MAGNETIC MATERIALS
Fundamentals and Applications

Second edition

NICOLA A. SPALDIN
University of California, Santa Barbara

CAMBRIDGE UNIVERSITY PRESS
Contents

Acknowledgments

I Basics

1 Review of basic magnetostatics
 1.1 Magnetic field
 1.1.1 Magnetic poles
 1.1.2 Magnetic flux
 1.1.3 Circulating currents
 1.1.4 Ampère's circuital law
 1.1.5 Biot–Savart law
 1.1.6 Field from a straight wire
1.2 Magnetic moment
 1.2.1 Magnetic dipole
1.3 Definitions
Homework

II Magnetization and magnetic materials

2 Magnetic induction and magnetization
2.1 Magnetic induction and magnetization
2.2 Flux density
2.3 Susceptibility and permeability
2.4 Hysteresis loops
2.5 Definitions
2.6 Units and conversions
Homework

III Atomic origins of magnetism

3 Solution of the Schrödinger equation for a free atom
 3.1 Solution of the Schrödinger equation for a free atom
 3.1.1 What do the quantum numbers represent?
3.2 The normal Zeeman effect
viii Contents

3.3 Electron spin 30
3.4 Extension to many-electron atoms 31
 3.4.1 Pauli exclusion principle 32
3.5 Spin–orbit coupling 32
 3.5.1 Russell–Saunders coupling 32
 3.5.2 Hund’s rules 34
 3.5.3 jj coupling 35
 3.5.4 The anomalous Zeeman effect 35
Homework 37

4 Diamagnetism 38
 4.1 Observing the diamagnetic effect 38
 4.2 Diamagnetic susceptibility 39
 4.3 Diamagnetic substances 41
 4.4 Uses of diamagnetic materials 42
 4.5 Superconductivity 42
 4.5.1 The Meissner effect 43
 4.5.2 Critical field 44
 4.5.3 Classification of superconductors 44
 4.5.4 Superconducting materials 44
 4.5.5 Applications for superconductors 46
Homework 46

5 Paramagnetism 48
 5.1 Langevin theory of paramagnetism 49
 5.2 The Curie–Weiss law 52
 5.3 Quenching of orbital angular momentum 54
 5.4 Pauli paramagnetism 55
 5.4.1 Energy bands in solids 56
 5.4.2 Free-electron theory of metals 58
 5.4.3 Susceptibility of Pauli paramagnets 60
 5.5 Paramagnetic oxygen 62
 5.6 Uses of paramagnets 63
Homework 64

6 Interactions in ferromagnetic materials 65
 6.1 Weiss molecular field theory 66
 6.1.1 Spontaneous magnetization 66
 6.1.2 Effect of temperature on magnetization 67
 6.2 Origin of the Weiss molecular field 69
 6.2.1 Quantum mechanics of the He atom 70
 6.3 Collective-electron theory of ferromagnetism 73
 6.3.1 The Slater–Pauling curve 76
Contents

6.4 Summary 76
Homework 78

7 Ferromagnetic domains 79
7.1 Observing domains 79
7.2 Why domains occur 81
 7.2.1 Magnetostatic energy 81
 7.2.2 Magnetocrystalline energy 82
 7.2.3 Magnetostrictive energy 84
7.3 Domain walls 85
7.4 Magnetization and hysteresis 87
Homework 92

8 Antiferromagnetism 96
8.1 Neutron diffraction 97
8.2 Weiss theory of antiferromagnetism 101
 8.2.1 Susceptibility above T_N 102
 8.2.2 Weiss theory at T_N 103
 8.2.3 Spontaneous magnetization below T_N 103
 8.2.4 Susceptibility below T_N 103
8.3 What causes the negative molecular field? 107
8.4 Uses of antiferromagnets 110
Homework 112

9 Ferrimagnetism 113
9.1 Weiss theory of ferrimagnetism 114
 9.1.1 Weiss theory above T_C 115
 9.1.2 Weiss theory below T_C 117
9.2 Ferrites 120
 9.2.1 The cubic ferrites 120
 9.2.2 The hexagonal ferrites 124
9.3 The garnets 125
9.4 Half-metallic antiferromagnets 126
Homework 127

10 Summary of basics 130
10.1 Review of types of magnetic ordering 130
10.2 Review of physics determining types of magnetic ordering 131

II Magnetic phenomena

11 Anisotropy 135
11.1 Magnetocrystalline anisotropy 135
 11.1.1 Origin of magnetocrystalline anisotropy 136
 11.1.2 Symmetry of magnetocrystalline anisotropy 138
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2 Shape anisotropy</td>
<td>139</td>
</tr>
<tr>
<td>11.2.1 Demagnetizing field</td>
<td>139</td>
</tr>
<tr>
<td>11.3 Induced magnetic anisotropy</td>
<td>141</td>
</tr>
<tr>
<td>11.3.1 Magnetic annealing</td>
<td>141</td>
</tr>
<tr>
<td>11.3.2 Roll anisotropy</td>
<td>142</td>
</tr>
<tr>
<td>11.3.3 Explanation for induced magnetic anisotropy</td>
<td>142</td>
</tr>
<tr>
<td>11.3.4 Other ways of inducing magnetic anisotropy</td>
<td>143</td>
</tr>
<tr>
<td>Homework</td>
<td>144</td>
</tr>
<tr>
<td>12 Nanoparticles and thin films</td>
<td>145</td>
</tr>
<tr>
<td>12.1 Magnetic properties of small particles</td>
<td>145</td>
</tr>
<tr>
<td>12.1.1 Experimental evidence for single-domain particles</td>
<td>147</td>
</tr>
<tr>
<td>12.1.2 Magnetization mechanism</td>
<td>147</td>
</tr>
<tr>
<td>12.1.3 Superparamagnetism</td>
<td>148</td>
</tr>
<tr>
<td>12.2 Thin-film magnetism</td>
<td>152</td>
</tr>
<tr>
<td>12.2.1 Structure</td>
<td>152</td>
</tr>
<tr>
<td>12.2.2 Interfaces</td>
<td>153</td>
</tr>
<tr>
<td>12.2.3 Anisotropy</td>
<td>153</td>
</tr>
<tr>
<td>12.2.4 How thin is thin?</td>
<td>154</td>
</tr>
<tr>
<td>12.2.5 The limit of two-dimensionality</td>
<td>154</td>
</tr>
<tr>
<td>13 Magnetoresistance</td>
<td>156</td>
</tr>
<tr>
<td>13.1 Magnetoresistance in normal metals</td>
<td>157</td>
</tr>
<tr>
<td>13.2 Magnetoresistance in ferromagnetic metals</td>
<td>158</td>
</tr>
<tr>
<td>13.2.1 Anisotropic magnetoresistance</td>
<td>158</td>
</tr>
<tr>
<td>13.2.2 Magnetoresistance from spontaneous magnetization</td>
<td>159</td>
</tr>
<tr>
<td>13.2.3 Giant magnetoresistance</td>
<td>160</td>
</tr>
<tr>
<td>13.3 Colossal magnetoresistance</td>
<td>164</td>
</tr>
<tr>
<td>13.3.1 Superexchange and double exchange</td>
<td>164</td>
</tr>
<tr>
<td>Homework</td>
<td>168</td>
</tr>
<tr>
<td>14 Exchange bias</td>
<td>169</td>
</tr>
<tr>
<td>14.1 Problems with the simple cartoon mechanism</td>
<td>171</td>
</tr>
<tr>
<td>14.1.1 Ongoing research on exchange bias</td>
<td>172</td>
</tr>
<tr>
<td>14.2 Exchange anisotropy in technology</td>
<td>173</td>
</tr>
<tr>
<td>III Device applications and novel materials</td>
<td>177</td>
</tr>
<tr>
<td>15 Magnetic data storage</td>
<td>177</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>15.2 Magnetic media</td>
<td>181</td>
</tr>
<tr>
<td>15.2.1 Materials used in magnetic media</td>
<td>181</td>
</tr>
<tr>
<td>15.2.2 The other components of magnetic hard disks</td>
<td>183</td>
</tr>
<tr>
<td>15.3 Write heads</td>
<td>183</td>
</tr>
</tbody>
</table>
Contents

15.4 Read heads 185
15.5 Future of magnetic data storage 186

16 Magneto-optics and magneto-optic recording 189

16.1 Magneto-optics basics 189

- 16.1.1 Kerr effect 189
- 16.1.2 Faraday effect 191
- 16.1.3 Physical origin of magneto-optic effects 191

16.2 Magneto-optic recording 193

- 16.2.1 Other types of optical storage, and the future of magneto-optic recording 196

17 Magnetic semiconductors and insulators 197

17.1 Exchange interactions in magnetic semiconductors and insulators 198

- 17.1.1 Direct exchange and superexchange 199
- 17.1.2 Carrier-mediated exchange 199
- 17.1.3 Bound magnetic polarons 200

17.2 II–VI diluted magnetic semiconductors – (Zn,Mn)Se 201

- 17.2.1 Enhanced Zeeman splitting 201
- 17.2.2 Persistent spin coherence 202
- 17.2.3 Spin-polarized transport 203
- 17.2.4 Other architectures 204

17.3 III–V diluted magnetic semiconductors – (Ga,Mn)As 204

- 17.3.1 Rare-earth–group-V compounds – ErAs 207

17.4 Oxide-based diluted magnetic semiconductors 208

17.5 Ferromagnetic insulators 210

- 17.5.1 Crystal-field and Jahn–Teller effects 210
- 17.5.2 YTiO$_3$ and SeCuO$_3$ 211
- 17.5.3 BiMnO$_3$ 213
- 17.5.4 Europium oxide 214
- 17.5.5 Double perovskites 215

17.6 Summary 215

18 Multiferroics 216

18.1 Comparison of ferromagnetism and other types of ferroic ordering 216

- 18.1.1 Ferroelectrics 216
- 18.1.2 Ferroelastics 219
- 18.1.3 Ferrotoroidics 220

18.2 Multiferroics that combine magnetism and ferroelectricity 221

- 18.2.1 The contra-indication between magnetism and ferroelectricity 222
Contents

18.2.2 Routes to combining magnetism and ferroelectricity 223
18.2.3 The magnetoelectric effect 225
18.3 Summary 228
Epilogue 229
Solutions to selected exercises 230
References 262
Index 270