td>0.1</td>
<td>4×10^3</td>
</tr>
</tbody>
</table>
Maximum Permitted Activity Concentrations Discharged from Radiation Areas

<table>
<thead>
<tr>
<th>radioisotope</th>
<th>maximum permitted activity concentration in air in Bq/m³</th>
<th>in water in Bq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{99m}_{43}$Tc</td>
<td>2×10^3</td>
<td>4×10^6</td>
</tr>
<tr>
<td>$^{106}_{44}$Ru</td>
<td>0.6</td>
<td>10^4</td>
</tr>
<tr>
<td>$^{110m}_{47}$Ag</td>
<td>1</td>
<td>4×10^4</td>
</tr>
<tr>
<td>$^{109}_{48}$Cd</td>
<td>4</td>
<td>4×10^4</td>
</tr>
<tr>
<td>$^{125}_{53}$I</td>
<td>0.5</td>
<td>2×10^4</td>
</tr>
<tr>
<td>$^{129}_{53}$I</td>
<td>0.03</td>
<td>4×10^3</td>
</tr>
<tr>
<td>$^{131}_{53}$I</td>
<td>0.5</td>
<td>5×10^3</td>
</tr>
<tr>
<td>$^{134}_{55}$Cs</td>
<td>2</td>
<td>2×10^4</td>
</tr>
<tr>
<td>$^{137}_{55}$Cs</td>
<td>0.9</td>
<td>3×10^4</td>
</tr>
<tr>
<td>$^{133}_{56}$Ba</td>
<td>4</td>
<td>4×10^4</td>
</tr>
<tr>
<td>$^{152}_{63}$Eu</td>
<td>0.9</td>
<td>5×10^4</td>
</tr>
<tr>
<td>$^{197}_{80}$Hg</td>
<td>10^2</td>
<td>4×10^5</td>
</tr>
<tr>
<td>$^{201}_{81}$Tl</td>
<td>10</td>
<td>7×10^4</td>
</tr>
<tr>
<td>$^{214}_{82}$Pb</td>
<td>2</td>
<td>3×10^5</td>
</tr>
<tr>
<td>$^{207}_{84}$Bi</td>
<td>1</td>
<td>9×10^4</td>
</tr>
<tr>
<td>$^{210}_{84}$Po</td>
<td>0.008</td>
<td>30</td>
</tr>
<tr>
<td>$^{226}_{88}$Ra</td>
<td>0.004</td>
<td>2×10^2</td>
</tr>
<tr>
<td>$^{227}_{89}$Ac</td>
<td>7×10^{-5}</td>
<td>30</td>
</tr>
<tr>
<td>$^{232}_{90}$Th</td>
<td>3×10^{-4}</td>
<td>2×10^2</td>
</tr>
<tr>
<td>$^{233}_{92}$U</td>
<td>0.004</td>
<td>2×10^3</td>
</tr>
<tr>
<td>$^{235}_{92}$U</td>
<td>0.004</td>
<td>3×10^3</td>
</tr>
<tr>
<td>$^{238}_{92}$U</td>
<td>0.005</td>
<td>3×10^3</td>
</tr>
<tr>
<td>$^{239}_{94}$Pu</td>
<td>3×10^{-4}</td>
<td>2×10^2</td>
</tr>
<tr>
<td>$^{240}_{94}$Pu</td>
<td>3×10^{-4}</td>
<td>2×10^2</td>
</tr>
<tr>
<td>$^{241}_{95}$Am</td>
<td>4×10^{-4}</td>
<td>2×10^2</td>
</tr>
<tr>
<td>$^{244}_{96}$Cm</td>
<td>6×10^{-4}</td>
<td>3×10^2</td>
</tr>
<tr>
<td>$^{252}_{98}$Cf</td>
<td>0.002</td>
<td>2×10^2</td>
</tr>
</tbody>
</table>

Any unknown isotope mixture: 10^{-5}, 10
These limits describe maximum activity concentrations in air released from radiation areas with the danger of inhalation, and maximum permitted activity concentrations, which are allowed to be discharged as sewage water.

Correspondingly, the condition

\[\sum_{i=1}^{N} \frac{\tilde{C}_{i,a}}{C_i} \leq 1 \]

must be respected, where

- \(C_i \) is the maximum permitted activity concentration
- \(\tilde{C}_{i,a} \) the actual released average annual activity concentration.
Examples of Clearance Levels

There are no universal international values for clearance levels for material containing residual radioactivity. After approved clearance the material is no longer considered as radioactive. Different countries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. Clearance can only be approved if the residual activity causes insignificant exposure to the public ($\leq 10 \mu$Sv/yr). The table below gives some examples which have been adopted by the new German radiation-protection ordinance in 2001. The corresponding limits in other countries are quite similar.

<table>
<thead>
<tr>
<th>radioisotope</th>
<th>clearance of</th>
<th>solid material, liquids</th>
<th>construction waste, excavation residues</th>
<th>ground area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Bq/g)</td>
<td>(Bq/g)</td>
<td>(Bq/g)</td>
</tr>
<tr>
<td>3H</td>
<td></td>
<td>1000</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>32P</td>
<td></td>
<td>20</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>60Co</td>
<td></td>
<td>0.1</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>90Sr*</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.002</td>
</tr>
<tr>
<td>137Cs*</td>
<td></td>
<td>0.5</td>
<td>0.4</td>
<td>0.06</td>
</tr>
<tr>
<td>226Ra*</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>†</td>
</tr>
<tr>
<td>232Th</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>†</td>
</tr>
<tr>
<td>235U*</td>
<td></td>
<td>0.5</td>
<td>0.3</td>
<td>†</td>
</tr>
<tr>
<td>238U*</td>
<td></td>
<td>0.6</td>
<td>0.4</td>
<td>†</td>
</tr>
<tr>
<td>239Pu</td>
<td></td>
<td>0.04</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>240Pu</td>
<td></td>
<td>0.04</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>241Am</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* in equilibrium with daughter isotopes; the radiation exposure due to these daughter isotopes is taken care of in the clearance levels
† naturally occurring radioisotopes in the ground with activities around 0.01 Bq/g
D Examples of Limits for Surface Contaminations

There are no universal international values for limits on surface contaminations in working areas. Because of the higher biological effectiveness the limits for α particles are more stringent compared to those of β- and γ-ray emitters, usually by a factor of 10. Different countries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. The table below gives some examples which have been adopted by the new German radiation-protection ordinance in 2001. The corresponding limits in other countries are quite similar.

<table>
<thead>
<tr>
<th>radioisotope</th>
<th>surface contamination in Bq/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H, 7Be, 14C</td>
<td>100</td>
</tr>
<tr>
<td>18F, 24Na, 38Cl</td>
<td>1</td>
</tr>
<tr>
<td>54Mn, 60Co, 90Sr</td>
<td>1</td>
</tr>
<tr>
<td>64Cu, 76As, 75Se</td>
<td>10</td>
</tr>
<tr>
<td>99mTc, 105Rh, 106Ru</td>
<td>10</td>
</tr>
<tr>
<td>114Ag, 109Cd, 99Tc</td>
<td>100</td>
</tr>
<tr>
<td>125I, 131I, 129Cs</td>
<td>10</td>
</tr>
<tr>
<td>134Cs, 137Cs, 140Ba</td>
<td>1</td>
</tr>
<tr>
<td>152Eu, 154Eu, 177Ir</td>
<td>1</td>
</tr>
<tr>
<td>204Tl, 197Pt, 210Bi</td>
<td>100</td>
</tr>
<tr>
<td>226Ra, 227Ac, 233U</td>
<td>1</td>
</tr>
<tr>
<td>239pu, 240Pu, 252Cf</td>
<td>0.1</td>
</tr>
<tr>
<td>248Cm</td>
<td>0.01</td>
</tr>
<tr>
<td>β emitter or EC emitter1 with $E_{e\max} < 0.2$ MeV</td>
<td>100</td>
</tr>
<tr>
<td>β or γ emitter in general</td>
<td>1</td>
</tr>
<tr>
<td>α emitter or radioisotopes from spontaneous fission</td>
<td>0.1</td>
</tr>
</tbody>
</table>
In case of surface contaminations by different isotopes the following condition must be fulfilled:

$$\sum_{i=1}^{N} \frac{A_i}{A_{i,\text{max}}} \leq 1,$$

where A_i are the observed surface contaminations and $A_{i,\text{max}}$ the corresponding limits as given in the table.

\footnote{EC = electron capture}
E Definition of Radiation Areas

The definition of radiation areas varies somewhat in different countries, see Chap. 6 on ‘International Safety Standards for Radiation Protection’. In the following table the radiation areas according to the ICRP recommendations, adopted by many countries, are given.

<table>
<thead>
<tr>
<th>controlled area</th>
<th>surveyed area</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusion area</td>
<td>6–20 mSv/yr</td>
</tr>
<tr>
<td>> 3 mSv/h</td>
<td>1–6 mSv/yr</td>
</tr>
<tr>
<td>radiation-exposed workers (2000 h/yr)</td>
<td></td>
</tr>
<tr>
<td>cat. A</td>
<td>6–20 mSv/yr</td>
</tr>
<tr>
<td>cat. B</td>
<td>1–6 mSv/yr</td>
</tr>
<tr>
<td>neighborhood outside radiation areas</td>
<td></td>
</tr>
<tr>
<td>< 1 mSv/yr</td>
<td>permanent residence</td>
</tr>
<tr>
<td>limit for the general public</td>
<td></td>
</tr>
<tr>
<td>for discharges from nuclear facilities</td>
<td></td>
</tr>
<tr>
<td>≤ 0.3 mSv/yr</td>
<td></td>
</tr>
</tbody>
</table>

1 This limit relates to maximum permitted releases of activity concentrations from radiation facilities (nuclear power plants, recycling facilities) via air and water, which are limited to 0.3 mSv/yr for the general public.
F Radiation Weighting Factors w_R

The following radiation weighting factors w_R are almost generally accepted in all countries, see also Chap. 6. In the early days of radiation protection the biological effect of radiation was taken care of by the so-called quality factors q (see also Chap. 2).

<table>
<thead>
<tr>
<th>type of radiation and energy range</th>
<th>radiation weighting factor w_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>photons, all energies</td>
<td>1</td>
</tr>
<tr>
<td>electrons and muons, all energies</td>
<td>1</td>
</tr>
<tr>
<td>neutrons < 10 keV</td>
<td>5</td>
</tr>
<tr>
<td>10 keV–100 keV</td>
<td>10</td>
</tr>
<tr>
<td>> 100 keV–2 MeV</td>
<td>20</td>
</tr>
<tr>
<td>> 2 MeV–20 MeV</td>
<td>10</td>
</tr>
<tr>
<td>> 20 MeV</td>
<td>5</td>
</tr>
<tr>
<td>protons, except recoil protons,</td>
<td>5</td>
</tr>
<tr>
<td>energy > 2 MeV</td>
<td></td>
</tr>
<tr>
<td>α particles, fission</td>
<td>20</td>
</tr>
<tr>
<td>fragments, heavy nuclei</td>
<td></td>
</tr>
</tbody>
</table>

1 The radiation weighting factors as adopted in the United States, which are somewhat different, are given in Table 6.1 on page 94.
The following tissue weighting factors w_T are almost generally accepted in all countries, see also Chaps. 2 and 6.\(^1\)

<table>
<thead>
<tr>
<th>organs or tissue</th>
<th>tissue weighting factor w_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>gonads</td>
<td>0.20</td>
</tr>
<tr>
<td>red bone marrow</td>
<td>0.12</td>
</tr>
<tr>
<td>large intestine</td>
<td>0.12</td>
</tr>
<tr>
<td>lung</td>
<td>0.12</td>
</tr>
<tr>
<td>stomach</td>
<td>0.12</td>
</tr>
<tr>
<td>bladder</td>
<td>0.05</td>
</tr>
<tr>
<td>chest</td>
<td>0.05</td>
</tr>
<tr>
<td>liver</td>
<td>0.05</td>
</tr>
<tr>
<td>esophagus</td>
<td>0.05</td>
</tr>
<tr>
<td>thyroid gland</td>
<td>0.05</td>
</tr>
<tr>
<td>skin</td>
<td>0.01</td>
</tr>
<tr>
<td>periosteum (bone surface)</td>
<td>0.01</td>
</tr>
<tr>
<td>other organs or tissue</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\(^1\) The tissue weighting factors as adopted in the United States, which are somewhat different, are given in Table 6.2 on page 94.
H Physical Constants

Constants, which are exact, are given with their precise values, if possible. They are characterized with an *. For experimental values only the significant decimals are given, i.e., the measurement error is less than the last decimal place.

<table>
<thead>
<tr>
<th>quantity</th>
<th>symbol</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>velocity of light*</td>
<td>c</td>
<td>299 792 458</td>
<td>m/s</td>
</tr>
<tr>
<td>Planck constant</td>
<td>h</td>
<td>6.626 07 × 10(^{-34})</td>
<td>J s</td>
</tr>
<tr>
<td>electron charge magnitude</td>
<td>e</td>
<td>1.602 177 × 10(^{-19})</td>
<td>C</td>
</tr>
<tr>
<td>electron mass</td>
<td>(m_e)</td>
<td>9.109 38 × 10(^{-31})</td>
<td>kg</td>
</tr>
<tr>
<td>proton mass</td>
<td>(m_p)</td>
<td>1.672 62 × 10(^{-27})</td>
<td>kg</td>
</tr>
<tr>
<td>(\alpha)-particle mass</td>
<td>(m_\alpha)</td>
<td>6.644 661 8 × 10(^{-27})</td>
<td>kg</td>
</tr>
<tr>
<td>unified atomic mass unit</td>
<td>(m_u)</td>
<td>1.660 54 × 10(^{-27})</td>
<td>kg</td>
</tr>
<tr>
<td>electron–proton mass ratio</td>
<td>(m_e/m_p)</td>
<td>5.446 170 21 × 10(^{-4})</td>
<td></td>
</tr>
<tr>
<td>permittivity of free space*</td>
<td>(\varepsilon_0 = 1/(\mu_0 c^2))</td>
<td>8.854 187 \ldots × 10(^{-12})</td>
<td>F/m</td>
</tr>
<tr>
<td>permeability of free space*</td>
<td>(\mu_0)</td>
<td>4 π × 10(^{-7})</td>
<td>N/A(^2)</td>
</tr>
<tr>
<td>fine-structure constant</td>
<td>(\alpha = e^2/(4 \pi \varepsilon_0 h c))</td>
<td>1/137.035 999</td>
<td></td>
</tr>
<tr>
<td>classical electron radius</td>
<td>(r_e = e^2/(4 \pi \varepsilon_0 m_e c^2))</td>
<td>2.817 940 \ldots × 10(^{-15})</td>
<td>m</td>
</tr>
<tr>
<td>Compton wavelength</td>
<td>(\lambda_C = h/(m_e c))</td>
<td>2.426 310 2 \cdot 10(^{-12})</td>
<td>m</td>
</tr>
<tr>
<td>gravitational constant</td>
<td>(\gamma)</td>
<td>6.674 \times 10(^{-11})</td>
<td>m(^3)/(kg s(^2))</td>
</tr>
<tr>
<td>standard gravitational acceleration*</td>
<td>(g)</td>
<td>9.806 65</td>
<td>m/s(^2)</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td>(N_A)</td>
<td>6.022 14 × 10(^{23})</td>
<td>mol(^{-1})</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>(k)</td>
<td>1.380 65 \times 10(^{-23})</td>
<td>J/K</td>
</tr>
<tr>
<td>molar gas constant</td>
<td>(R (= N_A k))</td>
<td>8.3144</td>
<td>J/(K mol)</td>
</tr>
<tr>
<td>molar volume(^1)</td>
<td>(V_{\text{mole}})</td>
<td>22.414 \times 10(^{-3})</td>
<td>m(^3)/mol</td>
</tr>
<tr>
<td>Rydberg energy</td>
<td>(E_{\text{Ry}} = m_e c^2 \alpha^2/2)</td>
<td>13.6057</td>
<td>eV</td>
</tr>
<tr>
<td>Stefan–Boltzmann constant</td>
<td>(\sigma = \pi^2 k^4/(60 h^3 c^2))</td>
<td>5.6704 × 10(^{-8})</td>
<td>W m(^{-2}) K(^{-4})</td>
</tr>
<tr>
<td>Bohr radius</td>
<td>(a_0 = 4 \pi \varepsilon_0 h^2/(m_e c^2))</td>
<td>0.529 177 21 \times 10(^{-10})</td>
<td>m</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>(F = e N_A)</td>
<td>96 485.309</td>
<td>C/mol</td>
</tr>
<tr>
<td>electron charge-to-mass ratio</td>
<td>(e/m_e)</td>
<td>1.758 820 \times 10(^{11})</td>
<td>C/kg</td>
</tr>
</tbody>
</table>

\(^1\) at standard temperature and pressure \((T = 273.15 K, \ p = 101 325 \text{ Pa})\)
I Useful Conversions

<table>
<thead>
<tr>
<th>quantity</th>
<th>conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>1 N = 1 kg m/s²</td>
</tr>
<tr>
<td>work, energy</td>
<td>1 eV = 1.602 177 × 10⁻¹⁹ J</td>
</tr>
<tr>
<td></td>
<td>1 cal = 4.186 J</td>
</tr>
<tr>
<td></td>
<td>1 erg = 10⁻⁷ J</td>
</tr>
<tr>
<td></td>
<td>1 kWh = 3.6 × 10⁶ J</td>
</tr>
<tr>
<td>energy dose</td>
<td>1 Gy = 100 rad</td>
</tr>
<tr>
<td></td>
<td>1 rad = 10 mGy</td>
</tr>
<tr>
<td>dose equivalent</td>
<td>1 Sv = 100 rem</td>
</tr>
<tr>
<td></td>
<td>1 rem = 10 mSv</td>
</tr>
<tr>
<td>ion dose</td>
<td>1 R = 258 μC/kg</td>
</tr>
<tr>
<td></td>
<td>≈ 8.77 × 10⁻³ Gy (in air)</td>
</tr>
<tr>
<td>ion-dose rate</td>
<td>1 R/h = 7.17 × 10⁻⁸ A/kg</td>
</tr>
<tr>
<td>activity</td>
<td>1 Ci = 3.7 × 10¹⁰ Bq</td>
</tr>
<tr>
<td></td>
<td>1 Bq = 27.03 pCi</td>
</tr>
<tr>
<td>pressure</td>
<td>1 bar = 10⁵ Pa</td>
</tr>
<tr>
<td></td>
<td>1 atm = 1.013 25 × 10⁵ Pa</td>
</tr>
<tr>
<td></td>
<td>1 Torr = 1 mm Hg</td>
</tr>
<tr>
<td></td>
<td>= 1.333 224 × 10² Pa</td>
</tr>
<tr>
<td></td>
<td>1 kp/m² = 9.806 65 Pa</td>
</tr>
<tr>
<td>charge</td>
<td>1 C = 2.997 924 58 × 10⁹ esu¹</td>
</tr>
<tr>
<td>length</td>
<td>1 m = 10¹⁰ Å</td>
</tr>
<tr>
<td>temperature</td>
<td>θ [°C] = T [K] - 273.15</td>
</tr>
<tr>
<td></td>
<td>T [°Fahrenheit] = 1.80 θ [°C] + 32</td>
</tr>
<tr>
<td></td>
<td>= 1.80 T [K] - 459.67</td>
</tr>
<tr>
<td>time</td>
<td>1 d = 86 400 s</td>
</tr>
<tr>
<td></td>
<td>1 yr = 3.1536 × 10⁷ s</td>
</tr>
</tbody>
</table>

¹ esu – electrostatic unit
J List of Abbreviations

Å – angstrom (unit of length); 1 Å = 10⁻¹⁰ m
a – year (from the Latin word ‘annus’)
A – ampere
ACS – American Chemical Society
ADR – Accord européen relatif au transport international des marchandises dangereuses par la route (European agreement about the transport of dangerous goods via roads)
AERB – Atomic Energy Regulatory Board of India
AIDS – Acquired Immune Deficiency Syndrome
ALARA – as low as reasonably achievable
arctan – arc tangent (Latin: arcus tangens): inverse function of tangent (on pocket calculators usually denoted by tan⁻¹)
ALI – Annual Limit on Intake
ANSTO – Australian Nuclear Science and Technology Organisation
ARPANS – Australian Radiation Protection and Nuclear Safety
atm – atmosphere (unit of pressure)
bar – unit of pressure, from the Greek βαρ, ‘weight’
barn – unit of the (total) cross section (= 10⁻²⁴ cm²)
BF₃ – boron trifluoride
BMU – federal ministry for environment in Germany (Bundesministerium für Umwelt)
Bq – becquerel
C – coulomb (unit of the electric charge)
cal – calory (unit of energy)
CASTOR – cask for storage and transport of radioactive material
CEDE – Committed Effective Dose Equivalent
CERN – Conseil Européenne pour la Recherche Nucléaire (European Center for Particle Physics in Geneva)
Ci – curie
CW lasers – Continuous-Wave lasers
d – day (from the Latin word ‘dies’)
DARI – Dose Annuelle due aux Radiations Internes (annual dose due to internal radiation from the body)
DF – decontamination factor
DIN – German institute for engineering standards (Deutsches Institut für Normung)
DIS dosimeter – Direct Ion Storage dosimeter
DNA – deoxyribonucleic acid
DTPA – diethylenetriamine pentaacetate
e – Eulerian number ($e = 2.718281 \ldots$)
EC – electron capture (mostly from the K shell)
EDTA – ethylenediamine tetraacetate
erg – unit of energy (1 g cm2/s2); from the Greek $\epsilon\rho\gamma\omicron$, ‘work’
ERR – Excess Relative Risk
esu – unit of charge: electrostatic unit
EU – European Union
EURATOM – European Atomic Union
exp – short for the exponential function
eV – electron volt
F – farad (unit of capacitance)
FAO – Food and Agricultural Organization of the United Nations
FWHM – Full Width at Half Maximum
GBq – gigabecquerel
GeV – giga electron volt
GGVS – German ordinance for the transport of dangerous goods (Gefahrgut Verordnung Straße)
GM counter – Geiger–Müller counter
GSF – German research center for environment and health (Forschungszentrum für Umwelt und Gesundheit)
GSI – Gesellschaft für Schwerionenforschung, Darmstadt, Germany
Gy – gray
h – hour (from the Latin word ‘hora’)
hPa – hectopascal
HPGe detector – High Purity Germanium detector
HTR – high-temperature reactor
Hz – hertz (1/s)
IAD – inevitable annual dose
IAEA – International Atomic Energy Agency
IAEO – International Atomic Energy Organization
ICAO – International Civil Aviation Organization (Technical Instructions for Safe Transport of Dangerous Goods by Air)
ICNIRP – International Commission on Non-Ionizing Radiation Protection
ICRP – International Commission on Radiological Protection
ICRU – International Commission on Radiation Units and Measurements
ILO – International Labor Organization
IMDG – International Maritime Dangerous Goods code
ITER – International Thermonuclear Experimental Reactor
IUPAC – International Union for Pure and Applied Chemistry
IUPAP – International Union for Pure and Applied Physics
J – joule (unit of energy; 1 J = 10^7 erg)
JAZ – annual intake (from the German ‘Jahresaktivitätszufuhr’)
JET – Joint European Torus
K – kelvin (absolute temperature)
kBq – kilobecquerel
kerma – kinetic energy released per unit mass (also: kinetic energy released in matter (or material))
keV – kilo electron volt
kHz – kilohertz (or kilocycle)
kJ – kilojoule
kp – kilopond
kT – kiloton (explosive)
kv – kilovolt
LASER – Light Amplification by Stimulated Emission of Radiation
LD – lethal dose
LEP – Large Electron–Positron collider at CERN
LET – Linear Energy Transfer
LINAC – linear accelerator
ln – logarithmus naturalis (natural logarithm)
LNT – Linear No-Threshold hypothesis
mA – milliampere
MBq – megabecquerel
μC – microcoulomb
mCi – millicurie
μCi – microcurie
meV – milli electron volt
MeV – mega electron volt
mGy – milligray
μGy – microgray
mK – millikelvin
μK – microkelvin
mole – amount of material which contains 6.022 × 10^23 molecules/atoms (= Avogadro number)
MOSFET – Metal Oxide Field Effect Transistor
MOX – Mixture of Oxides
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrem</td>
<td>millirem</td>
</tr>
<tr>
<td>MRT</td>
<td>Microbeam Radiation Therapy</td>
</tr>
<tr>
<td>mSv</td>
<td>millisievert</td>
</tr>
<tr>
<td>μSv</td>
<td>microsievert</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>MW</td>
<td>megawatt</td>
</tr>
<tr>
<td>N</td>
<td>newton (unit of force)</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEA</td>
<td>Nuclear Energy Agency</td>
</tr>
<tr>
<td>NIR</td>
<td>Non-Ionizing Radiation</td>
</tr>
<tr>
<td>NPL</td>
<td>National Physical Laboratory</td>
</tr>
<tr>
<td>nSv</td>
<td>nanosievert</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal (unit of pressure)</td>
</tr>
<tr>
<td>PBD</td>
<td>2-(4-tert.-butylene-phenyl)-5-(4-biphenyl-1,3,4-oxadiazole)</td>
</tr>
<tr>
<td>pCi</td>
<td>picocurie</td>
</tr>
<tr>
<td>PET</td>
<td>Positron-Emission Tomography</td>
</tr>
<tr>
<td>pF</td>
<td>picofarad (10^{-12} F)</td>
</tr>
<tr>
<td>PIPS detector</td>
<td>Passive Implanted Planar Silicon detector</td>
</tr>
<tr>
<td>PM</td>
<td>photomultiplier</td>
</tr>
<tr>
<td>PMMA</td>
<td>polymethyl methacrylate</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million (10^{-6})</td>
</tr>
<tr>
<td>PTB</td>
<td>German national physical laboratory for weights and measures (Physikalisch–Technische Bundesanstalt in Braunschweig, equivalent to the British NPL)</td>
</tr>
<tr>
<td>R</td>
<td>roentgen</td>
</tr>
<tr>
<td>rad</td>
<td>radiation absorbed dose</td>
</tr>
<tr>
<td>rad</td>
<td>radian (unit of angle, the full radian is 2π)</td>
</tr>
<tr>
<td>Radar</td>
<td>Radio Detecting and Ranging</td>
</tr>
<tr>
<td>rem</td>
<td>roentgen equivalent man</td>
</tr>
<tr>
<td>RBE</td>
<td>relative biological effectiveness</td>
</tr>
<tr>
<td>RID</td>
<td>règlement international concernant le transport des marchandises dangereuses provision about the transport of dangerous goods</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RTG</td>
<td>Radioisotope Thermoelectric Generator</td>
</tr>
<tr>
<td>SAR</td>
<td>specific absorption rate</td>
</tr>
</tbody>
</table>
steradian – unit of solid angle; the full solid angle corresponds to the surface of the unit sphere: 4π

StrlSchV – Strahlenschutzverordnung (German radiation-protection ordinance)

Sv – sievert

TeV – tera electron volt

TLD – thermoluminescence dosimeter

TNT – trinitrotoluol (explosive)

Torr – torricelli (unit of pressure, mm column of mercury)

UMTS – Universal Mobile Telecommunications System

UN – United Nations

UNSCEAR – United Nations Scientific Committee on the Effects of Atomic Radiation

UV – ultraviolet

UVA – ultraviolet type A radiation, wavelength 400–315 nm

UVB – ultraviolet type B radiation, wavelength 315–280 nm

UVC – ultraviolet type C radiation, wavelength 280–100 nm

V – volt

VDI – Verein Deutscher Ingenieure (association of German engineers)

WHO – World Health Organization

W – watt (unit of power),

Ws – watt second (unit of energy)
K List of Elements*

1 H hydrogen (Greek: υδωρ, hydor, water + γεινομαι, geinomai, to engender; Latin: hydrogenium);
 D = 2H deuterium (Greek: δευτερος, deuteros, second) and T = 3H tritium (Greek: τριτος, tritos, third) are isotopes of hydrogen
2 He helium (Greek: ηλιος, helios, sun)
3 Li lithium (Greek: λιθος, lithos, stone, rock)
4 Be beryllium (Greek: βηρυλλος, beryllos, beryl)
5 B boron (Latin: boracium; Arabic: borax)
6 C carbon (Latin: carbo, coal; French: charbon, charcoal)
7 N nitrogen (Greek: νιτρον, nitron + γεινομαι, geinomai, to engender, soda forming; Latin: nitrogenium)
8 O oxygen (Greek: οξυς, oxys, acid + γεινομαι, geinomai, to engender, acid forming; Latin: oxygenium)
9 F fluorine (Latin: fluere, to flow, to stream)
10 Ne neon (Greek: νεος, neos, new, young)
11 Na sodium (Latin: sodanum; Hebrew: neter, soda; German: Natrium; from the Arabic word 'natrun' = soda)
12 Mg magnesium (Greek: Μαγνησια, Magnesia (district in the Greek town Thessaly))
13 Al aluminum (Latin: alumen, a bitter salt)
14 Si silicon (Latin: silex, flint)
15 P phosphorus (Greek: φωσφορος, phosphoros, light bearing, luminous)
16 S sulphur (Latin: sulfur)
17 Cl chlorine (Greek: χλωρος, chloros, light green, green-yellow)
18 Ar argon (Greek: αργον, argon, inactive, idle)
19 K potassium (German: Kalium from the Arabic word al-qali = ash or English: potash)
20 Ca calcium (Latin: calx, limestone)
21 Sc scandium (Latin: from Scandinavia)
22 Ti titanium (Greek: τιτανος, Titans, children of the Earth)
23 V vanadium (Vanadis, Scandinavian goddess of beauty)
24 Cr chromium, (Greek: χρωμα, chroma, color)
25 Mn manganese, (Greek: Μαγνησια, Magnesia (district in the Greek town Thessaly); Latin: magnes, magnet)
26 Fe iron (Latin: ferrum)
27 Co cobalt (German: Kobold, goblin, evil spirit)
28 Ni nickel (German: Kupfernickel = devil’s copper)
29 Cu copper (Greek: κυπριος, kuprios; Latin: cuprum; metal from the island of Cyprus)
30 Zn zinc (German: Zink, sharp point)
31 Ga gallium (Latin: Gallia, France)
32 Ge germanium (Latin: Germania, Germany)
33 As arsenic (Arabic: al-zarnikh, gold-colored)
34 Se selenium (Greek: σεληνη, selene, moon)
35 Br bromine (Greek: βρομος, bromos, stench)
36 Kr krypton (Greek: κρυπτος, kryptos, hidden)
37 Rb rubidium (Latin: rubidus, deep red)
38 Sr strontium (Strontian, village in Scotland)
39 Y yttrium (after the Swedish village Ytterby)

* see also www.periodensystem.info/periodensystem.htm
 resp. www.webelements.com/
 or http://elements.vanderkrogt.net/elem/
40 Zr zirconium (Persian: zargûn, gold color)
41 Nb niobium (Greek: μολυβδος, molyblos, lead ore)
42 Mo molybdenum (Greek: μολυβδος, molyblos, lead ore)
43 Tc technetium (Greek: τεχνητος, technetos, artificial)
44 Ru ruthenium (Latin: Ruthenia = Ukraine, sometimes Russia is meant)
45 Rh rhodium (Greek: ροδον, rodon, rose)
46 Pd palladium (Greek: named after Pallas Athene, the Greek goddess of wisdom)
47 Aг silver (Latin: argentum)
48 Cd cadmium (named after ‘Kadmos’, the founder of the Egyptian city of Thebes).
49 In indium (named after the indigo blue spectral color)
50 Sn tin (Latin: stannum or Indo-European: stag, dripping)
51 Sb antimonium (Latin: stibium or Greek: στιβι, cosmetic powder)
52 Te tellurium (Latin: tellus, earth, ground)
53 I iodine (Greek: ιωειδης, ioeides, violet color)
54 Xe xenon (Greek: ξηνος, xenos, strange)
55 Cs cesium (Latin: caesius = bluish gray)
56 Ba barium (Greek: βαρυς, barys, heavy)
57 La lanthanum (Greek: λανθανω, lanthano, to lie hidden)
58 Ce cerium (Ceres, asteroid discovered in 1801)
59 Pr praseodymium (Greek: πρασιως + διδυμος, prasios + didymos, green and twins)
60 Nd neodymium (Greek: νεος + διδυμος, neos + didymos, new and twins)
61 Pm promethium (Greek: Προμηθευς, named after Prometheus)
62 Sm samarium (samarskite, mineral named after V.E. Samarskij-Byhovec)
63 Eu europium (Latin: Europa, Europe)
64 Gd gadolinium (gadolinite, mineral named after Johan Gadolin)
65 Tb terbium (named after the Swedish village Ytterby)
66 Dy dysprosium (Greek: δυσπροσιτος, dysprositos, hard to obtain)
67 Ho holmium (Latin: Holmia = Stockholm)
68 Er erbia (named after the Swedish village Ytterby)
69 Tm thulium (Latin: Thule in Scandinavia)
70 Yb ytterbium (named after the Swedish village Ytterby)
71 Lu lutetium (after the Roman name of Paris: Lutetia Parisorum)
72 Hf hafnium (Latin: Hafnia = Köbenhavn, Copenhagen)
73 Ta tantalum (Greek: Tανταλος, Tantalos, figure in Greek mythology)
74 W tungsten (Swedish: Tung Sten, heavy stone; Wolfram: mineral wolframite, from ‘Wolf Rahm’ (German for wolf’s foam))
75 Re rhenium (Latin: Rhenus, Rhine)
76 Os osmium (Greek: οσμη, stench)
77 Ir iridium (Greek: ιρις, Greek goddess of the rainbow)
78 Pt platinum (Spanish: platina (del Pinto) = small silver (beads) of the river Pinto)
79 Au gold (Latin: aurum)
80 Hg mercury (Greek: υδραργυρος, hydrargyros, liquid silver; Latin: hydrargyrum)
81 Tl thallium (Greek: θαλλος, thallos, green shot)
82 Pb lead (Latin: plumbum)
83 Bi bismuth (Latin: bisemutum; German: Weisse Masse, white substance)
84 Po polonium (Latin: Polonia = Polska, Poland)
85 At astatine (Greek: αστατος, astatos, unstable)
86 Rn radon (Latin: nitens, shining; named after the element radium, changed to radon to match the endings of most other noble gases)
87 Fr francium (Latin: named after France)
88 Ra radium (Latin: radius, ray)
89 Ac actinium (Greek: ακτις, aktis, ray)
90 Th thorium (Thor, Scandinavian god of war)
91 Pa protactinium (Greek: πρωτος + actinium, first element after actinium in the uranium–actinium decay series)
92 U uranium (named after the planet Uranus)
93 Np neptunium (named after the planet Neptune)
94 Pu plutonium (named after the dwarf planet Pluto (Πλούτων, Plouton), the Greek god of the underworld)
95 Am americium (Latin: America)
96 Cm curium (named after Marie Curie)
97 Bk berkelium (Berkeley, town in California)
98 Cf californium (California, state of the USA)
99 Es einsteinium (named after Albert Einstein)
100 Fm fermium (named after Enrico Fermi)
101 Md mendelevium (named after Dmitri I. Mendeleyev)
102 No nobelium (named after Alfred Nobel)
103 Lr lawrencium (named after Ernest O. Lawrence)
104 Rf rutherfordium (named after Ernest Rutherford)
105 Db dubnium (named after Dubna, a town in the Moscow region)
106 Sg seaborgium (named after Glenn T. Seaborg)
107 Bh bohrium (named after Niels Bohr)
108 Hs hassium (named after the German state Hassia, Hessen)
109 Mt meitnerium (named after Lise Meitner)
110 Ds darmstadtium (named after Darmstadt, a town in Germany)
111 Rg roentgenium (named after Wilhelm Conrad Röntgen)
112 Cn copernicium (named after Nicolaus Copernicus)
113 †
114 †
115 †
116 †
118 †

† Z = 113, 114, 115, 116, 118: Lawrence Livermore–Dubna Collaboration, Russia, and Berkeley, USA
L Decay Chains

Figure L.1
Uranium (\(^{238}\text{U}\)) decay chain
(a = annus, year)

Figure L.2
Thorium (\(^{232}\text{Th}\)) decay chain
(a = annus, year)
Figure L.3
Actinium (^{235}U) decay chain
(a = annus, year)

Figure L.4
Neptunium (^{237}Np) decay chain
(a = annus, year)
M List of Isotopes Frequently Used in Nuclear Medicine and Radiology

<table>
<thead>
<tr>
<th>isotope</th>
<th>half-life</th>
<th>decay</th>
<th>main energy</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>protons</td>
<td>stable</td>
<td></td>
<td>≈ 200 MeV</td>
<td>particle therapy</td>
</tr>
<tr>
<td>3H</td>
<td>12.3 yrs</td>
<td>β^-, no γ</td>
<td>0.02 MeV</td>
<td>total body water content determination</td>
</tr>
<tr>
<td>11B</td>
<td>stable</td>
<td></td>
<td></td>
<td>melanoma and brain tumor treatment</td>
</tr>
<tr>
<td>11C</td>
<td>20.4 min</td>
<td>β^+, no γ</td>
<td>1.0 MeV</td>
<td>Positron-Emission Tomography; PET scans</td>
</tr>
<tr>
<td>12C</td>
<td>stable</td>
<td></td>
<td>≈ 300 MeV per nucleon</td>
<td>particle therapy</td>
</tr>
<tr>
<td>14C</td>
<td>5730 yrs</td>
<td>β^-, no γ</td>
<td>0.2 MeV</td>
<td>e.g. pancreatic studies</td>
</tr>
<tr>
<td>13N</td>
<td>10 min</td>
<td>β^+, no γ</td>
<td>1.2 MeV</td>
<td>Positron-Emission Tomography; PET scans</td>
</tr>
<tr>
<td>15O</td>
<td>2 min</td>
<td>β^+, no γ</td>
<td>1.7 MeV</td>
<td>Positron-Emission Tomography; PET scans</td>
</tr>
<tr>
<td>18F</td>
<td>110 min</td>
<td>β^+, no γ</td>
<td>0.6 MeV</td>
<td>Positron-Emission Tomography; PET scans</td>
</tr>
<tr>
<td>22Na</td>
<td>2.6 yrs</td>
<td>β^+</td>
<td>0.5 MeV ...</td>
<td>electrolyte studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>1275 keV</td>
<td></td>
</tr>
<tr>
<td>24Na</td>
<td>15 h</td>
<td>β^-</td>
<td>1.4 MeV ...</td>
<td>studies of electrolytes within the body</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>2754 keV ...</td>
<td></td>
</tr>
<tr>
<td>32P</td>
<td>14.3 d</td>
<td>β^-, no γ</td>
<td>1.7 MeV</td>
<td>treatment against excess of red blood cells</td>
</tr>
<tr>
<td>42K</td>
<td>12.4 h</td>
<td>β^-</td>
<td>3.5 MeV ...</td>
<td>for measurement of coronary blood flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>1525 keV ...</td>
<td></td>
</tr>
<tr>
<td>47Ca</td>
<td>4.5 d</td>
<td>β^-</td>
<td>0.7 MeV ...</td>
<td>bone metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>1297 keV ...</td>
<td></td>
</tr>
<tr>
<td>51Cr</td>
<td>27.7 d</td>
<td>γ</td>
<td>320 keV</td>
<td>labeling of red blood cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59Fe</td>
<td>44.5 d</td>
<td>β^-</td>
<td>0.5 MeV ...</td>
<td>metabolism in the spleen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>1099 keV ...</td>
<td></td>
</tr>
<tr>
<td>57Co</td>
<td>272 d</td>
<td>γ</td>
<td>122 keV ...</td>
<td>marker to estimate organ size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isotope</td>
<td>Half-Life</td>
<td>Decay</td>
<td>Main Energy</td>
<td>Application</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>58Co</td>
<td>71 d</td>
<td>β^+</td>
<td>0.5 MeV ... 811 keV</td>
<td>gastrointestinal absorption</td>
</tr>
<tr>
<td>60mCo</td>
<td>10.5 min</td>
<td>γ</td>
<td>59 keV</td>
<td>external beam radiotherapy</td>
</tr>
<tr>
<td>60Co</td>
<td>5.3 yrs</td>
<td>β^-</td>
<td>0.3 MeV ... 1173 keV</td>
<td>tumor treatment</td>
</tr>
<tr>
<td>62Cu</td>
<td>9.7 min</td>
<td>β^+</td>
<td>2.9 MeV ... 1346 keV</td>
<td>positron-emitting radionuclide for PET</td>
</tr>
<tr>
<td>64Cu</td>
<td>12.7 h</td>
<td>β^-</td>
<td>0.6 MeV ... 185 keV</td>
<td>study of genetic of diseases</td>
</tr>
<tr>
<td>64Ga</td>
<td>2.6 min</td>
<td>β^+</td>
<td>2.9 MeV ... 992 keV</td>
<td>treatment of pulmonary diseases</td>
</tr>
<tr>
<td>67Ga</td>
<td>78.3 h</td>
<td>γ</td>
<td>93 keV ... (\gamma)</td>
<td>tumor imaging</td>
</tr>
<tr>
<td>68Ga</td>
<td>67.6 min</td>
<td>β^+</td>
<td>1.9 MeV ... 1077 keV</td>
<td>study thrombosis and atherosclerosis</td>
</tr>
<tr>
<td>68Ge</td>
<td>271 d</td>
<td>no β^+, no γ, EC</td>
<td>PET imaging</td>
<td></td>
</tr>
<tr>
<td>72As</td>
<td>26 h</td>
<td>β^+</td>
<td>2.5 MeV ... 834 keV</td>
<td>planar imaging, SPECT, or PET</td>
</tr>
<tr>
<td>75Se</td>
<td>120 d</td>
<td>γ</td>
<td>265 keV ...</td>
<td>radiotracer used in brain studies</td>
</tr>
<tr>
<td>81mKr</td>
<td>13 s</td>
<td>γ</td>
<td>190 keV</td>
<td>pulmonary ventilation</td>
</tr>
<tr>
<td>82Rb</td>
<td>6.3 h</td>
<td>β^+</td>
<td>0.8 MeV ... 776 keV</td>
<td>PET agent in myocardial perfusion imaging</td>
</tr>
<tr>
<td>89Sr</td>
<td>50.5 d</td>
<td>β^-</td>
<td>1.5 MeV ... 909 keV</td>
<td>reducing the pain due to prostate and bone cancer</td>
</tr>
<tr>
<td>90Y</td>
<td>64.1 h</td>
<td>β^-</td>
<td>2.3 MeV ... 2186 keV</td>
<td>cancer brachytherapy</td>
</tr>
<tr>
<td>Isotope</td>
<td>Half-life</td>
<td>Decay</td>
<td>Main Energy</td>
<td>Application</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>99Mo</td>
<td>66 h</td>
<td>β^-, γ</td>
<td>1.2 MeV, 740 keV</td>
<td>parent of 99mTc</td>
</tr>
<tr>
<td>99mTc</td>
<td>6 h</td>
<td>γ</td>
<td>141 keV</td>
<td>skeleton, heart muscle, brain, thyroid, lungs, liver, spleen, kidney, gall bladder, bone marrow, salivary, and lacrimal glands</td>
</tr>
<tr>
<td>103Ru</td>
<td>39.4 d</td>
<td>β^-, γ</td>
<td>0.2 MeV, 497 keV</td>
<td>myocardial blood flow</td>
</tr>
<tr>
<td>103Pd</td>
<td>17 d</td>
<td>γ</td>
<td>357 keV</td>
<td>brachytherapy for early prostate cancer</td>
</tr>
<tr>
<td>109Cd</td>
<td>463 d</td>
<td>no γ, EC</td>
<td></td>
<td>cancer detection, pediatric imaging</td>
</tr>
<tr>
<td>111In</td>
<td>2.8 d</td>
<td>γ</td>
<td>245 keV</td>
<td>brain studies</td>
</tr>
<tr>
<td>117mSn</td>
<td>13.6 d</td>
<td>γ</td>
<td>159 keV</td>
<td>bone cancer pain relief</td>
</tr>
<tr>
<td>122I</td>
<td>3.6 min</td>
<td>β^+, γ</td>
<td>3.1 MeV, 564 keV</td>
<td>brain blood flow studies</td>
</tr>
<tr>
<td>123I</td>
<td>13.2 h</td>
<td>γ</td>
<td>159 keV</td>
<td>diagnosis of the thyroid function</td>
</tr>
<tr>
<td>125I</td>
<td>59.4 d</td>
<td>γ</td>
<td>35 keV</td>
<td>cancer brachytherapy (prostate and brain) filtration rate of kidneys</td>
</tr>
<tr>
<td>131I</td>
<td>8.0 d</td>
<td>β^-, γ</td>
<td>0.6 MeV, 364 keV</td>
<td>treatment of thyroid cancer with beta therapy</td>
</tr>
<tr>
<td>132I</td>
<td>2.3 h</td>
<td>β^-, γ</td>
<td>2.1 MeV, 668 keV</td>
<td>marking of red blood cells</td>
</tr>
<tr>
<td>130Cs</td>
<td>29.2 min</td>
<td>β^+, β^-, γ</td>
<td>2.0 MeV, 0.4 MeV, 536 keV</td>
<td>myocardial localizing agent</td>
</tr>
<tr>
<td>127Xe</td>
<td>36.4 d</td>
<td>γ</td>
<td>203 keV</td>
<td>neuroimaging for brain disorders</td>
</tr>
<tr>
<td>133Xe</td>
<td>5.3 d</td>
<td>β^-, γ</td>
<td>0.3 MeV, 81 keV</td>
<td>lung ventilation studies</td>
</tr>
<tr>
<td>137Cs</td>
<td>30.2 yrs</td>
<td>β^-, γ</td>
<td>0.5 MeV, 662 keV</td>
<td>brachytherapy</td>
</tr>
<tr>
<td>141Ce</td>
<td>32.5 d</td>
<td>β^-, γ</td>
<td>0.4 MeV, 145 keV</td>
<td>gastrointestinal tract diagnosis</td>
</tr>
<tr>
<td>isotope</td>
<td>half-life</td>
<td>decay</td>
<td>main energy</td>
<td>application</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>153Sm</td>
<td>46.3 h</td>
<td>β^-</td>
<td>0.7 MeV ... 103 keV ...</td>
<td>prostate and breast cancer relieving pain of secondary cancers</td>
</tr>
<tr>
<td>155Eu</td>
<td>4.8 yrs</td>
<td>β^-</td>
<td>0.17 MeV ... 87 keV ...</td>
<td>osteoporosis detection</td>
</tr>
<tr>
<td>165Dy</td>
<td>2.4 h</td>
<td>β^-</td>
<td>1.3 MeV ... 95 keV ...</td>
<td>treatment of arthritis</td>
</tr>
<tr>
<td>166Ho</td>
<td>26.8 h</td>
<td>β^-</td>
<td>1.9 MeV ... 81 keV ...</td>
<td>treatment of liver tumors</td>
</tr>
<tr>
<td>169Er</td>
<td>9.4 d</td>
<td>β^-</td>
<td>0.3 MeV ... 110 keV ...</td>
<td>for relieving arthritis</td>
</tr>
<tr>
<td>170Tm</td>
<td>129 d</td>
<td>β^-</td>
<td>1.0 MeV ... 84 keV ...</td>
<td>portable blood irradiations for leukemia</td>
</tr>
<tr>
<td>169Yb</td>
<td>32 d</td>
<td>γ</td>
<td>63 keV ...</td>
<td>cerebrospinal fluid studies in the brain</td>
</tr>
<tr>
<td>177Lu</td>
<td>6.7 d</td>
<td>β^-</td>
<td>0.5 MeV ... 208 keV ...</td>
<td>β radiation for small tumors γ rays for imaging</td>
</tr>
<tr>
<td>178Ta</td>
<td>9.3 min</td>
<td>β^+</td>
<td>0.9 MeV ... 93 keV ...</td>
<td>viewing of heart and blood vessels</td>
</tr>
<tr>
<td>182Ta</td>
<td>115 d</td>
<td>β^-</td>
<td>0.5 MeV ... 68 keV ...</td>
<td>bladder cancer treatment</td>
</tr>
<tr>
<td>186Re</td>
<td>3.7 d</td>
<td>β^-</td>
<td>1.1 MeV ... 137 keV ...</td>
<td>for pain relief in bone cancer for imaging</td>
</tr>
<tr>
<td>188Re</td>
<td>17 h</td>
<td>β^-</td>
<td>2.1 MeV ... 155 keV ...</td>
<td>β irradiation of coronary arteries</td>
</tr>
<tr>
<td>191mIr</td>
<td>5 s</td>
<td>γ</td>
<td>129 keV ...</td>
<td>cardiovascular angiography</td>
</tr>
<tr>
<td>192Ir</td>
<td>74 d</td>
<td>β^-</td>
<td>0.7 MeV ... 317 keV ...</td>
<td>cancer brachytherapy source supplied in wire form</td>
</tr>
<tr>
<td>198Au</td>
<td>2.7 d</td>
<td>β^-</td>
<td>1.0 MeV ... 412 keV ...</td>
<td>brachytherapy and liver treatment</td>
</tr>
<tr>
<td>201Tl</td>
<td>73.1 h</td>
<td>γ</td>
<td>167 keV ...</td>
<td>diagnosis of coronary artery disease</td>
</tr>
<tr>
<td>213Bi</td>
<td>45.6 min</td>
<td>α</td>
<td>5.87 MeV ...</td>
<td>Targeted Alpha Therapy (TAT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β^-</td>
<td>1.4 MeV ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>440 keV ...</td>
<td></td>
</tr>
<tr>
<td>isotope</td>
<td>half-life</td>
<td>decay</td>
<td>main energy</td>
<td>application</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>^{226}Ra</td>
<td>1600 yrs</td>
<td>α</td>
<td>4.78 MeV ... 186 keV ...</td>
<td>brachytherapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>87.7 yrs</td>
<td>α</td>
<td>5.50 MeV ... 43 keV ...</td>
<td>pacemaker (no ^{236}Pu contaminants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{241}Am</td>
<td>432 yrs</td>
<td>α</td>
<td>5.49 MeV ... 60 keV ...</td>
<td>osteoporosis detection, heart imaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{252}Cf</td>
<td>2.6 yrs</td>
<td>α</td>
<td>6.12 MeV ... 43 keV ...</td>
<td>brain cancer treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations

PET – Positron-Emission Tomography
SPECT – Single Photon Emission Computed Tomography
TAT – Targeted Alpha Therapy
EC – electron capture
sf – spontaneous fission

all γ energies are given in keV
for β decays the endpoint energies (i.e. the maximum energies) are given
for α decays the discrete energies are given

References:

Radioisotopes in Medicine: www.world-nuclear.org/info/inf55.htm,
www.expresspharmaonline.com/20050331/radiopharmaceuticals01.shtml,
Critical Organs for Various Radioisotopes

<table>
<thead>
<tr>
<th>isotope</th>
<th>physical half-life</th>
<th>effective half-life</th>
<th>emitter</th>
<th>critical organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>12.3 yrs</td>
<td>10 d</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>7Be</td>
<td>53.3 d</td>
<td>53.3 d</td>
<td>γ, EC</td>
<td>whole body, bones</td>
</tr>
<tr>
<td>10Be</td>
<td>1.6×10^6 yrs</td>
<td>4 yrs</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>14C</td>
<td>5730 yrs</td>
<td>40 d</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>16N</td>
<td>7.1 s</td>
<td>7.1 s</td>
<td>β^-, γ</td>
<td>lung</td>
</tr>
<tr>
<td>18F</td>
<td>110 min</td>
<td>110 min</td>
<td>β^+</td>
<td>skeleton</td>
</tr>
<tr>
<td>22Na</td>
<td>2.6 yrs</td>
<td>11 d</td>
<td>β^+, γ</td>
<td>whole body</td>
</tr>
<tr>
<td>24Na</td>
<td>15 h</td>
<td>14 h</td>
<td>β^-, γ</td>
<td>gastrointestinal tract</td>
</tr>
<tr>
<td>32Si</td>
<td>172 yrs</td>
<td>100 d</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>32P</td>
<td>14.3 d</td>
<td>14.1 d</td>
<td>β^-</td>
<td>bones</td>
</tr>
<tr>
<td>33P</td>
<td>25.3 d</td>
<td>25.3 d</td>
<td>β^-</td>
<td>bones</td>
</tr>
<tr>
<td>35S</td>
<td>87.5 d</td>
<td>44 d</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>36Cl</td>
<td>3×10^5 yrs</td>
<td>30 d</td>
<td>β^-</td>
<td>whole body</td>
</tr>
<tr>
<td>39Ar</td>
<td>269 yrs</td>
<td>5 min</td>
<td>β^-</td>
<td>lung</td>
</tr>
<tr>
<td>40K</td>
<td>1.28×10^9 yrs</td>
<td>30 d</td>
<td>β^+, β^-, γ</td>
<td>whole body</td>
</tr>
<tr>
<td>45Ca</td>
<td>163 d</td>
<td>163 d</td>
<td>β^-, γ</td>
<td>bones</td>
</tr>
<tr>
<td>47Ca</td>
<td>4.5 d</td>
<td>4.5 d</td>
<td>β^-, γ</td>
<td>bones</td>
</tr>
<tr>
<td>51Cr</td>
<td>27.7 d</td>
<td>22.8 d</td>
<td>γ, EC</td>
<td>lung, gastrointestinal tract</td>
</tr>
<tr>
<td>54Mn</td>
<td>312 d</td>
<td>88.5 d</td>
<td>γ, EC</td>
<td>lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 d</td>
<td></td>
<td>liver</td>
</tr>
<tr>
<td>55Fe</td>
<td>2.7 yrs</td>
<td>1.1 yrs</td>
<td>EC</td>
<td>spleen</td>
</tr>
<tr>
<td>59Fe</td>
<td>44.5 d</td>
<td>41.9 d</td>
<td>β^-, γ</td>
<td>spleen</td>
</tr>
<tr>
<td>60Co</td>
<td>5.3 yrs</td>
<td>117 d</td>
<td>β^-, γ</td>
<td>lung</td>
</tr>
<tr>
<td>Isotope</td>
<td>Physical Half-Life</td>
<td>Effective Half-Life</td>
<td>Emitter(s)</td>
<td>Critical Organ(s)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>63Ni</td>
<td>100 yrs variable</td>
<td>β^-</td>
<td>whole body</td>
<td></td>
</tr>
<tr>
<td>64Cu</td>
<td>12.7 h 12 h</td>
<td>$\beta^+, \beta^-, \gamma, \text{EC}$</td>
<td>whole body</td>
<td></td>
</tr>
<tr>
<td>65Zn</td>
<td>245 d 194 d 81 d</td>
<td>$\beta^+, \gamma, \text{EC}$</td>
<td>whole body, lung</td>
<td></td>
</tr>
<tr>
<td>75Se</td>
<td>120 d 61 d 10 d</td>
<td>γ, EC</td>
<td>lung, kidney</td>
<td></td>
</tr>
<tr>
<td>82Br</td>
<td>35.3 h 30.5 h</td>
<td>β^-, γ</td>
<td>whole body</td>
<td></td>
</tr>
<tr>
<td>81mKr</td>
<td>13.1 s 13 s</td>
<td>γ, EC</td>
<td>lung</td>
<td></td>
</tr>
<tr>
<td>85Kr</td>
<td>10.7 yrs 5 min</td>
<td>β^-, γ</td>
<td>whole body</td>
<td></td>
</tr>
<tr>
<td>86Rb</td>
<td>18.7 d 13 d</td>
<td>$\beta^-, \gamma, \text{EC}$</td>
<td>whole body, pancreas, liver</td>
<td></td>
</tr>
<tr>
<td>87Rb</td>
<td>4.8×10^{10} yrs 44 d</td>
<td>$\beta^-, \gamma, \text{EC}$</td>
<td>whole body, pancreas, liver</td>
<td></td>
</tr>
<tr>
<td>85Sr</td>
<td>65 d 65 d</td>
<td>γ, EC</td>
<td>bones</td>
<td></td>
</tr>
<tr>
<td>89Sr</td>
<td>50.5 d 50.5 d</td>
<td>β^-, γ</td>
<td>bones</td>
<td></td>
</tr>
<tr>
<td>90Sr</td>
<td>28.6 yrs 18 yrs</td>
<td>β^-</td>
<td>bones</td>
<td></td>
</tr>
<tr>
<td>90Y</td>
<td>64.1 h 30 h</td>
<td>β^-, γ</td>
<td>gastrointestinal tract</td>
<td></td>
</tr>
<tr>
<td>91Y</td>
<td>58.5 h 58 h</td>
<td>β^-, γ</td>
<td>bones, liver</td>
<td></td>
</tr>
<tr>
<td>95Zr</td>
<td>64.0 d 64 d</td>
<td>β^-, γ</td>
<td>bones</td>
<td></td>
</tr>
<tr>
<td>99Mo</td>
<td>66.0 h 65 h</td>
<td>β^-, γ</td>
<td>bones, liver</td>
<td></td>
</tr>
<tr>
<td>99mTc</td>
<td>6 h 4 h</td>
<td>γ</td>
<td>thyroid, gastrointestinal tract</td>
<td></td>
</tr>
<tr>
<td>103Ru</td>
<td>39.4 d 35 d</td>
<td>β^-, γ</td>
<td>lung, whole body</td>
<td></td>
</tr>
<tr>
<td>105Ru</td>
<td>4.4 d 4 d</td>
<td>β^-, γ</td>
<td>lung, whole body</td>
<td></td>
</tr>
<tr>
<td>106Ru</td>
<td>373.6 d 35 d</td>
<td>β^-</td>
<td>lung, whole body</td>
<td></td>
</tr>
<tr>
<td>110mAg</td>
<td>250 d 50 d</td>
<td>β^-, γ</td>
<td>liver</td>
<td></td>
</tr>
<tr>
<td>109Cd</td>
<td>463 d 463 d</td>
<td>γ, EC</td>
<td>kidney</td>
<td></td>
</tr>
<tr>
<td>111In</td>
<td>2.8 d 2.8 d</td>
<td>γ, EC</td>
<td>bone marrow, liver</td>
<td></td>
</tr>
<tr>
<td>113mIn</td>
<td>99.5 min 96.6 min</td>
<td>γ</td>
<td>kidney, gastrointestinal tract</td>
<td></td>
</tr>
<tr>
<td>125Sb</td>
<td>2.8 yrs 5 d</td>
<td>β^-, γ</td>
<td>bones, liver</td>
<td></td>
</tr>
<tr>
<td>129mTe</td>
<td>33.6 d 20 d</td>
<td>β^-, γ</td>
<td>bones, kidney</td>
<td></td>
</tr>
<tr>
<td>132Te</td>
<td>76.3 h 24 h</td>
<td>β^-, γ</td>
<td>bones, kidney</td>
<td></td>
</tr>
<tr>
<td>123I</td>
<td>13.2 h 13 h</td>
<td>γ, EC</td>
<td>thyroid</td>
<td></td>
</tr>
<tr>
<td>125I</td>
<td>59.4 d 41.8 d</td>
<td>γ, EC</td>
<td>thyroid</td>
<td></td>
</tr>
<tr>
<td>isotope</td>
<td>physical half-life</td>
<td>effective half-life</td>
<td>emitter</td>
<td>critical organ</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>129I</td>
<td>1.6×10^7 yrs</td>
<td>80 d</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>131I</td>
<td>8.0 d</td>
<td>7.6 d</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>132I</td>
<td>2.3 h</td>
<td>2 h</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>133I</td>
<td>20.8 h</td>
<td>20 h</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>134I</td>
<td>52 min</td>
<td>52 min</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>135I</td>
<td>6.6 h</td>
<td>6 h</td>
<td>β^-, γ</td>
<td>thyroid</td>
</tr>
<tr>
<td>133Xe</td>
<td>5.3 d</td>
<td>5 min</td>
<td>β^-, γ</td>
<td>whole body</td>
</tr>
<tr>
<td>134Cs</td>
<td>2.1 yrs</td>
<td>120 d</td>
<td>β^+, β^-, γ</td>
<td>muscles, whole body</td>
</tr>
<tr>
<td>136Cs</td>
<td>13.2 d</td>
<td>13 d</td>
<td>β^-, γ</td>
<td>muscles, whole body</td>
</tr>
<tr>
<td>137Cs</td>
<td>30.2 yrs</td>
<td>110 d</td>
<td>β^-, γ</td>
<td>muscles, whole body</td>
</tr>
<tr>
<td>140Ba</td>
<td>12.8 d</td>
<td>10.7 d</td>
<td>β^-, γ</td>
<td>gastrointestinal tract</td>
</tr>
<tr>
<td>138La</td>
<td>1.1×10^{11} yrs</td>
<td>10 yrs</td>
<td>β^-, γ, EC</td>
<td>liver, bones</td>
</tr>
<tr>
<td>141Ce</td>
<td>32.5 d</td>
<td>32 d</td>
<td>β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>144Ce</td>
<td>284.8 d</td>
<td>280 d</td>
<td>β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>147Pm</td>
<td>2.6 yrs</td>
<td>2.4 yrs</td>
<td>β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>147Sm</td>
<td>1.1×10^{11} yrs</td>
<td>10 yrs</td>
<td>α</td>
<td>liver, bones</td>
</tr>
<tr>
<td>176Lu</td>
<td>3.8×10^{10} yrs</td>
<td>10 yrs</td>
<td>β^-, γ</td>
<td>bones</td>
</tr>
<tr>
<td>186Re</td>
<td>89.3 h</td>
<td>48 h</td>
<td>β^-, γ, EC</td>
<td>muscle tissue</td>
</tr>
<tr>
<td>187Re</td>
<td>5×10^{10} yrs</td>
<td>2 d</td>
<td>β^-</td>
<td>muscle tissue</td>
</tr>
<tr>
<td>198Au</td>
<td>2.7 d</td>
<td>1 d</td>
<td>β^-, γ</td>
<td>kidney, gastrointestinal tract</td>
</tr>
<tr>
<td>203Hg</td>
<td>46.6 d</td>
<td>11 d</td>
<td>β^-, γ</td>
<td>kidney</td>
</tr>
<tr>
<td>201Tl</td>
<td>73.1 h</td>
<td>72 h</td>
<td>γ, EC</td>
<td>whole body</td>
</tr>
<tr>
<td>202Tl</td>
<td>12.2 d</td>
<td>10 d</td>
<td>γ, EC</td>
<td>whole body</td>
</tr>
<tr>
<td>208Tl</td>
<td>3.1 min</td>
<td>3 min</td>
<td>β^-, γ</td>
<td>whole body</td>
</tr>
<tr>
<td>210Pb</td>
<td>22.3 yrs</td>
<td>1.2 yrs, 6.8 yrs</td>
<td>β^-, γ</td>
<td>kidney, bones</td>
</tr>
<tr>
<td>212Pb</td>
<td>10.6 h</td>
<td>10 h</td>
<td>β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>212Bi</td>
<td>60.6 min</td>
<td>60 min</td>
<td>α, β^-, γ</td>
<td>kidney</td>
</tr>
<tr>
<td>214Bi</td>
<td>19.9 min</td>
<td>19 min</td>
<td>α, β^-, γ</td>
<td>kidney</td>
</tr>
<tr>
<td>210Po</td>
<td>138.4 d</td>
<td>31.7 d, 66.7 d</td>
<td>α, γ</td>
<td>kidney, lung</td>
</tr>
<tr>
<td>isotope</td>
<td>physical half-life</td>
<td>effective half-life</td>
<td>emitter</td>
<td>critical organ</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>220Rn</td>
<td>55.6 s</td>
<td>55 s</td>
<td>α, γ</td>
<td>lung</td>
</tr>
<tr>
<td>222Rn</td>
<td>3.8 d</td>
<td>5 min</td>
<td>α, γ</td>
<td>lung</td>
</tr>
<tr>
<td>224Ra</td>
<td>3.7 d</td>
<td>3.7 d</td>
<td>α, γ</td>
<td>bones, bone marrow, lung</td>
</tr>
<tr>
<td>226Ra</td>
<td>1600 yrs</td>
<td>41 yrs</td>
<td>α, γ</td>
<td>bones, bone marrow, lung</td>
</tr>
<tr>
<td>228Ra</td>
<td>5.8 yrs</td>
<td>5.7 yrs</td>
<td>β^-, γ</td>
<td>bones, bone marrow, lung</td>
</tr>
<tr>
<td>227Ac</td>
<td>21.8 yrs</td>
<td>21 yrs</td>
<td>α, β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>228Ac</td>
<td>6.1 h</td>
<td>6 h</td>
<td>α, β^-, γ</td>
<td>bones, liver</td>
</tr>
<tr>
<td>228Th</td>
<td>1.9 yrs</td>
<td>1.9 yrs</td>
<td>α, γ</td>
<td>lung, periosteum (bone surface)</td>
</tr>
<tr>
<td>230Th</td>
<td>7.5×10^4 yrs</td>
<td>25 yrs</td>
<td>α, γ</td>
<td>lung, periosteum (bone surface)</td>
</tr>
<tr>
<td>232Th</td>
<td>1.4×10^{10} yrs</td>
<td>25 yrs</td>
<td>α, γ</td>
<td>lung, bones</td>
</tr>
<tr>
<td>234Th</td>
<td>24.1 d</td>
<td>24 d</td>
<td>β^-, γ</td>
<td>lung, periosteum (bone surface)</td>
</tr>
<tr>
<td>231Pa</td>
<td>3.3×10^4 yrs</td>
<td>10 yrs</td>
<td>α, γ</td>
<td>bones</td>
</tr>
<tr>
<td>233U</td>
<td>1.6×10^5 yrs</td>
<td>variable, ≤ 14 yrs</td>
<td>α, γ</td>
<td>bones, lung, kidney</td>
</tr>
<tr>
<td>234U</td>
<td>2.5×10^5 yrs</td>
<td>variable, ≤ 14 yrs</td>
<td>α, γ, sf</td>
<td>bones, lung, kidney</td>
</tr>
<tr>
<td>235U</td>
<td>7×10^8 yrs</td>
<td>variable, ≤ 14 yrs</td>
<td>α, γ, sf</td>
<td>bones, lung, kidney</td>
</tr>
<tr>
<td>238U</td>
<td>4.5×10^9 yrs</td>
<td>variable, ≤ 14 yrs</td>
<td>α, γ, sf</td>
<td>bones, lung, kidney</td>
</tr>
<tr>
<td>237Np</td>
<td>2.1×10^6 yrs</td>
<td>variable</td>
<td>α, γ, sf</td>
<td>bones, liver</td>
</tr>
<tr>
<td>238Pu</td>
<td>87.7 yrs</td>
<td>46.2 yrs</td>
<td>α, γ, sf</td>
<td>periosteum (bone surface) liver, lung, blood</td>
</tr>
<tr>
<td>239Pu</td>
<td>24110 yrs</td>
<td>100 yrs</td>
<td>α, γ, sf</td>
<td>periosteum (bone surface) liver, lung, blood</td>
</tr>
<tr>
<td>240Pu</td>
<td>6563 yrs</td>
<td>100 yrs</td>
<td>α, γ, sf</td>
<td>periosteum (bone surface) liver, lung, blood</td>
</tr>
<tr>
<td>242Pu</td>
<td>3.8×10^5 yrs</td>
<td>100 yrs</td>
<td>α, γ, sf</td>
<td>periosteum (bone surface) liver, lung, blood</td>
</tr>
<tr>
<td>241Am</td>
<td>432 yrs</td>
<td>84 yrs</td>
<td>α, γ, sf</td>
<td>bones</td>
</tr>
<tr>
<td>242Cm</td>
<td>163 d</td>
<td>162 d</td>
<td>α, γ, sf</td>
<td>bones, liver, lung</td>
</tr>
<tr>
<td>243Cm</td>
<td>29.1 yrs</td>
<td>15 yrs</td>
<td>α, γ, sf</td>
<td>bones, liver, lung</td>
</tr>
<tr>
<td>244Cm</td>
<td>18.1 yrs</td>
<td>15 yrs</td>
<td>α, γ, sf</td>
<td>bones, liver, lung</td>
</tr>
<tr>
<td>249Bk</td>
<td>320 d</td>
<td>316 d</td>
<td>$\alpha, \beta^-, \gamma, sf$</td>
<td>bones</td>
</tr>
<tr>
<td>252Cf</td>
<td>2.6 yrs</td>
<td>2.5 yrs</td>
<td>α, γ, sf</td>
<td>bones</td>
</tr>
<tr>
<td>253Es</td>
<td>20.5 d</td>
<td>20.5 d</td>
<td>α, γ, sf</td>
<td>bones</td>
</tr>
</tbody>
</table>
Abbreviations

sf – spontaneous fission
EC – electron capture

References:

B. Lindskoug,
Manual on early medical treatment of possible radiation injury,
Safety series no. 47. Recommendations (IAEA, Vienna, 1978);
Nuclear Instruments and Methods, Vol. 161, issue 1, p. 172 (1979)
Health Physics Society: www.hps.org/publicinformation/ATE/
Edward Chu, Vincent T. DeVita (eds.)
Physicians’ Cancer Chemotherapy Drug Manual
Jones and Bartlett Publishers; Bk and CD-Rom edition 2007
HyperPhysics: http://hyperphysics.phy-astr.gsu.edu/Hbase/hframe.html
Radiation Safety Office, G-07 Parran Hall, Pittsburgh, USA
www.radsafe.pitt.edu/ManualTraining/Appendix%20C.htm
U. Bertsche, Hessisches Ministerium für Umwelt, Wiesbaden,
Radionuklide in der Umweltüberwachung, Medizin und Technik, (2001)

It has to be mentioned that the values for the effective half-life differ in various publications. Also, the effective half-life varies for different organs and tissues. Therefore the quoted figures just give a rough idea for the effective half-life.
The isotopes (fixed number of protons Z and variable number of neutrons) of various elements are arranged horizontally. Isotones (fixed number of neutrons N) are put vertically.

In the overview table below, stable, primordial, and unstable nuclides are displayed with different gray scales, and the cut-out tables are marked by dash-dotted frames; the latter are shown in the order from lighter to heavier isotopes, i.e. from the lower left to the upper right. In the cut-out tables the stable nuclides are highlighted by a light gray background and the primordial ones by such a background in the upper half of their small box. Magic numbers are marked by frames of bold solid lines.
An isotope is said to be stable, if its half-life is larger than 10^{10} yrs, which roughly corresponds to the age of the universe. The mass number is conserved in β decays. Such nuclear decays therefore describe transitions in the diagonal (isobars) $A = Z + N = \text{const}$ (β^-: one isotope to the upper left; β^+: one isotope to the lower right). α decays change the mass number by 4 units and the nuclear-charge number by 2 units. In the diagram these transitions are obtained by $\Delta N = \Delta Z = -2$. Decays by spontaneous fission only occur for elements with $Z \geq 90$. The decay by spontaneous fission is often in competition to α decay.
O Simplified Table of Isotopes and Periodic Table of Elements

<table>
<thead>
<tr>
<th>Z</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Po</td>
</tr>
<tr>
<td>92</td>
<td>Pb</td>
</tr>
<tr>
<td>93</td>
<td>Pb</td>
</tr>
<tr>
<td>94</td>
<td>Sr</td>
</tr>
<tr>
<td>95</td>
<td>Sr</td>
</tr>
<tr>
<td>96</td>
<td>Y</td>
</tr>
<tr>
<td>97</td>
<td>Y</td>
</tr>
<tr>
<td>98</td>
<td>Zr</td>
</tr>
<tr>
<td>99</td>
<td>Zr</td>
</tr>
<tr>
<td>100</td>
<td>Nb</td>
</tr>
<tr>
<td>101</td>
<td>Nb</td>
</tr>
<tr>
<td>102</td>
<td>Mo</td>
</tr>
<tr>
<td>103</td>
<td>Mo</td>
</tr>
<tr>
<td>104</td>
<td>Tc</td>
</tr>
<tr>
<td>105</td>
<td>Tc</td>
</tr>
<tr>
<td>106</td>
<td>Ru</td>
</tr>
<tr>
<td>107</td>
<td>Ru</td>
</tr>
<tr>
<td>108</td>
<td>Rh</td>
</tr>
<tr>
<td>109</td>
<td>Rh</td>
</tr>
<tr>
<td>110</td>
<td>Pd</td>
</tr>
<tr>
<td>111</td>
<td>Pd</td>
</tr>
<tr>
<td>112</td>
<td>Ag</td>
</tr>
<tr>
<td>113</td>
<td>Ag</td>
</tr>
<tr>
<td>114</td>
<td>Cd</td>
</tr>
<tr>
<td>115</td>
<td>Cd</td>
</tr>
<tr>
<td>116</td>
<td>In</td>
</tr>
<tr>
<td>117</td>
<td>In</td>
</tr>
<tr>
<td>118</td>
<td>Sn</td>
</tr>
<tr>
<td>119</td>
<td>Sn</td>
</tr>
<tr>
<td>120</td>
<td>Sb</td>
</tr>
<tr>
<td>121</td>
<td>Sb</td>
</tr>
<tr>
<td>122</td>
<td>Te</td>
</tr>
<tr>
<td>123</td>
<td>Te</td>
</tr>
<tr>
<td>124</td>
<td>I</td>
</tr>
<tr>
<td>125</td>
<td>I</td>
</tr>
<tr>
<td>126</td>
<td>Xe</td>
</tr>
<tr>
<td>127</td>
<td>Xe</td>
</tr>
<tr>
<td>128</td>
<td>Rn</td>
</tr>
<tr>
<td>129</td>
<td>Rn</td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>

N
<table>
<thead>
<tr>
<th>Z</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
</tr>
<tr>
<td>66</td>
<td>Eu</td>
</tr>
<tr>
<td>67</td>
<td>Gd</td>
</tr>
<tr>
<td>68</td>
<td>Tb</td>
</tr>
<tr>
<td>69</td>
<td>Eu</td>
</tr>
<tr>
<td>70</td>
<td>Gd</td>
</tr>
<tr>
<td>71</td>
<td>Tb</td>
</tr>
<tr>
<td>72</td>
<td>Eu</td>
</tr>
<tr>
<td>73</td>
<td>Gd</td>
</tr>
<tr>
<td>74</td>
<td>Tb</td>
</tr>
<tr>
<td>75</td>
<td>Eu</td>
</tr>
<tr>
<td>76</td>
<td>Gd</td>
</tr>
</tbody>
</table>
Simplified Table of Isotopes and Periodic Table of Elements

<table>
<thead>
<tr>
<th>Z</th>
<th>[\text{Isotopes}]</th>
<th>[\text{Periodic Table of Elements}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{82}]</td>
<td>[\text{Pb}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{81}]</td>
<td>[\text{Hg}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{80}]</td>
<td>[\text{Hg}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{79}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{78}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{77}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{76}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{75}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{74}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{73}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{72}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{71}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{70}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{69}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{68}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{67}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{66}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{65}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{64}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{63}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{62}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{61}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{60}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{59}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{58}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{57}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{56}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{55}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{54}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{53}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{52}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{51}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{50}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{49}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{48}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{47}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{46}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{45}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{44}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{43}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{42}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{41}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{40}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{39}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{38}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{37}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{36}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{35}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{34}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{33}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{32}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{31}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{30}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{29}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{28}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{27}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{26}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{25}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{24}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{23}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{22}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{21}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{20}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{19}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{18}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{17}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{16}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{15}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{14}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{13}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{12}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{11}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{10}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{9}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{8}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{7}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{6}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{5}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{4}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{3}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{2}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{1}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
<tr>
<td>[\text{0}]</td>
<td>[\text{Au}]</td>
<td>[\text{TI}]</td>
</tr>
</tbody>
</table>
A complete overview of known isotopes is given in “Karlsruher Nuklidkarte” from 2006 (G. Pfennig, H. Klewe-Nebenius, W. Seelmann-Eggebert, Forschungszentrum Karlsruhe 2006). Up-to-date information one finds also under e.g. www.nucleonica.net.
For each element the atomic number (top left) and atomic mass (bottom) is given. The atomic mass is weighted by the isotopic abundance in the Earth's crust.
In the following simplified decay-level schemes for some frequently used isotopes in the field of radiation protection are given. For the continuous electron spectra the maximum energies are given. EC stands for electron capture and ‘a’ for annum (year).

Figure P.1
Decay-level scheme of 22Na

Characteristic X rays of 55Mn:
- $K_{\alpha} = 5.9$ keV
- $K_{\beta} = 6.5$ keV

Figure P.2
Decay-level scheme of 55Fe
Conversion electrons:
K(γ₁) = 0.115 MeV L(γ₁) = 0.121 MeV
K(γ₂) = 0.0073 MeV L(γ₂) = 0.0136 MeV
K(γ₃) = 0.1294 MeV L(γ₃) = 0.1341 MeV

Figure P.3
Decay-level scheme of 57Co

Figure P.4
Decay-level scheme of 60Co
Figure P.5
Decay-level scheme of ^{90}Sr

Figure P.6
Decay-level scheme of ^{106}Ru
Conversion electrons:

\[K(\gamma) = 0.0625 \text{ MeV} \]
\[L(\gamma) = 0.0842 \text{ MeV} \]
\[M(\gamma) = 0.0873 \text{ MeV} \]

Conversion X rays:

\[K_{\alpha} \text{ X-ray: 0.022 MeV} \]
\[K_{\beta} \text{ X-ray: 0.025 MeV} \]
Conversion electrons:

\[K(\gamma_1) = 0.976 \text{ MeV} \quad L(\gamma_1) = 1.048 \text{ MeV} \]
\[K(\gamma_2) = 0.482 \text{ MeV} \quad L(\gamma_2) = 0.554 \text{ MeV} \]
\[K(\gamma_3) = 1.682 \text{ MeV} \quad L(\gamma_3) = 1.754 \text{ MeV} \]
\[K(\gamma_4) = 1.352 \text{ MeV} \quad L(\gamma_4) = 1.424 \text{ MeV} \]
\[K(\gamma_5) = 0.810 \text{ MeV} \quad L(\gamma_5) = 0.882 \text{ MeV} \]

Figure P.9

Decay-level scheme of ^{207}Bi
Conversion electrons:

$K(\gamma_1)$ kinematically impossible
$L(\gamma_1) = 0.0210 \text{ MeV}$
$L(\gamma_2) = 0.0039 \text{ MeV}$
$L(\gamma_3) = 0.0108 \text{ MeV}$
$L(\gamma_4) = 0.0371 \text{ MeV}$

Figure P.10
Decay-level scheme of ^{241}Am
Q Introduction into the Basics of Mathematics

“The physicist in preparing for his work needs three things: mathematics, mathematics, and mathematics.”

Wilhelm Conrad Röntgen

Correlations and laws in natural science can most elegantly be represented by diagrams and elementary mathematical functions. The description of physics relations in mere words – like the simple law on the forces between two massive bodies – as it was standard three centuries ago (e.g. in Newton’s Philosophiae Naturalis Principia Mathematica, 1687), is hard to understand and lacks the precision of mathematical notation. On the other hand, basic mathematical relations are not easily accessible to everyone, and it requires some experience and basic knowledge of getting used to them.

Nature, however, is governed by some natural laws and functions which cannot easily be described in words. Instead they are best represented by simple mathematical formulae. In the following, therefore, some basic concepts are explained, which are relevant for many aspects associated with radiation protection and radioactivity and which allow a precise representation of correlations and laws for data and facts.

Q.1 Derivatives and Integrals

The temporal and spatial change of a quantity is called its derivative. This feature will be explained for the example of a path–time diagram. Figure Q.1 shows the uniform motion of some object as a function of space x and time t.

The constant slope of this line – expressed by the ratio $\Delta x / \Delta t$ – is the constant velocity v. If the velocity is not constant, the current value of the velocity depends on the size of the finite time and space intervals Δt and Δx. Such a non-linear path–time relation is plotted in Fig. Q.2.

The ratio $\Delta x / \Delta t$ for very small values of intervals leads to the concept of the instantaneous velocity at the time t_1. If the exact value of the velocity at the time t_1 is required, one has to select infinitesimal small space and time intervals. To characterize such infinitesimal intervals Leibniz proposed the notation dx/dt. The quantity dx/dt therefore describes the slope of the path–time relation at the
particular time t_1, which is the instantaneous velocity at the time t_1. Newton, who independently of Leibniz discovered this ‘calculus’, introduced as notation for the time derivative a dot over the spatial symbol: \dot{x}. Therefore we have the equivalence

$$\frac{dx}{dt} \equiv \dot{x}. \quad (Q.1)$$

Leibniz’ way to characterize the time derivative by dx/dt has advanced the development of calculus (differential and integral calculus) substantially in continental Europe, while Newton’s notation using dots on top of quantities – which was kept in England due to Newton’s authority – hindered and delayed the advancement of calculus significantly. This was due to the fact that Leibniz’ notation could be inverted without problems (see integration below), while this turned out to be difficult with the dot over the symbol.

Presently both notations are used only for time derivatives of physical quantities. Of course, both notations are equivalent. Figure Q.2 clearly shows that for a non-linear path–time relation the velocity $v = \frac{dx}{dt}$ changes with time. The object (e.g. a car starting at a traffic light when it turned green) accelerates from $t = 0$, where the acceleration is the change of velocity per time:

$$\text{acceleration } a = \frac{dv}{dt} = \dot{v}. \quad (Q.2)$$

Starting from considerations of the difference quotient, one can derive simple rules for the way how to differentiate special functions. For a polynomial

$$x(t) = a + b \, t + c \, t^2 \quad (Q.3)$$

one gets

$$\frac{dx(t)}{dt} = b + 2 \, c \, t. \quad (Q.4)$$
as can be easily seen from Figs. Q.1 and Q.2 (the slope of a constant
a is zero, the slope of a linear function bt is equal to b, and the slope
of a parabola ct^2 is obtained to be $2 ct$).\(^1\)

In general, a power-law relation is differentiated as

\[
\frac{d}{dt} t^n = n t^{n-1} . \tag{Q.5}
\]

In this rule t must not necessarily be the time, but it can be any
variable.

The inverse of differentiation is the integration. Let us consider
the particular velocity–time relation $v(t) = at$, which is the straight
line with slope a as shown in Fig. Q.3.

The integral over the velocity–time relation in the limits from
t = 0 to $t = t_1$ is the area under the curve $v(t) = at$ in these limits,
i.e. the shaded area. This can be worked out, in this example, from
the area of the rectangular triangle with the base along the time axis
t_1 and the height $v_1 = at_1$ divided by 2,

\[
\frac{t_1 a t_1}{2} = \frac{1}{2} a t_1^2 . \tag{Q.6}
\]

For this operation one uses as shorthand the integral over the function
v = at in the limits from $t = 0$ to $t = t_1$:\(^2\)

\[
\int_0^{t_1} a t \, dt = \left. \frac{1}{2} a t^2 \right|_0^{t_1} = \frac{1}{2} a t_1^2 . \tag{Q.7}
\]

The general rule for integrating a polynomial reads:

\[
\int_0^{t_1} t^n \, dt = \left. \frac{t^{n+1}}{n+1} \right|_0^{t_1} = \frac{t_1^{n+1}}{n+1} . \tag{Q.8}
\]

In case of an integration without giving limits the result of the integral
is naturally only determined up to a constant, which can only
be fixed by the integration limits (boundary conditions):

\[
\int t^n \, dt = \frac{t^{n+1}}{n+1} + \text{const} . \tag{Q.9}
\]

\[
\frac{1}{2} c \frac{(t+c \Delta t)^2 - c (t-c \Delta t)^2}{\Delta t} = \frac{c (t^2 + t \Delta t + \frac{\Delta t^2}{2}) - c (t^2 - t \Delta t + \frac{\Delta t^2}{2})}{\Delta t} = \frac{2 c t \Delta t}{\Delta t} =
\]

\[
\frac{2 c t}{\Delta t} \tag{Q.10}
\]

\(^2\) In general, the integral over a linear function between two arbitrary limits
t_1 and t_2 is worked out to be:

\[
\int_{t_1}^{t_2} a t \, dt = \left. \frac{1}{2} a t^2 \right|_{t_1}^{t_2} = \frac{1}{2} a t_2^2 - \frac{1}{2} a t_1^2 = \frac{1}{2} a \left(t_2^2 - t_1^2 \right) . \tag{Q.11}
\]
Formally, the consistency of this prescription can be verified by differentiating the result of the integration on the right-hand side. The differentiation of a constant (in this case the integration constant) gives zero (a constant has no slope), and thus the initial function \(t^n \) is again retrieved.

Q.2 Exponential Function

In radioactive decay the number of decayed nuclei \(\Delta N \) is proportional to the number of existing nuclei \(N \) and the observation time \(\Delta t \). Obviously the number of nuclei decreases by decay. This results in a minus sign as in the following relation:

\[
\Delta N \sim -N \Delta t . \quad (Q.10)
\]

Since the decay rate changes in time, a differential notation is appropriate,

\[
dN \sim -N \, dt . \quad (Q.11)
\]

The introduction of a constant of proportionality leads to the identity

\[
dN = -\lambda \, N \, dt , \quad (Q.12)
\]

where \(\lambda \) is the decay constant. Such a relation – one of the most basic differential equations – is solved by the so-called exponential function

\[
N = N_0 e^{-\lambda t} . \quad (Q.13)
\]

The number \(e \), first introduced by Leonhard Euler, has the numerical value of \(e = 2.71828 \ldots \).

\(N_0 \) denotes the number of originally existing nuclei, i.e. at \(t = 0 \). An example for the exponential function is plotted in Fig. Q.4. The exponential function describes a large number of natural processes, for example, the attenuation of \(\gamma \) rays in matter or the variation of the atmospheric pressure with altitude. For technical reasons the function \(e^{-\lambda t} \) is occasionally also printed as \(\exp(-\lambda t) \).

The exponential function has a very remarkable property: the slope of the function \(e^t \), i.e. its derivative, is also an exponential, that means, it reproduces exactly itself,

\[
\frac{d}{dt} e^t = e^t . \quad (Q.14)
\]

\[
^3 \frac{dN}{N} = -\lambda \, dt \Rightarrow \int \frac{dN}{N} = -\int \lambda \, dt \Rightarrow \ln N = -\lambda t + \text{const} \quad (\text{see also Eq. (Q.25)}), \quad e^{\ln N} = N = e^{-\lambda t + \text{const}} = e^{-\lambda t} e^{\text{const}} ; \quad \text{boundary condition} \quad N(t = 0) = e^{\text{const}} = N_0 \Rightarrow N = N_0 e^{-\lambda t} .
\]
It is the only function with this astonishing feature. If there is a parameter α as factor in the exponent, one has
\[
\frac{d}{dt} e^{\alpha t} = \alpha e^{\alpha t}.
\] (Q.15)

In the same way the integration of the function e^t retrieves the exponential function,
\[
\int e^t \, dt = e^t + \text{const} \, ,
\] (Q.16)

and correspondingly
\[
\int e^{\alpha t} \, dt = \frac{1}{\alpha} e^{\alpha t} + \text{const} \, .
\] (Q.17)

The known rules for powers also apply to exponentials, e.g.
\[
e^{\alpha} e^{\beta} = e^{\alpha + \beta} \, .
\] (Q.18)

Q.3 Natural Logarithm

It is desirable that the human senses can perceive a large dynamic range of impressions. Therefore nature, or the evolution of life, has arranged that the sensual perception is proportional to the logarithm of the stimulus (Weber–Fechner law). The logarithm is a weakly rising monotonic function (Fig. Q.5).

The logarithm is the inverse function to the exponential. Equation
\[
e^{y} = x
\] (Q.19)

is exactly fulfilled, if
\[
y = \ln x \, .
\] (Q.20)

The logarithm was also the basis for slide rules, which have by now been overcome by pocket calculators. Slide rules were based on the property that the logarithm reduces multiplication to addition and powers to multiplication.\(^4\)

\(^4\) If one is willing to memorize a few numbers, one can easily approximate in one’s head all logarithms. For the natural logarithm one should memorize $\ln 2 = 0.6931$ and $\ln 10 = 2.30$. Thus, e.g. $\ln 8000 = \ln 8 + \ln 1000 = 3 \ln 2 + 3 \ln 10 \approx 2.1 + 6.9 = 9.0$. Analogously, one can proceed with the common logarithm (to the base 10), if one is ready to remember just one value, namely $\lg 2 = 0.3010$; see also Footnote 6.
\[\ln(x \cdot y) = \ln x + \ln y , \]
\[\ln \frac{x}{y} = \ln x - \ln y , \]
\[\ln x^n = n \ln x . \]

A plot of the logarithmic function (Fig. Q.5) shows that its slope is large for small \(x \) and low for large \(x \). The derivative of the logarithm is obtained to be\(^5\)
\[\frac{d}{dx} \ln x = \frac{1}{x} \quad (\text{see also } \ln x \text{ from Fig. Q.5}). \]

Since the integration is the inverse operation to differentiation, one has
\[\int \frac{1}{x} \, dx = \ln x + \text{const} . \]

With these rules also the radioactive decay law can now be understood: From
\[N = N_0 e^{-\lambda t} \]
one obtains by differentiating
\[\frac{dN}{dt} = -\lambda N_0 e^{-\lambda t} = -\lambda N , \]
which can be rewritten as
\[dN = -\lambda N \, dt \]
(compare (Q.12)).

One can easily recognize that the handling of differentials follows the standard and normal rules of calculation.

So far only the natural logarithm (to the base \(e \)) has been introduced. It is, however, possible to define logarithms also for other bases (e.g., for the base 10: common, Briggs, or decadic logarithm).\(^6\)

The fact that the logarithm linearizes powers can be used to simplify graphical representations. The exponential which characterizes radioactive decay, can be linearized by subdividing the axis that describes the number of nuclei that have not decayed in a logarithmic fashion:

\(^5\) \(e^x = x ; \ y = \ln x ; \ \frac{d \ln x}{dx} = \frac{dy}{dx} = \frac{1}{x} = \frac{1}{e^y} = \frac{1}{\ln e} = \frac{1}{x} \)

\(^6\) The natural (or Napierian) logarithm is usually abbreviated as \(\ln x \) (‘logarithmus naturalis’); in mathematics it is frequently written as \(\log x \), even though this notation is not unique. The common, Briggs, or decadic logarithm to the base 10 is mostly denoted by \(\lg x \). Since the natural logarithm has been introduced as the inverse function to the exponential, one has \(\ln e = 1 \); analogously \(\lg 10 = 1 \).
and
\[\ln N = \ln N_0 - \lambda t \] (Q.30)

one obtains a straight line with a slope of \(-\lambda\) and an intersect \(\ln N_0\) (Fig. Q.6).

In an analogous way powers – plotted on double logarithmic paper (log–log paper) – result is straight lines. The power law
\[y = x^n \] (Q.31)
leads to
\[\ln y = n \ln x \], (Q.32)
which is a straight line with slope \(n\) if both axes are subdivided logarithmically, i.e. if \(\ln y\) is plotted against \(\ln x\).

“Don’t worry, it takes an infinite amount of time to sink completely.”
© by Claus Grupen
Further Reading

Literature on the History of Radioactivity and on Interactions of Radiation with Matter

Mme P. Curie Marie Sklodowska “Traité de Radioactivité” (Treatise on Radioactivity), Gauthier-Villars, Paris (1910)

F. Soddy “Chemistry of Radioelements”; in German: “Chemie der Radioelemente”, Verlag. J. A. Barth, Leipzig (1914)

“Radiation Protection”, http://web.wn.net/~usr/ricter/web/radpro.html

Literature on Radiation Detectors and Radiation Protection

Further Reading

International Commission on Radiation Units and Measurements (ICRU) www.icru.org/ic_basic.htm
Further Reading

Literature on Technical Aspects of Radiation Protection and Radiation-Protection Regulations

See also references in Chap. 6 on ‘International Safety Standards for Radiation Protection’.

US Environmental Protection Agency “Radiation Protection” www.epa.gov/radiation/ (last update 2007)

Literature on Environmental Radioactivity

A. W. Wolfendale “Cosmic rays”, George Newnes Ltd., London (1963)

Further Reading

O. C. Allkofer “Introduction to Cosmic Radiation”, Thiemig, München (1975)

Literature on Biological Effects and Applications of Radiation

W. D. Claus (ed.) “Radiation Biology and Medicine”, Addison-Wesley, Reading (1958)
W. V. Mayneord “Radiation and Health”, The Nuffield Provincial Hospital Trust (1964)
Further Reading

“Radiation and Health Physics”, www.umich.edu/~radinfo/
“Health Physics/Radiation Protection”, www.umr.edu/~ehs/radiological.htm
International Commission on Radiological Protection (ICRP), www.icrp.org/

Literature on Nuclear Power Plants

Literature on Radiation Sources

F. D. Sowby “Protection Against Ionizing Radiation from External Sources Used in Medicine” Elsevier Science and Technology, Amsterdam (1982)

Literature on Non-Ionizing Radiation

European Communities “Non-ionizing Radiation”, European Communities, Luxembourg (1997)

Tables of Isotopes and Nuclear Data Sheets

Photo Credit for Commercial Products and other Copyrighted Material

We would like to thank the following companies and institutions for providing photographic material, images, and diagrams:

AEA Technology QSA GmbH
see QSA Global GmbH

AREVA
Saint-Quentin-Yvelines, Cedex, France
1, rue des Hérons
78182 Saint-Quentin-Yvelines Cedex
France
www.sogefibre.com

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439
USA
www.anl.gov/
see also
www.chemcases.com/nuclear/nc-05.htm

automess Automation und Meßtechnik GmbH
Daimlerstrasse 27
68526 Ladenburg
Germany
www.automess.de/

BAM
Federal Institute for Materials Research and Testing
Unter den Eichen 44–46
D-12203 Berlin
Germany
www.tes.bam.de/e_ram/pdf/BAM-PM_16-78.pdf
www.tes.bam.de/ram/bauart/bauart-2.htm
BERTHOLD TECHNOLOGIES GmbH & Co. KG
Calmbacher Strasse 22
75323 Bad Wildbad
Germany
Berthold Technologies U.S.A. LLC
99 Midway Lane, Oak Ridge, TN 37830
USA
Representatives in 8 countries
www.berthold.com

BICRON RADIATION MEASUREMENT PRODUCTS
6801 Cochran Road
Solon, Ohio 44139, USA

Budker Institute Novosibirsk
Dr. Boris Shwartz
Novosibirsk, Russia
www.ipp.ac.cn/qy/WS97/node252.html

Canadian Centre for Occupational Health and Safety
135 Hunter Street East
Hamilton ON
Canada L8N 1M5
www.ccohs.ca/
see also
www.ccohs.ca/oshanswers/phys_agents/ultraviolet radiation.html

Canberra Eurisys GmbH
Walter-Flex-Strasse 66
65428 Rüsselsheim
Germany
Canberra Industries, Inc.
800 Research Parkway
Meriden, Connecticut 06450
USA
www.canberra.com
Many international representatives (75) to be found under:
www.canberra.com/about/default.asp

CERN European Centre for Particle Physics
CH-1211 Geneva 23
Switzerland
www.cern.ch
Cole-Parmer Instrument Company
625 East Bunker Court
Vernon Hills
Illinois 60061
USA
www.coleparmer.com/
Representatives in Canada, China, United Kingdom, and India to be found under:
www.coleparmer.com/catalog/login.asp

Culham Science Centre
Abingdon, Oxon
OX14 3DB
England
www.nda.gov.uk/sites/culhamjet/

Ecole Polytechnique Federale de Lausanne
CH-1015 Lausanne
Switzerland
www.epfl.ch/index.en.html

EG&G Berthold GmbH & Co. KG
Calmbacher Strasse 22
75312 Bad Wildbad
Germany
American Laboratory Trading LLC
70 Bridge Street
Groton, CT 06340
USA

ESM Eberline Instruments GmbH,
Thermo Fisher Scientific Inc.
81 Wyman Street
Waltham, MA 02454
USA
www.thermo-esm.com

Freiwillige Feuerwehr Eßfeld e.V.
D-97232 Eßfeld
Germany
www.ffwessfeld.de/
GRAETZ Strahlungsmesstechnik GmbH
Westiger Strasse 172
58762 Altena
Germany
www.graetz.com/

GSF – Forschungszentrum für Umwelt und Gesundheit GmbH
GSF National Research Center for Environment and Health in the Helmholtz Association
Ingolstädter Landstrasse 1
85764 Neuherberg
Germany
www.gsf.de/

Harshaw TLD
see Thermo Scientific
www.thermo.com/com/

ICx Radiation GmbH (former: target systemelectronic GmbH)
Kölner Strasse 99
42651 Solingen
Germany
100 Midland Road
Oak Ridge, Tennessee 37830
USA
www.icx-radiation.de/
Headquarters ICx Technologies
2100 Crystal Drive
Arlington, VA 22202, USA

JL Goslar, Kerntechnik und Strahlenschutz
Im Schleeke 108
D-38640 Goslar
Germany
www.jlgoslar.de

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94551
USA
www.llnl.gov/
L. Meitner and K. Freitag
Zeitschrift für Physik, Vol. 37, page 481 (1926)
also in K.W.F. Kohlrausch 'Radioaktivität', page 478;
Akademische Verlagsgesellschaft, Leipzig 1928
www.aka-verlag.com/

mab Strahlenmesstechnik
Neuer Höltigbaum 30
D-22143 Hamburg
Germany
www.pmaode.de

Materialprüfungsamt Nordrhein-Westfalen
Marsbruchstrasse 186
D-44287 Dortmund
Germany
www.mpanrw.de/start.html

Mini Instruments
Perspective Instruments Ltd
Pinewood
61 Folly Lane, Shaw
Wiltshire SN12 8HB
England
www.perspectiveinstruments.co.uk/

Oxford Technologies Ltd
7 Nuffield Way
Abingdon
Oxon, UK
OX14 1RJ
www.oxfordtechnologies.co.uk

PTW–Freiburg
Physikalisch–Technische Werkstätten Dr. Pychlau GmbH
Lörracher Strasse 7
79115 Freiburg
Germany
www.ptw.de

QSA Global GmbH
Gieselweg 1
38110 Braunschweig
Germany
QSA Global Inc.
40 North Avenue
Burlington, MA 01803
USA
Sales offices also in France and Honk Kong
www.qsa-global.de
www.isottrak.de

RadiologyInfo™
www.radiologyinfo.org
nmap@acr.org
mamm-accred@acr.org

Radon Lab
Forskningsveien 3 B
0373 Oslo
Norway
www.radonlab.net/tracketch.htm

RADOS Technology GmbH
Ruhrstrasse 49
D-22761 Hamburg
Germany
World Headquarters
Bishop Ranch 8
3000 Executive Parkway Suite 220
San Ramon, CA 94583
USA

Many international representatives (21) to be found under:
www.mirion.com/index.php?p=locations#noram

S.E.A. GmbH
(Strahlenschutz-Entwicklungs- und Ausrüstungs-Gesellschaft)
Ortsdamm 139
48249 Dülmen
Germany
www.sea-duelmen.de

Siemens Healthcare
Wittelsbacherplatz 2
80333 München
Germany
Representatives in 35 countries
www.medical.siemens.com/
Strahlenzentrum of the Justus-Liebig University Giessen
Leihgesterner Weg 217
35392 Giessen
Germany
www.strz.uni-giessen.de/

Synchrotron Radiation Angiography (St. Fiedler)
Canadian Light Source Inc.
University of Saskatchewan
101 Perimeter Road
Saskatoon, SK.
Canada, S7N 0X4
www.lightsource.ca/
www.lightsource.ca/bioimaging/Saskatoon_2004_sf.pdf

Terra Universal, Inc.
800 S. Raymond Avenue,
Fullerton, CA 92831
USA
www.terrauniversal.com
Many international representatives (21) to be found under:
www.terrauniversal.com/international/localreps.shtml

Thermo Eberline ESM
Frauenauracher Strasse 96
91056 Erlangen
Germany
www.esm-online.de/

Thermo Fisher Scientific Inc.
81 Wyman Street
Waltham, MA 02454
USA
www.thermo.com/
Many international representatives (209) to be found under:
www.thermo.com/com/cda/article/general/1,,882,00.html

US Department of Energy
Office of Civilian Radioactive Waste Management
Yucca Mountain Project
1551 Hillshire Drive
Las Vegas, NV 89134
USA
www.ocrwm.doe.gov/contact/index.shtml
www.ocrwm.doe.gov/factsheets/doeymp0010.shtml
VacuTec Meßtechnik GmbH
Dornblüthstrasse 14
D-01277 Dresden
Germany
www.e-meditec.de/firm05/vacutec_messtechnik_4508.htm

Wikipedia
http://commons.wikimedia.org/wiki/Image:Coolidge_xray_tube.jpg

This list has been checked early in 2009. Many companies occasionally change their name and can no longer be found easily. The ‘Supplier Name Change’ list helps to locate the companies with their new names. This list can be found under
www.purchasing.upenn.edu/buyinfo/suppliers/name_changes.php.
Index*

abbreviations, 340
absorber, 33, 37, 38, 43–45, 72, 79
 – lead, 39
 – rod, see control rod
absorption, 37, 42, 43, 53, 61, 84
 – α rays, 35, 38
 – β rays, 37, 52, 251, 252
 – coefficient, see mass absorption coefficient
 – energy, 293
 – neutron, 191
 – Compton, 43, 45, 46
 – edge, 43
 – energy, 7
 – factor, 252
 – full, peak, 295
 – γ rays, 13, 42, 51, 52, 276
 – in lead, 42, 44, 46
 – law, 251, 271
 – empirical, 271
 – measurement, 38, 52
 – radiation, 212, 215
 – rate, specific, 244
 – resonance, 306
 – self, 315
abundance, isotopic, 28, 109, 207, 300
acceleration, 375
accelerator, 38, 71, 120, 121, 143, 184, 279
 – circular (ring), 145, 314
 – linear, 39, 145, 302
 – proton, 133, 140
accident, 76, 92, 115, 179, 205, 229, 235, 236
 – beyond-design, 283
 – category, 115
 – design-based, 124, 289
 – dosimetry, 76, 77, 98, 279
 – large serious, 115
 – limit, 289
 – radiation, 279, 310
 – Tokaimura, 233
 – accidental dose, 115
 – accidental exposure, 92, 236
 – accidental irradiation, 235
 – accounting, 112
 – accuracy of measurement, 78
 – acquisition of radioactive material, 112
 – activity, 4, 5, 12, 14, 18, 29, 47, 48, 61, 77, 80, 81, 83, 85, 89, 109, 112–114, 118, 133, 137, 138, 141, 254–258, 270–272, 275, 280
 – absolute, 25, 181
 – body, 80
 – concentration, 137, 280, 331
 – maximum permitted, 329
 – determination of, 85
 – γ, 261
 – measurement, 55, 62, 64, 65, 83, 130, 174
 – specific, 15, 47, 48, 130, 189, 280
 – time dependence, 137
 – adhesive tapes, 81
 – AERB, 101, 102
 – aerosol, 280
 – filter, 280
 – radioactive, 182
 – AIDS, 225
 – air
 – accidents, 235
 – discharged, 331
 – pollution, 280
 – airborne radioactivity, 280
 – area, 97
 – ALARA principle, 91, 95, 280
 – albedo
 – dosimeter, 75, 79
 – factor, 280
 – alerter, dose, 290
 – rate, 291
 – ALI levels, 107
 – alpha
 – decay, 23, 280
 – emitter, 117, 178
 – particle, 9, 10, 23, 32–35, 60, 70, 76, 83, 261
 – range, see range, α particles
 – ray spectroscopy, 58
 – rays, 2, 7, 38, 57, 61, 63, 66, 79, 117
 – absorption, 35, 38
 – energy spectrum, 23

* Pages in italics refer to the glossary.
Am–Be source, see americium–beryllium source
ambient dose, 280
– rate, 14, 280
American Directive, 90, 93
– 241, decay-level scheme, 373
– –beryllium source, 26
amplification factor, neutron, 304
analysis, activation, 280
angiography, 147, 280
annihilation, 66, 147, 190, 281
– pair, 307
– photon, 67
– radiation, 281
annual dose, 52, 55
– limit, 91, 93, 94
– whole-body, exceeding, 114
annual intake, 281
ANSTO, 99
antenna, mobile phone, 244, 245
anti-static materials, 178
antimatter, 190, 281
antineutrino, electron, 20
apoptosis, 226
appropriate authority, 82
appropriate dosimetric service, 92
approval of design, 112, 113, 122, 160
approved occupational health services, 92
approving organizations, 95, 122
apron, lead–rubber, 160
aquifer storage, 281
area, see also radiation area
– contamination, 97
– controlled, see controlled area
– density, 84
– exclusion, 92, 113, 124, 293
– high-contamination, 97
– high-radiation, 97
– monitoring, 113
– product with dose, 165
– radiation protection, 114, 184
– radioactive-material, 97
– radiological, 97
– restricted, 124, 314
– special radiological, 97
– supervised (surveyed), 91, 113, 117, 317, 335
– unrestricted, 319
area antenna, 245
ARPANS, 99
atomic
– bomb, 281
– energy, 281
– legislation, 281
– mass, 19
– unit, unified, 338
– nucleus, 19, 27, 28, 35, 169, 249, 255, 281
– number, 19, 28, 38, 43, 164, 180
– pile, 281
– shell, 28
attenuation
– coefficient, see mass attenuation coefficient
– factor, 162
– law, 271
– for β rays, 251
– for γ rays, 42, 271
Auger
– effect, 282
– electron, 27, 28, 45
Australia, 98
authority
– appropriate, 82
– approving, 122
– competent, 112, 114, 115
– authorized physician, 128, 282
average dose equivalent, 12
average radiation exposure, 11
averted dose, 282
Avogadro constant, 15, 47, 338
background, 77
– effect, 68
– radiation, 282
– rate, 68, 141, 282
backscatter
– method, gamma-, 180
– peak, 282
backscattering, 85
– Compton, 286
badge, film, see film badge
barium, 21, 28, 132, 152, 177
barn, 40
beam
– dump, 157
– loss, 157
beams
– electron, 146, 156
– heavy-ion, 200, 201
– neutrino, 146
– photon, 146
– proton, 156
becquerel (Bq), 4, 270, 282
Becquerel, H. A., 1, 2
beta
– decay, 20–22, 26, 54, 282
– double, 291
– emitter, 23, 78, 117
– β+, 20
– β−, 20
––gamma coincidence method, 25
– rays, 2, 7, 14, 52, 57, 60, 61, 63, 66, 73, 227, 261, 282
– absorption, 37, 52, 251, 252
– attenuation law, 251
– dose constant, 12
– range, see range, electrons
– spectra, 20, 22
betatron, 282
betavoltaic microbatteries, 154
Bethe–Bloch relation, 32, 282
Bethe–Weizsäcker formula, 283
binding energy, 27, 28, 249, 283, 305
– per nucleon, 190
biodiversity, 173, 283
biokinetics, 283
biological
– damage, 22
– effect, 7, 8, 212, 213
– effectiveness, 7, 41, 52, 54, 117, 313
– half-life, 18, 217, 270, 283, 297
– repair mechanisms, 7, 35
– shield, 283
bismuth 207, decay-level scheme, 372
bituminization, 283
blackening of film badges, 72
blankets, radioactive electric, 188
blood activation, 77, 283
body
– activity, 80
– counter, 283
– dose, 11, 76, 113, 283
– intrinsic radioactivity, 17
boiling-water reactor, 193, 283
bomb
– atomic, 281
– hydrogen, 298
– nuclear, 219, 305
bone seeker, 22, 132, 283
bookkeeping, 129
boron, 39
– 109, decay-level scheme, 371
– control rod, 207
calcination, 284
– of detectors, 82
– radiation, 152, 284
– source, 112
Canada, 100
cancer, 175, 214
– bronchi, 183, 221
– frequency, 215
– incidence, 284
– leukemia, 221, 232, 237, 302
– lung, 183, 221
– probability, 214
– radiation, 241
– radiation-induced, 219, 220, 311
– risk, 214, 220, 221
– factor, 232
– skin, 242
– thyroid gland, 221
– treatment, 177
capture
– cross section, 284
– electron, see electron capture
– neutron, 204, 305
carbon, 61, 173, 174, 231
– 14C, 284
– dating, 284, 288
carcinogens, 284
cask, 284
CASTOR
– container, 134, 135
– transports, 189
– exposure by, 135
cataract, 242, 284, 310
catastrophe, reactor, 230, 236
category
– A worker, 92, 109, 114
– B worker, 92
– laser, hazard, 297
– of accident, 115
– transport, 134
CEDE, 107
cell
– differentiation, 212
– germ, 46
– hit, 47
– reproductivity, 212
chemical
– dosimetry, 285
– separation technique, 109
– toxicity, 318
Chernobyl
– counter, 285
– effect, 285
China, 101
chromosome, 47, 285
cigarette ash, radioactivity of, 181
circuit
– primary, 193
– secondary, 193
circular accelerator, 145, 314
classification of nuclear waste, 47
clean-up, 285
clearance, 285
– levels, 90, 93, 106, 125, 332
clinical dosimetry, 285
Index

cloud chamber, 9, 38, 286
 – diffusion, 9, 10
 – expansion, 38, 286

14C method, 61, 284, 288

 – 57, decay-level scheme, 369
 – 60, decay-level scheme, 369

coefficients, neutron absorption, 191

coincidence
 – arrangement, 151
 – chance, 26
 – method, 25

collective dose, 11, 286
 – equivalent, 11

collider, 157

collimator, 157

combat use of nuclear weapons, 236

committed dose equivalent, 179, 248, 286

compaction, 286

competent authority, 112, 114, 115

compressed-air breathing apparatus, 286

compresses, radium, 188

Compton
 – absorption, 43, 45, 46
 – backscattering, 286
 – edge, 44, 69, 286
 – effect, 41, 44, 45, 52, 286
 – inverse, 148, 299
 – process, 43, 53
 – scattering, 42, 45, 46
 – cross section, 44

compulsory cover, 286

computed tomography, 286

computer monitor, 166

concentration
 – activity, 137, 280, 331
 – maximum permitted, 329
 – limits, 125

concrete shielding, 156

conditioning, 286

confidence level, 287

confinement, plasma, 203

constant
 – Avogadro, 15, 47, 338
 – Planck, 260, 278
 – Rydberg, 147

constants, physical, 338

container, 113
 – CASTOR, 134, 135
 – waste, 115

containment, 287
 – system, 209

contamination, 14, 57, 77, 80, 81, 89, 113, 126, 136, 287, 333, see also surface contamination
 – area, 97
 – checks, 127
 – ‘exudation’, 136
 – high-, area, 97
 – measurement, 55, 61, 62, 65, 80–82, 113, 114, 141
 – monitor, 61, 127, 141
 – of ground, 178

continuous spectrum, 28, 146

continuous-wave laser, 244

contrast agent, 147, 187, 287

control
 – function, 112
 – of pollution, 114
 – rod, 191, 207, 287, 313
 – weekly, 103

controlled area, 91, 96, 97, 109, 113, 114, 287, 335

controlled chain reaction, 207

conversion, 287

– coefficient, 287

– electrons, 27, 28

– inner, 27

– method, 153

– of units, 339

– principle of, 153

– probability, 28

converter, neutron, 70

coolant, 195, 196

cooldown, 287

cooling, 209

– agent, 192

– passive, 197

– water, 192, 193

core meltdown, 197, 287

cornea, inflammations of, 242

coronary angiography, 147

cosmic rays, 47, 71, 149, 169–171, 176, 186, 287, 309

– elemental abundance, 150

– secondary, 314

cosmogenic isotopes, 287

count rate, 25, 26, 47, 61, 64, 65, 77, 83, 85, 89, 141

– coincidence, 25

counter, 60, 61, 77, 79, 83, 84, 287

– body (body counter), 283

– boron-trifluoride, 40, 70

– characteristic, 65

– Cherenkov, 285

– dead time, 85

– end-window, 77

– flow, 295, 303

– gas, 61

– gas flow, 61, 296

– Geiger–Müller, 59, 60, 64, 65, 70, 78, 296

– germanium, 66

– helium-3, 40

– large-area, 61, 62, 81, 127

– neutron, 305

– plastic scintillation, 86

– plateau, 61, 65, 308

– proportional, 40, 59, 70, 82, 89

– scintillation, 62, 63, 65, 66, 85, 314

– semiconductor, 66, 69, 315

– threshold, 41

– time-of-flight, 318

– whole-body, 80, 81, 320

– window, 320

– working point, 61

counting
 – gas, 83

– medium, 70

course of disease, 212

criminal acts, 236

critical energy, 38

critical mass, 288

critical organ, 107, 288
Index

criticality, 196, 234, 288
- prevention of, 129
cross section, 40, 288
capture, 284
- Compton effect, 44
- fission, 192, 295
- neutron-induced
- fission, 192
- reactions, 40, 197
- pair production, 45
- photoelectric effect, 43, 72
cryptococcus neoformans, 225
crystal
- germanium, 296
- scintillation, 66
cumulative dose, 288
curie
- I, 2
- M, 2
- P, 2
curie (Ci), 4, 15, 270, 288
curium, 139
current density, natural, 240
CW laser, 244
cyclotron, 288
cystamine, 216, 312
daily control, 103
damage
- biological, 22
- genetic, 215
- radiation, 212, 213, 216, 218
DARI unit, 17
dating, 61
- method, 284, 288
dead time, 64, 89
- correction, 85, 271
- counter, 85
effect, 85
decay, 4, 288
- α, 23, 280
- β, 20–22, 26, 54, 282
- double, 291
- γ, 21
- boron, 199
- chain, 9, 24, 52, 76, 117, 288, 348, 349
- constant, 4, 5, 137, 270, 288
- law, 5, 14, 270, 288
- level, 288
- -level scheme, 21–23, 77, 288, 368–373
- method, 288
- mode, 289
- product, 178, 182
- radiationless, 311
- radioactive, 377
- radon, 76
- rate, 4
- series, 289
- spontaneous, 1, 316
- three-body, 20
time, 78
time constant, 14
deceleration, 40
- neutron, 305
decommission, 289
decommissioning, 289
decomposition, 127, 289
decorporation, 127, 289
delayed neutrons, 149
delayed radiation effects, 236, 289
deleptonization, 149, 289
delta electron (rays), 33, 289
- spectrum, 33
density
- energy, 30
- energy flux, 292
- flux, 295
- ionization, 7
- measurement, 179, 180
-depleted uranium, 237, 289
-deposit, natural, 208
deposited dose, 59
depth dose, 16
derivative, 289, 374
design
- approval, 122, 160
- qualification, 113
- -approved source, 112
- -basis accident, 124, 289
detection, 31, 39, 41, 62, 65, 68
- efficiency, 40, 61, 65, 84, 85, 87–89, 141, 151, 290
-neutrons, 39
- of charged particles, 31
-photon, 41
-reactions, 39
-sensitivity, 47
- technique, 59
detector
- calibration, 82
- detection efficiency, 151
diamond, 167
diagnosis, 47
diagnostic medical radiation, 94
diagnostic, 1, 176
coronary angiography, 147
of the thyroid gland, 151
- X-ray, 160, 176, 178, 321
dial painter, 228
diameter
- of atom, 19
- of nucleus, 19
diamond detector, 167
difference quotient, 374
differentiation, 375
differentiation of cells, 212
diffusion cloud chamber, 9, 10
dilution, 186
DIS dosimeter, 59
discharge of radioactive material, 290
discharged air, 331
disclosure, duty of, 115
disease, course of, 212
early radiation effect, 212, 291
Earth’s magnetic field, 240
EC (electron capture), see electron capture
ecosystem, 291
EDTA, 217
effect, see also radiation effect
– background, 68
– Cherenkov, 285
– Compton, see Compton effect
– dead time, 85
– of electromagnetic fields, 240
– relation to dose, 220, 290
– somatic, 315
effective
– dose, 291
– equivalent, 12, 16, 291
– half-life, 217, 270, 291, 297
effectiveness, 141
– biological, 7, 41, 52, 54, 117, 313
efficiency, 25, 61, 77, 141, 292
– detection, see detection efficiency
– quantum, 85
Elastosan foot rests, 187
electric blankets, radioactive, 188
electric field strength, 238
electrocardiogram (ECG), 240
electroencephalogram (EEG), 240
electromagnetic
– fields, 238
– heat production, 240
– heating effect, 244
– interaction, 19, 292
– radiation, 27, 31, 168, 238
– power, 240
– spectrum, 239
electron, 9, 10, 31, 170, 292
– Auger, 27, 28, 45
– beams, 146, 156
– capture, 20, 27, 69, 292, 301
– conversion, 27, 28
– δ, 33, 289
– –hole pair, 66
– knock-on, 301
– microscope, 165
– neutrino, 20
– range, see range, electron
– volt (eV), 21, 247, 292
electrosmog, 166, 292
electroweak interaction, 292
element
– abundance, in cosmic rays, 150
– symbols, 345
– transurium, see transurium elements
elements
– elementary charge, 82, 292
– elements, periodic table, 367
emanation, 292
embryo, 96
emergency
– nuclear, 225
– situation, 91, 115, 312
emission
– neutron, 26
– of coal plants, 178
emitter
– α, 117, 178
– β, 20, 23, 78, 117
– γ, 21, 117
– pointlike, 112
– positron, 22
empirical absorption law, 271
empirical range, 271
emulsion, nuclear, 305
enclosure, magnetic, 200, 203
end-window counter, 77
energy
– absorption, 7
– coefficient, 293
– atomic, 281
– binding, 27, 28, 283
– nuclear, 249, 305
– per nucleon, 190
– critical, 38
– cutoff parameter, 33
– density, 30
– dose, 6–8, 18, 48, 74, 75, 270, 292
– rate, 10, 55, 277, 292
– electromagnetic radiation, 238
– excitation, 27, 28, 45
– fluence, 292
– flux density, 292
– ionization, 60
– kinetic, 7
– loss, 31–36, 46, 60, 62, 83, 145, 292
– measurement of, 60
– maximum, 20, 51, 77, 323
– neutron, 41
– resolution, 66, 69, 86, 88, 292
– rest, 314
– spectrum
– of α rays, 23
– of β rays, 20, 22
– of δ rays, 33
– of γ rays, 69
– of an X-ray tube, 147, 162
– of fission neutrons, 71
– to produce an electron–hole pair, 66
– transfer, linear (LET), 33, 301
– transition, 22, 23
enriched uranium, 293
enrichment, 190, 293
– isotopic, 301
– technique, 80
environment
– monitoring, 114
– protection of, 57
Environmental Protection Agency, 293
environmental radioactivity, 169
epithermal neutrons, 293, 305
equilibrium
– activity, 138
– radioactive, 137, 138, 312
equivalent dose, see dose equivalent
equivalent error
– statistical, 86
– systematic, 88
– total, 88
erythema, 242, 293
escape peak, 67
– single-, 315
estimated doses, 95
EURATOM, 90
European Directive, 90, 91
examination
– kidney, 18
– medical, 92, 114, 128, 185
FWHM, 68, 295

gamma
 – activity, 261
 – backscatter method, 180
 – decay, 21
 – emitter, 21, 117
 – quantum, 296
 – radiography, 296
 – absorption, 13, 42, 51, 52, 276
 – attenuation law, 42, 271
 – dose constant, 12–14
 – energy spectrum, 69
 – spectrometer, 67
 – spectroscopy, 65, 69

gas
 – amplification, 60
 – cooled reactor, 296
 – counter, 61
 – counting, 83
 – flow counter, 61, 296
 – radioactive, 109, 117, 174
 – test, 317

Gaussian distribution, 68, 271, 296

Geiger–Müller counter, 59, 60, 64, 65, 70, 78, 296

generator of unwanted X rays, 166

genetic damage, 215

genetic radiation effects, 236, 296

gemagnetic latitude, 296

germination
 – counter, 66
 – crystal, 296
 – detector, 66, 69, 70, 88
 – glove box, 127
 – gluon, 19, 296

goggles, safety, 244

gold, 176

gonad dose, 296

graphite, 296
 – moderation, 192, 195
 – pebbles, 196
 – reactor, 296

grey (Gy), 7, 297

ground contamination, 178

hadron therapy, 144, 297

hadrons, 297

Hahn, O., 2, 139, 188

hair
 – activation, 76, 297
 – lotion, radioactive, 187

half maximum, full width at, 68, 295

half-life, 5, 14, 15, 21, 24, 47, 77, 109, 138, 270, 275, 297, 325
 – biological, 18, 217, 270, 283, 297
 – effective, 217, 270, 291, 297
 – physical, 18, 217, 270

half-value thickness, 56, 271, 297

hand monitor, 127

handling
 – license, 297
 – of incidents and accidents, 115

Harrisburg, 209

hazard
 – category for lasers, 297
 – class areas for fire brigade, 124

health
 – physics, 297
 – services, approved occupational, 92

heat
 – exchanger, 193, 298
 – of reaction, 198
 – residual in reactor, 313

heat-up, 298

heating
 – effect of electromagnetic fields, 240, 244
 – with neutral particles, 203, 298

heavy-ion
 – beams, 200, 201
 – therapy, 34, 35, 144, 298

helium, 39

helium-3 counter, 40

helium, 195, 196

helix antenna, 245

high-contamination area, 97

high-power laser, 201, 244

high-purity germanium (HPGe)
 – detector, 69, 70, 88

high-radiation area, 97, 298

high-rate measurement, 64

high-temperature
 – plasma, 203
 – reactor, 195, 298

highly radioactive fission
 – products, 149

Hiroshima, 29, 219, 236

histogram, 68

hormesis, 219, 298

hot particles, 298

hot spot, 298

HPGe detector (high-purity germanium detector), 69, 70, 88

hydrogen
 – bomb, 298
 – fusion, 191, 198, 199, 298
 – pellets, 298

IAD unit, 17

ICNIRP, 240, 244

ICRP, 15, 90, 101, 105, 116, 298

ICRU, 15, 101

identification, 299
 – of radioisotopes, 67, 69

image
 – quality, 160
 – subtraction, 147

imaging techniques, 22

impact parameter, 299

incident, 115

nuclear, 306

inclusion, plasma, magnetic, 203

incorporation, 11, 22, 57, 80, 81, 114, 117, 126, 169, 174, 176, 299

– dangers due to, 80
 – iodine, 299

– measurement, 80, 81

index, transport, 319

India, 101

indicator, see radio tracer

individual depth dose, 16

induced radioactivity, 156, 299

inertial fusion, 200, 202, 299

inflammations of the cornea, 242
lifetime, 5, 275, 302
 – irradiation dose, 302
 – particle, 144
light
 – guide, 62, 85
 – source, tritium, 319
 – yield, 62
light-water reactor, 302
limitation of activities, 114
limits
 – accident, 289
 – annual intake, 81
 – concentration, 125
 – dose, see dose limit
 – embryo/fetus, 96
 – exemption, 93, 106, 109, 271, 293, 326
 – laser, 243, 244
 – legal, 185
 – radiation, 185, 311
 – – protection, 240
 – surface contamination, 333
 – UV radiation, 243
 – WHO, 237
linear accelerator (LINAC), 39, 145, 302
linear energy transfer (LET), 33, 301
Linear No-Threshold, see LNT hypothesis
liquid scintillator, 63, 302
liquid-drop model, 302
lithium, 39, 200, 204
liver dose, 109
LNT hypothesis, 215, 219, 232, 302
logarithm, natural, 5, 302, 378, 379
logging, well, 320
long-term fading, 75
lost sources, 129, 230, 236
low-level
 – monitor, 174
 – radiation, 179
lung cancer, 183, 221
Mössbauer effect, 304
mA’s product, 303
magic numbers, 249, 303
magnetic confinement, 200, 203
 – fusion by, 200
magnetic field
 – Earth, 240
 – strength, 238
magneton, 166
mammography, 184, 303
man-sievert, 303
manganese, 48
mass
 – absorption coefficient, 43, 45, 46, 48, 51, 84, 164, 168, 252, 271, 279, 303
 – atomic, 19
 – attenuation coefficient, 42, 43, 56, 271, 281, 303
 – critical, 288
 – defect, 303
 – number, 32
 – rest, 44, 314
 – subcritical, 316
 – unit, 47
 – – atomic, 338
material
 – anti-static, 178
 – building, 173
 – ceramic, 139
 – radioactive, see radioactive material
 – reactor, neutron-activated, 205
 – tissue-equivalent, 318
maximum annual intake, 81
maximum energy, 20, 51, 77, 323
maximum exposure, 91
maximum permitted dose equivalent, 272
Maxwell–Boltzmann distribution, 303
mean free path, 60
measurement
 – absorption, 38, 52
 – accuracy, 78
 – activity, 55, 62, 64, 65, 83, 130
 – coincidence, 26
 – contamination, 55, 61, 62, 65, 80–82, 113, 114, 141
 – density, 179, 180
 – detection efficiency, 87, 88
 – dose, 114
 –– rate, 61, 65, 67, 78
 – energy loss, 60
 – filling level, 179
 – gamma backscatter, 180
 – high-rate, 64
 – incorporations, 80, 81
 – low beta activities, 174
 – personal dosimetry, 71, 79
 – technique, radiation protection, 80
 – thickness, 179
medical
 – checkup, 113
 – diagnostics, see diagnostics
 – examination, 92, 114, 128, 185
 – expert, 163
 – files, 128
 – physics expert, 303
 – supervision, 128, 303
 – surveillance, 92
 – therapy, see therapy
medicine, nuclear, see nuclear medicine
Meitner, L., 2
melanin, 225
melanoma, malignant, 242
meltdown, reactor core, 287
memory cell, 58
metal finger-ring dosimeter, 75
metastable state, 21, 151, 152, 303
meter, dose rate, 79
methane flow counter, 303
method
 – 14C (dating), 61, 284, 288
 – coincidence, 25
 – conversion, 153
 – decay, 288
 – decorporation, 217
 – gamma backscatter, 180
 – nuclear medicine, 178
Mexico, 103
microbatteries, betavoltaic, 154
microbeam radiation therapy, MRT, 34
microwave
 – klystron, 165
 – radiation, pulsed, 240
mineral
 – hunter, 109
 – spring, 116, 304
mining, 185
minors, dose limits, 96
mitosis, 212
mixed oxides, 304
mobile phone, 244
 – antenna, 244
mode, decay, 289
moderator, 40, 193, 208, 234
 – graphite, 192, 195
modified dose quantities, 15
Møller scattering, 304
molybdenum–technetium generator, 151
monitor, 141
 – computer, 166
 – contamination, 61, 127, 141
 – foot, 127, 295
 – hand, 127
 – low-level, 174
 – radiation, personal, 61
 – release, 130
 – whole-body, 127
monitoring, 96, 113, 304
 – of the environment, 114
month, working-level, 321
mortality, 214
Moseley law, 147, 304
MOSFET transistor, 58
MOX, 304
MRT (microbeam radiation therapy), 34
multi-wire proportional chamber, 61
multifilm cassette, 73
multiple scattering, 9, 304
muon, 9, 46, 47, 144, 150, 170, 304
 – flux, omnidirectional, 150
mutation, 47, 215, 304
Nagasaki, 219, 236
natural
 – chain reaction, 207, 208
 – current density, 240
 – deposit, 208
 – isotopes, 173
 – plutonium, 173
 – radiation, 55, 173, 185
 – exposure, 17, 175, 176, 184
 – radioactivity, 1, 51, 55, 169, 174, 185, 216
 – reactor, 193, 207, 208, 210, 304, 307
 – sources, 57
natural logarithm, 5, 302, 378, 379
neptunium, 139, 173
 – decay chain, 349
nervous system, 240
neutral particles, heating with, 298
neutrino, 20, 31, 144, 150, 169, 304
 – beams, 146
 – factories, 146
neutron, 7, 19, 20, 26, 31, 33, 39–41, 75, 304
 – absorption coefficient, 191
 – activation, 191, 201, 205, 304
 – amplification factor, 304
 – bombardment, 132, 139, 177
 – capture, 204, 305
 – converter, 70
 – counter, 305
 – deceleration, 305
 – detection, 39
 – dosimetry, 70
 – emission, 26
 – energy, 41
 – epithermal, 293, 305
 – excess, 26, 249
 – excessive, 20
 – fast, 71, 140, 191, 192, 305
 – fission, 26, 70, 190
 – energy spectrum, 71
 – prompt, 149, 309
 – fluence, 305
 – flux, 305
 – generator, 148
 – interactions, 39
 – moderation, 192, 304
 – poison, 305
 – prompt or delayed, 149
 – radiation, 26
 – reaction, cross section, 40, 192, 197
 – reflector, 234, 305
 – slow, 192
 – source, 148, 305, 315
 – thermal, 40, 70, 71, 78, 191, 192, 305, 318
 – threshold, detector, and reactions, 41
 – yield, 149
nickel, 21
non-ionizing radiation (NIR), 238, 305
normal distribution, 68, 271, 296
notice, duty to give, 291
nuclear
 – accident dosimetry, 98
 – binding energy, 249, 305
 – bomb, 219, 305
 – dropping, 236
 – disintegrations, 26
 – emergency, 225
 – emulsion, 305
 – energy worker, 100, 101
 – fission, see fission
 – fluorescence (resonance absorption), 306
 – forces, 316
 – fuel, 113, 306
 – spent, 315
 – fusion, see fusion
 – incident, 306
 – installations, 93
 – interaction, see strong interaction
 – isotopes, see isotope
 – medicine, 18, 21, 176, 178, 185
 – pharmaceuticals, 306
 – photoelectric effect, 306
 – power, 3, 190
 – power plant, 28, 78, 89, 109, 178, 190, 306
 – reaction, 306
 – reactor, 306, see also reactor
 – security class, 306
 – submarine, 235
 – -track detector, 70, 76
waste, 306
classification, 47
weapons
– combat use, 236
tests, 230, 236
nucleon, 19, 306
– binding energy per, 190
nucleotide, 306
nucleus, 307, see also atomic nucleus
– diameter, 19
– superheavy, 347
nuclide, 307
– chart, 285, 300, 360
number, mass, 32
numbers, magic, 249, 303
occupational dose, 91
– limits, 93, 95
occupational risk, 220
official warning labels, 113
ohmic heating of plasma, 203
Oklo (natural reactor), 193, 207, 208, 210, 304, 307
opacity (lens of the eye), 310
organ, 12
– critical, 107, 288
– dose, 15
organic scintillator, 62
organization, approving, 95
packaging, 133, 307
pair
– annihilation, 307
– electron–hole, 66
– peak, 67
– production, 28, 41, 42, 44–46, 52, 307
partial-body dose, 11, 12, 15, 164, 307
particle
– α, see alpha particle
– β, see beta rays
– charged, detection, 31
– hot, 298
– lifetime, 144
– neutral, heating, 298
– physics installations, 102
– radiation, 143
– subatomic, 316
– therapy, 307
passport
– radiation, 113
– X-ray, 160, 321
path, mean free, 60
pathway, irradiation, 300
patient dosimetry, 163
peak
– backscatter, 282
– Bragg, 34, 283
– escape, 67
– full absorption, 295
– pair, 67
– photo-, 69, 308
– single-escape, 315
pebble-bed reactor, 195, 197, 307
pen-type pocket dosimeter, 71, 72, 89, 307, 308
pendulum irradiation, 307
periodic table of elements, 367
person
– category A, 92, 109, 114
– category B, 92
– non-radiation-exposed, 114
– radiation-exposed, 91, 102, 103, 105, 185, 310
– risk, 222
personal
– detector, 79
– dose, 307
– depth, 16
– dosimeter, 58, 307
– dosimetry, 71, 78, 79
– operative units, 16
– radiation monitors, 61
personnel, flying, 71, 149, 184, 186, 295
PET (positron-emission tomography), 22, 307
pharmaceuticals, nuclear, 306
phosphate
– fertilizer, 178, 308
– glass
– dosimeter, 74, 308
– spherical dosimeter, 75
phosphor screen, 178
phosphorus, 77
– 32, decay-level scheme, 77
photelectric effect, 41, 44–46, 52, 62, 308
– cross section, 43, 72
– nuclear, 306
photofission, 308
photomultiplier, 62, 65, 66, 85
– beams, 146
– detection, 41
– equivalent dose, 10
– from annihilation, 67
– sources, 146
photopeak, 69, 308
photosynthesis, 225
physical constants, 338
physical half-life, 18, 217, 270
physical quantities, 339
physician, authorized, 128, 282
physics, health, 297
pigmentation, 242
pile, atomic, 281
pion, 34, 35, 144, 150, 308
pitchblende, 308
Planck’s constant, 260, 278
plane, 171
planned special exposure, 94, 95, 308
plant, reprocessing, 313
plasma, 308
– confinement, 203
– heating, 203, 308
– by neutral particles, 203
– ohmic, 203
– high temperature, 203
– hot, X rays from, 148, 201
– inclusion, 203
plastic
– detector, 41, 76, 308
– scintillation counter, 86
– scintillator, 65, 308
plateau, counter, 61, 65, 308
plutonium, 2, 139, 173, 178, 208, 217, 230, 233, 235
– natural, 173
pocket dosimeter, 308
 – nuclear, see pen-type pocket dosimeter
pointlike emitter, 112
Poisson distribution, 68, 271, 308
pollution
 – air, 280
 – control, 114
polonium, 2, 173, 181–183
population
 – group, 11
positron, 20, 31, 308
 – annihilator, 66
 – -emission tomography (PET), 22, 307
 – emitter, 22
positronium, 309
potassium, 172–174, 178, 181, 186, 189
potential risks, 95
power plant
 – coal, 178
 – nuclear, see nuclear power plant
powers, 380
pp cycle, 198, 309
pregnancy, 96, 100, 104
pressurized-water reactor, 193–195, 309
primary circuit, 193
primary cosmic rays, 309
primordial isotopes, 309
principle, ALARA, 91, 95, 280
probability
 – conversion, 28
 – interaction, 61
procedures, working, 111
promethium, 178
prompt fission neutron, 149, 309
proportional
 – chamber, 309
 – multi-wire, 61
 – counter, 40, 59, 70, 82, 89
protection
 – air, water, soil, 125
 – of environment, 57
 – radiation, see radiation protection
 – respiratory, 113
proton, 19, 20, 31, 33, 40, 170, 309
 – accelerator, 133, 140
 – beams, 156
 – -proton fusion, 309
 – -therapy, 33, 309
public, 91, 100, 103, 106
 – dose limits, 96
pulse-height spectrum, 70
qualification, 120, 309
quality factor, see radiation weighting factor
quantities, physical, 339
quantum, 310
 – γ, 296
 – efficiency, 85
quarks, 19, 310
quasi-elastic scattering, 40
quencher, 310
Ra–Be source, see radium–beryllium source
rad (radiation absorbed dose), 7, 310
radar radiation and equipment, 166
radiation
 – absorption, 212, 215
 – accident, 76, 92, 115, 205, 229, 310
 – in military fields, 235
 – α, see alpha rays
 – annihilation, see annihilation
 – area, 97, 113, 117, 310
 – definition, 335
 – high-, 97
 – very-high-, 97
 – background, 282
 – belt, see Van Allen belt
 – β, see beta rays
 – calibration, 152, 284
 – cancer, 241
 – casualties, 236
 – cataract, 242, 284, 310
 – -controlled area, 113
 – cosmic, see cosmic rays
 – damage, 212, 213, 216, 218
 – δ, 33, 289
 – diagnostic medical, 94
 – dose, see dose
 – effect, 310
 – biological, 7, 8, 212, 213
 – delayed, 236, 289
 – early, 212, 291
 – ionizing, 9
 – late, 214
 – somatic, 315
 – stochastic, 316
 – electromagnetic, 27, 31, 168, 238, 239
 – exposed persons, 91, 102, 103, 105, 114, 185, 310
 – risk, 222
 – exposure, see exposure
 – field, 8, 15
 – fluorescence, 1, 74
 – γ, see gamma rays
 – genetic effects by, 236, 296
 – hardness, 139
 – indirect ionizing, 7
 – induced cancer, 219, 220, 311
 – injury, 311
 – ionizing, 1, 2, 7, 50, 57, 75, 176, 212, 300, 311
 – limits, 185, 243, 311
 – load, 55
 – loss, 38
 – low-level, 179
 – microwave, pulsed, 240
 – monitor, personal, 61
 – natural, 55, 173, 185
 – neutron, 26
 – non-ionizing, 238
 – officer, 311
 – particle, 143
 – passport, 113
 – power, electromagnetic, 240
 – protection, 22, 27, 36, 123
 – area, 114, 184
 – control, 113
 – documentation, see documentation
 – guide, 311
 – international, 90
 – limits, 240
 – literature, 381
-- measurement technique, 80
-- monitoring, 113
-- officer, 110, 111, 113–115, 120, 163, 311
-- practical work, 114
-- principles, 119
-- regulations, see regulations
-- safety rules, 110, 111
-- supervisor, 110, 115, 163, 311
-- with X rays, 163
-- written test, 272
-- quality, 15
-- radar, 166
-- release, 78
-- resistance, 218, 224, 225
-- risk, 12, 93, 177, 215, 311
-- secondary, 144
-- sensitivity, see radiosensitivity
-- sickness, 1, 212, 311
-- course of disease, 212
-- sources, 143
-- cosmic, 149
-- statistical effects, 68
-- sterilization by, 223, 224
-- stray, 316
-- sub-doses, 178
-- surveyed area, see surveyed area
-- synchrotron, 35, 145, 317
-- source, 147, 317
-- terrestrial, 169, 172, 175, 176, 317
-- therapy, 312
-- microbeam, 34
-- ultraviolet, 241
-- limit, 243
-- warning label, 113, 114
-- weighting factor, see weighting factor, radiation
-- worker, see worker
-- X, see X rays
--- radiationless decay, 311
radioactive, 299, 318
radioactive
--- aerosols, 182
--- electric blankets, 188
--- equilibrium, 137, 138, 312
--- fallout, 29, 178, 232, 294
--- gas, 109, 117, 174
--- hair lotion, 187
--- material
--- area, 97
--- discharge of, 290
--- disposal of, 112, 113, 290
--- import and export, 120
--- loss and acquisition, 112, 114, 129, 229, 230, 236
--- release, 80, 174, 179
--- sealed, 133
--- short-lived, 131
--- storage, 114, 129, 139, 294
--- transportation, 120
--- unsealed, 81, 126, 133
--- source
--- sealed, 83, 112, 114
--- unsealed, 112, 319
--- toothpaste, 187
--- tracing, 312
--- washout, 232
--- waste, 115, 130–132, 139, 140, 320
--- disposal of, 57, 131, 148
radioactivity, 1, 2, 4, 78, 113
--- airborne, 280
--- area, 97
--- artificial, 2
--- body-intrinsic, 17
--- cigarette ash, 181
--- environmental, 169
--- induced, 156, 299
--- natural, 1, 51, 55, 169, 174, 185, 216
--- soil, 181
radiobiology, 312
radiography
--- γ, 296
--- gauge, 235
--- batteries, 153, 154, 178, 312
--- cow, 151, 152
--- generator (Radioisotope Thermoelectric Generator, RTG), 312, see also radioisotope batteries
--- identification of, 67, 69
--- long-lived, 133
--- short-lived, 152
--- thermoelectric generator (RTG), see radioisotope batteries
radiological
--- area, 97
--- special, 97
--- conditions, specific, 95
--- emergencies, 91, 312
--- surveillance, 92
--- worker, 95
radiology, 38
radionuclide, 312, see also radioisotope radiopharmaceuticals, 312
radioprotective substance, 216, 312
radioactivity, 212, 216, 218
radiotherapy, 236
radium, 2, 4, 15, 38, 52, 63, 87, 172–174, 179, 181, 186, 189, 228, 265
--- beryllium source, 26, 71, 235, 312
--- compresses, 188
--- spring, 116
radon, 9, 24, 76, 116, 117, 169, 173–175, 181, 182, 185, 312
--- decay, 76
--- in ground water, 185
--- in rainwater, 186
--- in sea water, 185
--- isotope, 76
--- treatment, 188
range, 34, 41, 53, 313
--- α particles, 35, 36, 38, 79, 117
--- electrons, 35, 36, 50, 51, 250, 251
--- empirical, 271
raster-scan technique, 34
rate of mutations, 215
ratios of isotopes, 109
Rayleigh scattering, 313
rays, cosmic, see cosmic rays
RBE factor (relative biological effectiveness), 7, 313
reaction
– coefficient, negative, 196
– detection, 39
– heat of, 198
reactivity, 313
reactor, 306
– accident, 76, 179, 236
– boiling-water, 193, 283
– catastrophe, 230
– in Chernobyl, 236
– core, 118
– fast shutdown, 209
– first critical, 206
– fission, 191, 193, 195
– fusion, 198, 204, 205, 295
– gas-cooled, 296
– graphite, 296
– high-temperature, 195, 298
– ITER, 204, 301
– JET, 204, 301
– light-water, 302
– material, neutron-activated, 205
– meltdown, 287
– natural, 193, 207, 208, 210, 304, 307
– pebble-bed, 195, 197, 307
– poison, 313
– pressurized-water, 193–195, 309
– residual heat, 313
– swimming-pool, 317
– Three Mile Island, 209, 318
– tokamak, 203, 318
recommendations, 90, 116
recuperation factor, 81
recycling, 130, 313
reference man, 313
reflector, 313
– neutron, 234, 305
regeneration, 216
regulations
– on radiation protection, 81, 110, 160, 311
– safety, 234
– X-ray, 160, 321
regulator rod, 313
relation, dose–effect, 220, 290
relative biological effectiveness,
see RBE factor
relative dose, 35, 52
release, 313
– monitor, 130
– of nuclear weapons, 236
– of radioactive material, 80, 174, 179
– rate, 78
– surveillance, 78
rem (roentgen equivalent man), 8, 313
repair mechanisms, biological, 7, 35
repository, 313
reprocessing plant, 313
reproductivity of cells, 212
residual heat, 313
residual interaction, 19
resistance, see radiation resistance
resonance absorption, 306
resorption, inhibiting, 217
respiratory equipment, 114
respiratory protection, 113
rest energy, 314
rest mass, 44, 314
restricted area, 124, 314
retention, 314
ring accelerator, 314
risk
– additional absolute, 222
– benefit estimate, 314
– cancer, 214, 220, 221, 232
– excess relative (ERR), 221
– for exposed persons, 222
– level, 314
– occupational, 220
– potential, 95
– radiation, 12, 93, 177, 215, 311
– stochastic, 214
RNA, 314
rod
– absorber, see control rod
– control, 191, 207, 287
– fuel, 295
– regulator, 313
– safety, 314
– Röntgen, W. C., 2, 146
Russia, 104
– rules, radiation protection, 110, 111
– standards, 90
sandwich shielding, 38
SAR value, 244, 314
scale factor, 10
scattering
– back-, 85
– Compton, 42, 45, 46
– cross section, 44
– Möller, 304
– multiple, 9, 304
– quasi-elastic, 40
– Rayleigh, 313
– Thomson, 318
scintigram, 314
scintillation, 39, 41
– counter, 62, 63, 65, 66, 85, 314
– plastic, 86
– crystal, 66
– detector, 67
– liquid, 63, 302
sealed radioactive source, 83, 112, 114, 133
secondary cosmic rays, 314
secondary radiation, 144
secondary water circuit, 193
security class, nuclear, 306
self absorption, 315
Index 415

semiconductor
– counter, 66, 69, 315
– germanium, 66
– silicon, 66
– detector, 69, 70, 88
– germanium, 69, 70, 88
sensitivity, 71
– detection, 47
– radio (radiation), see radiosensitivity
sensitizer, 216, 315
sewage water, 331
shadow-free ionization chamber, 58
shell, atomic, 28
shield, biological, 283
shielding, 39, 162, 166, 168, 261
– concrete, 156
– effect of the atmosphere, 171
– sandwich, 38
sievert (Sv), 8, 315
signal voltage, 82, 86
silicon, 77
– detector, 66
– ion-implanted, 70
single-escape peak, 315
skin
– cancer, 242
– dose, 16
– tanning, 242
‘sliding-shadow’ method and dosimeter, 16, 74
slow neutrons, 192
smoke detector, 294
smoking, 181, 182, 221, 315
sodium, 22, 23, 78, 283
– 22, decay-level scheme, 368
– 24, decay-level scheme, 77
– -iodide detector, 67, 86, 87
soft tissue, 315
soil radioactivity, 181
solid angle, 13, 48, 49, 52, 54, 55, 83
solid-state ionization chamber, 66
somatic radiation effect, 315
source, 315
– calibration, 112
– cosmic radiation, 149
– design-approved, 112
– lost, 230, 236
– natural, 57
– neutron, 148, 305, 315
– photon, 146
– radiation, 143
– radium–beryllium, 26, 71, 235, 312
– sealed, 83, 112, 114
– strength, 315
– synchrotron radiation, 147, 317
– theft, 236
– unsealed, 81, 112, 126, 319
South Africa, 105
spallation, 132, 140, 315
– neutron source, 148, 315
special incidents, 126
special radiological areas, 97
specific absorption rate, 244
specific activity, 15, 47, 48, 130, 189, 280
specific radiological conditions, 95
spectrometer, 315
– γ, 67
spectroscopy
– α, 58
– β, 20
– γ, 65, 69
spectrometry
– α, 23
– β, 20, 22
– γ, 69
– continuous, 28, 146
– δ, 33
– electromagnetic, 239
– of fission neutrons, 71
– pulse-height, 70
– ultraviolet, 241
– X-ray, 147, 162
spent nuclear fuel, 315
spermiogenesis, 316
spin, 316
spontaneous fission, 1, 316
spring, radium, 116
standard deviation, 68
standard ion dose, 10
standard weighting factor, 94
standards of safety, 90
state
– excited, 28, 293
– metastable, 21, 151, 152, 303
statistical effects, 68
statistical error, 86
statistics, 316
steering rod, 313
stellarator, 316
sterile-insect technique, 224
sterility, 316
sterilization, see also irradiation
– by irradiation, 223, 224
– of insects, 224
stochastic process, 316
stochastic radiation effects, 316
stochastic risk, 214
stopping power, 316
storage
– aquifer, 281
– of radioactive material, 114, 129, 139, 294
– of radioactive waste, 115, 130–132, 139, 140
Straßmann, F., 2, 139
stray radiation, 316
strong interaction, 19, 70, 316
strontium, 18, 22, 23, 37, 69, 132, 138, 139, 178, 179, 230
– 90, decay-level scheme, 370
sub-doses of radiation, 178
subatomic particle, 316
subcritical mass, 316
submarine, nuclear, 235
subtraction image, 147
sulphur, 76
sunburn, 242
supervision, medical, 303
supervision, medical, 303
supervised area, see surveyed area
supervision, medical, 303
surface contamination, 77, 136, 333
surveillance, 96
– medical, 92
– of radiation release, 78
– radiological, 92
survey meter, 317
surveyed area, 91, 113, 117, 317, 335
swimming-pool reactor, 317
synchrotron, 143, 317
– radiation, 35, 317
– source, 147, 317
systematic error, 88
tagging system, 146, 147
tanning of the skin, 242
tapes, adhesive, 81
target, 161, 164
– atom, 31
technetium, 18, 133, 177
– generator, 151, 317
technique
– chemical separation, 109
– detection, 59
– dual-energy, 147
– enrichment, 80
– imaging, 22
– K-edge subtraction, 147
– raster-scan, 34
– sterile-insect, 224
– wipe, dry, 89
telecope probe, 55
tenth-value thickness, 56, 271
teratogen, 317
teratogenicity, 317
ternary fission, 317
terrestrial radiation, 169, 172, 175, 176, 317
test
– function, 112, 150
– gas, 317
– leak, 111, 114
– wipe, 81, 141, 257, 321
theft of sources, 236
therapy, 1, 33–35, 144, 160, 176, 177, 230, 297, 309, 312
thermal breeder, 317
thermal neutrons, 40, 70, 71, 78, 191, 192, 305, 318
thermal X rays, 201
thermocoupler, 178
thermoluminescence dosimeter, 75, 318

thickness
– half-value, 56, 271, 297
– measurement, 179
– tenth-value, 56, 271
Thomson scattering, 318
thorium, 23, 24, 173, 178, 181, 185, 186, 189, 196
– decay chain, 348
Thorotrast, 187
three-body decay, 20
Three-Mile-Island reactor, 209, 318
threshold
– counter, 41
– dose, 214, 318
thyroid gland, 107, 176
– cancer, 221
– diagnosis, 151
time
– dependence of activity, 137
– dilatation, 144
– of-flight counter, 318
tissue, 12
– dose per line, 35
– equivalent dose, 165
– equivalent material, 318
– soft, 315
– weighting factor, see weighting factor
TNT equivalent, 29
tobacco plant, 182
Tokaimura accident, 233
tokamak, 318
– principle, 203
tomography
– computed, 286
– positron-emission (PET), 22, 307
toothpaste, radioactive, 187
total dose, 52, 185
total error, 88
total gamma-dose rate, 56
toxicity, 318
– chemical, 318
tracer, 299, 318
tracking, radioactive, 312
track
– etch
– detector, 71, 76, 308, 319
– dosimeter, 71
– nuclear, detector, 70, 76
training, 124
transfer factor, 319
transistor, MOSFET, 58
transition, 27
– energy, 22, 23
– matrix element, 22
transmutation, 131, 139, 148, 319
transport, 120, 133
– CASTOR, 189
– exposure, 135
– category, 134
– class number, 133
– index, 134, 319
transuranium elements, 2, 139, 140, 208, 319, 347
triton, 70, 319
tryptanosomiasis, 224
tsetse fly, 224

tumor
– therapy, 34, 177
– treatment, 144, 177
tunnelling probability, 199
TV sets, 166

ultraviolet
– radiation, 241
– disinfection, 243
– limit, 243
– spectrum, 241
UMTS, 319
– frequencies, 245
uncertainty principle, 319
undulator, 146, 319
unified atomic mass unit, 338
unit, 4, 90, 338, 339
– conversion of, 339
– DARI, 17
dose, for penetrating radiation
and low penetration depth, 16
Index

- IAD, 17
- mass, 47, 338
unrestricted area, 319
UNSCEAR, 319
unsealed radioactive
- material, 81, 126, 133
- source, 112, 319
unwanted X rays, 166
uranium, 1, 2, 23, 26, 28–30, 70, 71, 137, 138, 174, 178, 181, 185, 186, 190, 191, 196, 207, 208, 210, 233, 249, 250, 255, 258
depleted, 237, 289
enriched, 293
mine, 183
ore, 109
Van Allen belts, 320
very-high-radiation area, 97
vitrification, 320
voltage signal, 82, 86
warner, dose rate, 79
warning label, 113, 114
washout, 320
radioactive, 232
waste
- container, 115
- classification, 47
radioactive, see radioactive
water
- circuit
- primary, 193
- secondary, 193
- cooling, 192, 193
- sewage, 331
wavelength, 238
- shifter, 63
ways of exposure, 78
W bosons, 320
weak interaction, 320
weapon, nuclear, tests, 230, 236
weekly control, 103
weighting factor, 8, 12, 320
radiation, 8, 9, 15, 41, 94, 165, 270, 310, 312, 336
standard, 94
tissue, 12, 16, 94, 107, 164, 256, 270, 318, 337
well logging, 320
WHO limit, 237
whole-body
- contamination monitor, 127
- counter, 80, 81, 320
dose, 11, 12, 91, 109, 164, 165, 175, 182, 184, 212, 214, 270, 320
- annual, exceeding, 114
- monitor, 127
wiggler, 320
- magnets, 146
window counter, 320
wipe
- sample, 321
test, 81, 141, 257, 321
dry, 89
worker, 95
category A, 92, 109, 114
category B, 92
instruction and training, 124
medical examination, 128
nuclear-energy, 100, 101
pregnant, 96, 100, 104
radiation-exposed, 91, 102, 103, 105, 114, 185, 310
radiological, 95
working
- level, 103, 321
- month, 321
point of a counter, 61
procedures, 111
written test on radiation
protection, 272
X rays, 2, 8, 9, 27, 28, 31, 45, 71, 162, 166, 168, 176, 276, 321
characteristic, 28, 45, 147, 148, 162
fluorescence, 321
from hot particle plasmas, 148
highly intense, 146
radiation protection, 163
class, 201
unwanted, 166
X-ray
chest, 163–165, 189, 262
device for feet, 187
diagnostics, 160, 176, 178, 321
examination, exposure, 163
exposure, 164
film, 72
lines, characteristic, 28, 162
passport, 160, 321
regulations, 160, 321
spectrum, 147, 162
therapy, 160
tube, 27, 146, 161–163, 168, 275, 276
xenon, 12, 209, 230
yearly dose, 321
yellowcake, 321
Yokota glass, 321
yttrium, 26, 37, 66, 69, 132, 191, 249
Yukawa potential, 322
Z boson, 322
zinc sulfide, 322
zircaloy, 322
zirconium, 37, 140