Atlas Status and Perspectives

Bruno Mansoulié (IRFU-Saclay)

On behalf of the ATLAS Experiment
• **The hot news: Heavy Ion analysis**

• **Data taking in 2010**
 – Luminosity, Data taking & quality, trigger

• **Detector performance**
 – e, γ, µ, τ, jets, E_{T}-miss, b-tag…

• **Physics analyses and results**
 – Jets, W, Z, γ, top

• **Prospects for Higgs search**
Muon Spectrometer ($|\eta|<2.7$): air-core toroids with gas-based muon chambers
Muon trigger and measurement with momentum resolution < 10% up to $E_\mu \sim 1$ TeV

Length : ~ 46 m
Radius : ~ 12 m
Weight : ~ 7000 tons
~10^8 electronic channels
3000 km of cables

3-level trigger reducing the LVL1 rate to ~200 Hz

Inner Detector ($|\eta|<2.5$, $B=2T$):
Si Pixels, Si strips, TRT
Precise tracking and vertexing,
$\sigma/p_T \sim 3.8 \times 10^{-4}$ p_T (GeV) $\oplus 0.015$

EM calorimeter: Pb-LAr Accordion
e/γ trigger, identification and measurement
E-resolution: $\sigma/E \sim 10%/\sqrt{E} \oplus 0.007$
granularity : .025 x .025 \oplus strips

HAD calorimetry ($|\eta|<3$): segmentation 0.1 x 0.1
Fe/scintillator Tiles (central), Cu/W-LAr (fwd)
E-resolution: $\sigma/E \sim 50%/\sqrt{E} \oplus 0.03$
FWD calorimetry: W/LAr $\sigma/E \sim 90%/\sqrt{E} \oplus 0.07$
Heavy Ions

- Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at $\sqrt{s(\text{NN})} = 2.76$ TeV

- Use of the excellent jet and hadron calorimetry
Luminosity

- Measured by several different detectors and methods, consistency to \(~2\%\).

- Present uncertainty on absolute luminosity determination (p-p): 11\% limited by the measurement of beam current.

- Prospects to reduce strongly soon (5 to 6 \%)
Data taking and data quality

- Very good recording efficiency
 - Stable beams to disk (includes ID voltages rise, dead time, etc.)
- And data quality
 - Disk to physics analysis
 - Latest reprocessing even better

<table>
<thead>
<tr>
<th>Inner Tracking Detectors</th>
<th>Calorimeters</th>
<th>Muon Detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>LAr EM</td>
<td>MDT</td>
</tr>
<tr>
<td>SCT</td>
<td>LAr HAD</td>
<td>RPC</td>
</tr>
<tr>
<td>TRT</td>
<td>LAr FWD</td>
<td>CSC</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>99.0</td>
<td>90.5</td>
<td>99.9</td>
</tr>
<tr>
<td>99.9</td>
<td>96.6</td>
<td>96.8</td>
</tr>
<tr>
<td>100</td>
<td>97.8</td>
<td>99.9</td>
</tr>
<tr>
<td></td>
<td>94.3</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.8</td>
</tr>
</tbody>
</table>

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in pp collisions at $\sqrt{s}=7$ TeV between March 30th and October 31st (in %). The inefficiencies in the calorimeters will largely be recovered in a future data reprocessing.

- Operational channels: 97 to 100 % depending on system
Trigger

- **Good understanding of trigger primitives, thresholds…**
 - EM
 - level 1 calorimeter
 - Trigger vs Readout
 - Muon
 - level 2
 - Trigger threshold (4 GeV)

- **Good control of rates, evolution with luminosity…**

 3 level trigger
 - L1
 - L2
 - Event Filter

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Understanding the Detector: a few examples

- Pixel detector alignment
 (transverse plane, autumn reprocessing)

- Transition Radiation threshold

- EM calorimeter: timing
Electrons and photons

- Inclusive electron spectrum

- All 2010 data
 - First processing
 - Several triggers according to luminosity, rescaled
Di-electron mass

- **5 GeV di-electron trigger**
 - prescaled in later data
 - produces shoulder at 15 GeV

- **Z peak with full 2010 data**
 - All EM calorimeter
 - Autumn reprocessing
 - Fit : Breit-Wigner \(\otimes \) Crystal Ball
 - \(\sigma \) quoted : Crystal Ball right

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Direct photons

• Data: photon / π^0

Very fine granularity
first compartment
in EM calorimeter

(This 21 GeV $E_T\pi^0$
would pass cuts in S2!)

• Preliminary analysis of direct photons
 Isolated
 Background: fake photons (π^0,η), QED radiation
 Purity reaches ~70% at 25 GeV E_T

• Just released: cross-section on 880 nb$^{-1}$
 see F Bucci’s Talk at Ann Arbor Dec 14th

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
• **Di-muon mass spectrum**
 - Heavily used in resolution studies

• **Z peak**
 - Quite close to ultimate (expected) performance
Taus

- **Tau-Identification**
 - Tracking
 - fine grained calo
 - Very good simulation

- Observation of $W \rightarrow \tau \nu$
 (small statistics)

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
$Z \rightarrow \tau \tau$

\mathbf{ATLAS}

EXPERIMENT

$p_T(\mu) = 18$ GeV
$p_T^{\text{vis}}(\tau_H) = 26$ GeV
$m_{\text{vis}}(\mu, \tau_H) = 47$ GeV
$m_T(\mu, E_T^{\text{miss}}) = 8$ GeV
$E_T^{\text{miss}} = 7$ GeV

Run Number: 160613, Event Number: 9209492
Date: 2010-08-03 02:12:37 CEST

$Z \rightarrow \tau \tau$
Candidate in 7 TeV Collisions

3-prong hadronic tau decay

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Jets

- Jet Energy Scale
 - Initial uncertainty < 10%
 - From test-beam, M-C

- In-situ studies
 - Jet balance
 - Single hadron p/E

in reach soon: 3-4%
missing E_T

- Excellent control of tails

- Very good resolution (as expected)
B-tagging

- Algorithms already quite under control
 - Good pixel alignment
 - Calibration with data (jets with muons)
 (Simplest algorithm, better ones being calibrated on data…)

Detail
top→ e-μ
candidate

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Jets

- Early measurement of jet cross-section (published)
 - Up to 500 GeV
 - Excellent agreement with NLO QCD

- All 2010 stats
 - Dijet masses up to 3.7 TeV!
 (MC is LO Pythia, normalized to data)
Jets: search for new phenomena

- Strongly coupled new physics: accessible with few data

Published

Resonance search

\[0.50 < m(q^*) < 1.53 \text{ TeV} @ 95\% \text{ CL} \]

- Exceed TeVatron limits

Contact interaction (angular dist)

\[\Lambda < 3.4 \text{ TeV} @ 95\% \text{ CL} \]
• Published cross-section on early data (with Z cross-section)
 – limited by luminosity uncertainty
 – Excellent agreement with NNLO QCD

• Full data 2010

 \(e \) or \(\mu \ p_T > 20 \text{ GeV} \), \(E_T^{\text{miss}} > 25 \text{GeV} \)

 119k electron
 135k muon candidates

 Stat errors only
 MC normalized to data
Jet multiplicity
Stat error only
MC normalized to data

W \ p_T
• Final state includes several ingredients of analyses: $e, \mu, E_T^{\text{miss}}, b$-tag

• Sizeable backgrounds from QCD and $W + \text{jet}$
 \Rightarrow (mostly) data-driven estimates

• Cross-section from combined likelihood fit on 3 pb$^{-1}$ data
Top: 1 lepton + jets

- 1 e or \(\mu \) \(p_T > 20 \) GeV, \(E_T^{\text{miss}} > 20 \) GeV, \(E_T^{\text{miss}} + m_T(W) > 60 \) GeV

- **Signal**: 4-jets + 1 b-tag; 3-jets used as cross-check.

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Top: 2 leptons + jets

- νe or $\nu \mu \mu \mu \mu \mu \mu \mu \mu > 20$ GeV, $E_{T\text{miss}} > 40$ (resp 30) GeV, exclude M(Z) region

- $e \mu$: $p_T > 20$ GeV, Total E_T (scalar) > 150 GeV
Top cross-section (combined)

\[\sigma_{\bar{t}t} = 145 \pm 31^{+42}_{-27} \text{ pb} \]

- Significance \(\sim 4.8 \sigma \) (with respect to background only hypothesis).

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Di-bosons

Other event displays on Atlas public web page: WW => ee, µµ, eµ candidates

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
Prospects for Higgs search

- Recently updated sensitivity at 7, 8, 9 TeV for strategy evaluation
 - New cross-sections (ex $gg \rightarrow H : + 30\% \ [\text{NNLO} + \text{NNLL}]$)
 - New modes studied and/or added to combination

- Median exclusion region at 7 TeV for 1 fb$^{-1}$: 129-460 GeV

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010
At 7 TeV c.o.m., 5 fb\(^{-1}\) allows to "close the gap" with LEP limit.

+ 1 TeV => equivalent to + 20% luminosity for Higgs sensitivity.
Conclusion

• Powerful detector, excellent status

• Published results with limited statistics
 – Jets cross-section
 – W, Z cross-section

• Many preliminary results to be published soon
 – Direct photon cross-section, Top cross-section…

• Large scope of results with 2010 data

• Also extensive work on backgrounds, min bias, underlying event, pileup

=> Entering discovery range, but also precision measurements!

• All results available on https://twiki.cern.ch/twiki/bin/view/AtlasPublic
Additional slides
Direct photon measurement

- Photons selected and isolated ($E_T [\Delta R < 0.4] < 3$ GeV)
- Good agreement with Jetphox (NLO QCD) above 25 GeV E_T
- More systematics below (data and prediction)
- Cross-section 30 times higher than TeVatron.
Minimum Bias, Underlying event

- charged particle multiplicity in Min Bias events: higher than expected

Same is true for the underlying event

Bruno Mansoulié (IRFU-CEA), Challenges for Precision Physics at LHC, Paris 2010