Alignment of the CMS Silicon Tracker – and how to improve detectors in the future

Claus Kleinwort*, Frank Meier

*DESY Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
bPaul Scherrer Institut, OFLC/009, 5232 Villigen, Switzerland

Abstract
The complex system of the CMS all-silicon Tracker, with 15 148 silicon strip and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. The alignment of pixels modules is crucial for the analyses requiring a precise vertex reconstruction. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. Statistical precision of the alignment of the module with respect to the particle trajectories to less than 10 microns has been achieved. The results have been validated by several data-driven studies (track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

Recent developments include the determination of sensor bow and displacements between sensors of composite modules. Thoughts on improving future detectors with respect to alignment are given.

Keywords: Pixel detector, CMS, track-based alignment, Millepede-II, Broken Lines

1. Introduction

The all-silicon inner tracker of the CMS detector at CERN consists of 15 148 silicon strip and 1440 silicon pixel modules in a barrel-and-endcap configuration. Its main purpose is to determine track parameters of charged particles produced in proton-proton and heavy ion collisions. The parameters to be delivered per track are the charge-signed curvature \(\kappa \) (i.e. inverse transverse momentum), the impact parameters in the transverse plane and along the beam axis, \(d_x \), \(d_y \), respectively, and the polar angles \(\theta \) and \(\phi \). The intrinsic hit resolutions of the detector modules are of the order of a few tens of microns, depending on module type and location. In order to determine the track parameters with high precision, the positions of the sensor modules need to be known better than their resolution. Alignment using large amounts of track data (typically several millions) is one approach to fulfill this requirement.

2. Track-based alignment

The use of tracks to align a tracking detector is possible under the assumption, that tracks may be described using a limited and sufficient number of parameters in an appropriate way to predict their paths. Misalignment leads to a systematic distortion of the measurements per module which can be determined using sufficiently large number of tracks and their hit signals.

In CMS, the alignment software consists of two independent algorithms, tools for the study of random and systematic misalignments and an extensive collection of tools to monitor and visualize the performance and geometry of the detector. They use track data from collision or cosmic ray muons, both as simulated and real data.

Track-based alignment relies on a suitable description of the track and its propagation through matter, as defined by the chosen detector geometry. It can be formulated as a linear least squares problem where the following expression needs to be minimized:

\[
\chi^2(p, q) = \sum_{j} \sum_{i} r_{ij}(p, q_i) V_{ij}^{-1} r_{ij}(p, q_i) \quad (1)
\]

where \(r_{ij} \) is the residual vector containing all residuals from the tracks used and their hits, defined as

\[
r_{ij} = \text{track-model prediction} - \text{measured hit}.
\]

The residuals are a function of \(p \), the vector containing all alignment parameters describing the actual geometry and \(q_i \), the track parameters of the \(j \)th track. \(V_{ij}^{-1} \) is the inverse covariance matrix containing all information on the measurement precision and their correlations. Position and orientation of the detector modules contribute 6 or 5 degrees of freedom for silicon pixel and strip detectors, respectively. This defines the size of a sub-vector of \(p \) describing one sensor.

Using a sufficiently large sample of tracks, equation (1) and its summands follow a \(\chi^2 \) distribution for a corresponding num-

*Both authors on behalf of the CMS Collaboration
Email addresses: claus.kleinwort@desy.de (Claus Kleinwort), frank.meier@psi.ch (Frank Meier)

1Corresponding author
ber of degrees of freedom (ndof), obeying
\[\langle \chi^2(p, q) \rangle_{\text{ndof}} = 1 \quad \langle \text{prob}(\chi^2, \text{ndof}) \rangle = \frac{1}{2} \] (2)

In the case of a detector of the size as in CMS, alignment algorithms need to reduce their complexity while preserving their focus on solving the problem for two reasons: 1) The total number of parameters \(p \) and \(q \) gets large. Aligning 16,000 modules for position and angle leads to about 60,000 parameters in \(p \). The developments described in this paper will increase this number. 2) The results should be delivered within a reasonable time-frame. The two approaches in CMS to manage this are as follows:

Local algorithm. This algorithm reduces the workload by\[\text{aligning the modules independently ignoring correlations at first glance. Each module is forced to the position predicted by the track hits from the other (unaligned) modules. Intrinsically, it uses the track parametrization and propagation from the CMS tracking, which takes all necessary effects of the magnetic field and material interactions into account. This approach recovers correlations between modules by iterating over the same field and material parameters several times. At each iteration the tracks are re-aligned using the alignment corrections obtained in the previous iteration. Eventually the procedure yields converged alignment constants. This algorithm is known as the HIP-algorithm}\[2,3,13\].

Global algorithm. This approach reduces the complexity by\[\text{the observation that it is sufficient to solve for the module parameters} \ p \ \text{alone. This can be achieved by requiring independent measurements and the use of block-matrix theorems. This is implemented in the Millepede-II alignment algorithm}\[4\]. As this presentation focuses on some recent results produced using this algorithm, a more detailed description follows now.

2.1. Millepede-II

To accommodate for nonlinearities introduced by the track parametrization (q) and by the module parameters (p), equation (1) needs to be linearized:
\[\chi^2(p, q) = \sum_{j} \frac{1}{\sigma_{ij}} \left(m_{ij} - f_{ij}(p_0, q_0) - \frac{\partial f_{ij}}{\partial p} \Delta p - \frac{\partial f_{ij}}{\partial q} \Delta q \right)^2 \] (3)

where \(f_{ij} \) is the hit position predicted by the track model from track reconstruction and \(m_{ij} \) is the measured hit position. Assuming uncorrelated measurements allows to replace the inverse covariance matrix by \(\frac{1}{\sigma_{ij}} \) with \(\sigma_{ij} \) the Gaussian error of the measured hit position.

The track model used in CMS is the Kálmán filter description\[13\], including proper description of material effects\[5\] and the propagation in the magnetic field\[6\]. By design, it is a sequential fit\[13\] and cannot produce the covariance matrix for all track parameters. In principle, it is possible to gain this information for all tracks a posteriori, but the Broken Lines approach as described in\[7\] can be implemented more efficient and is equivalent to the Kálmán approach. A brief description follows:

A charged particle traversing material experiences multiple scattering, mainly due to Coulomb interaction with the electrons in the atoms, resulting in a spatial shift and a change of the particle direction after leaving the material compared to propagation in vacuum. The mean of the deflection angle due to this effect is \(\langle \beta \rangle = 0 \). The distribution of the deflection angles can be approximated within certain limits as a Gaussian standard deviation \(\sigma(\beta) \) by the following formula\[8\]:
\[\sigma(\beta) = \frac{13.6 \text{ MeV}}{v_p} \sqrt{\kappa/X_0} \left(1 + 0.038 \ln (x/X_0) \right) \] (4)

where \(v = \beta c \) (here \(\beta \) as rel. velocity factor) is the velocity of the particle, \(p \) its momentum and \(z \) the charge. \(x/X_0 \) is the thickness of the traversed medium in units of radiation lengths.

Equation (4) takes into account all material traversed by the particle for the full trajectory. Care has to be taken during propagation, as simple summing up contributions of sub-paths leads to too large estimates of \(\sigma(\beta) \) by the ln-term in the bracket (details in reference). It is standard procedure to treat a “thick” scatterer (material with a finite thickness) as two infinitely “thin” scatterers with same mean and sigma spaced by \(1/\sqrt{3} \) of the length of the “thick” scatterer. In a tracking detector as in CMS, most of the material is concentrated at layers coinciding with the detector modules. They consist of matter in which the sensor interaction takes place and of non-sensing matter like support structures, cabling and cooling pipes. So the two “thin” scatterers coincide in the detector planes.

To determine the momentum of the charged particles’ tracks, a strong and sufficiently homogeneous magnetic field of 3.8 T is present in the tracker. This can be taken into account by adjusting the expectation value of the scattering angle of a propagated particle \(\langle \beta \rangle \) (0 without B-field) to the value defined by the accumulated Lorentz force while propagating through the field.

Taking all this into account, the sum over all hits of one track in \[3\] becomes
\[\chi^2(\kappa, u) = \sum_{i=1}^{n_{\text{meas}}} (m_i - P_i u_{\text{int}})^T V_{\text{meas}}^{-1} (m_i - P_i u_{\text{int}}) \]
\[+ \sum_{i=2}^{n_{\text{scat}}} \beta_i (\kappa, u)^T V_{\beta_i}^{-1} \beta_i (\kappa, u) \] (5)

where \(\beta_i \) is a vector of additional parameters of the track at every scatterer to account for the deflection angles. \(\kappa \) is the charge-signed curvature, \(u = (u_1, \ldots, u_{n_{\text{meas}}}) \) describe the hit position in some local frame of the sensor and the projection matrix \(P_i \) translates between the track frame and the local frame. The sums run over \(n_{\text{meas}} \) recorded hits and \(n_{\text{scat}} \) scatterers along one track, normally \(n_{\text{meas}} < n_{\text{scat}} \) as the detector is neither fully hermetic nor efficient.

Solving for the minimum of eq. (5) leads to a bordered band matrix: One \(\beta_i \) depends on the hit and its neighbours only, leading to a band matrix structure of band width \(m \). The border \(b \) in the matrix comes from \(\kappa \), which is connected to every hit
along a track. This structure allows for fast solution and de-
termination of the covariance matrix using root-free Cholesky
decomposition with a numeric complexity of $O(n^2(m + b))$, com-
pared to $O(n^3)$ for inversion. This is needed for the refit internal
to MillePede for single tracks.

All this leads to a track description equivalent to the Kálmán
filter model, as shown in [9]. It has the advantage, that the in-
verse covariance matrix for one track is a bordered band matrix,
which can be inverted by root-free Cholesky decomposition, a
faster approach than inversion.

3. More detailed surface description

Millepede-II uses an internal track refit as part of its proce-
dure. Careful studies of its results as a function of track param-
eters have been carried out. Deviations were found while inves-
tigating tracks from cosmic ray muons. A strong dependence
of the (χ^2) on the distance of closest approach d_0 to the beam-
line (corresponding to track parameter d_{xy}) was found. This can
be seen in figure 2 for flat module. Several hypotheses
for the source of this effect have been analyzed. It is an intrin-
sic property of cosmic rays to have
dependence as function of d_0. Several hypotheses
have been analyzed. It is an intrin-
sic property of cosmic rays to have
dependence as function of d_0.

Solving the alignment problem for all these added param-
eters lead to the determination of roughly 200 000 parameters
for the full tracker with Millepede-II in one run. This was per-
formed on a computer equipped with a Intel Nehalem processor
and 24 GB of RAM within 6 hours of wall-clock time. Crucial
parts of the algorithm were rewritten for multi-threading using
OpenMP™ TM to benefit from parallel processing on the 8
cores the processor offers. The memory consumption for stor-
ing the matrix of the normal equations was reduced by using
sparse matrix storage schemes and adaptive selection of storage
precision of the floating-point numbers at runtime, preserving
the required overall precision.

3.1. Estimation of parameter precision

The Gaussian error of the parameters for the bows were esti-
187 mated using the following observation: When solving for a lin-
ear least squares problem on a computer, the crucial step takes
place while solving for x in $Mx = y$, M being the Jacobian
matrix of the normal equations. M^{-1} would be the covariance
matrix of the parameters, usually not feasible to solve for as
the numerical complexity goes with $O(n^3)$ for matrix inversion,
compared to other methods for solving for x. For this reason,
MillePede uses the MINRES algorithm [10] as a solver instead
of performing a full inversion. M^{-1} is therefore not calculated.
Individual row vectors M_{ij}^{-1} of M^{-1} can be calculated by solv-
ing for $MM_{ij}^{-1} = \delta_i$, where δ_i is the Kroneckerdelta. This has
been carried out, figure 3 shows the results for a part of the
pixel barrel detector. The sagitae in the local v direction can be
determined to a precision of a few microns. This procedure de-
livers the statistical error only. No estimate on systematic errors
has been carried out yet.
Figure 1: Residuals perpendicular to surface along modules: (a) Shown are the observed residuals in the two innermost layers of the strip barrel (tracker inner barrel, TIB), expressed as $dw = du/L \tan \alpha$. Green circles: alignment assuming a flat surface. Blue squares: assuming a curved surface (2nd order polynomial in u and v plus mixed term). The measured quantities were the residual du of the measured hit and the position predicted by the track fit, and the track angle α, measured to the normal in direction of u and v. Only hits fulfilling $|\tan \alpha| > 1/2$ have been used. Results from all modules were used, working on 200,000 cosmic ray tracks. (b) Same shown along v for composite modules in two innermost layers of the tracker barrel with coarser modules (tracker outer barrel, TOB). Green circles: alignment assuming one single flat sensor. Blue squares: assuming two flat sensors, split at $2v/L_0 = 0$, bows neither determined nor corrected for. Only hits fulfilling $|\tan \alpha| > 1/2$ have been used. Results from all modules were used, working on 200,000 cosmic ray tracks. The splitted surface assumption results in a flatter distribution than the single surface. Observe that in this study there was no correction for the bow, hence the right side shows a bow.

Figure 3: Error estimate of some parameters (statistical error only): Shown are the sagittae in v of pixel modules in the innermost layer, determined using a set of collision tracks (1.3 million minimum bias events at $\sqrt{s} = 7$ TeV corresponding to 2.8 million good tracks) and cosmic ray tracks (2.5 million events, corresponding to 1.8 million tracks selected for alignment). The lower part shows the error bars centered at zero.

4. Considerations for future detectors

From the experience of the alignment of a tracking detector at CMS, the following considerations may be helpful in order to enhance the alignment capability of future detectors of similar design.

We can only speak for the configuration we know, so these thoughts need proper adjustments for other cases and are far from being universal and exhaustive.

Resolution. This seems to be trivial. Two aspects are worth mentioning: The fact that pixels measure two coordinates allows for alignment in all six basic degrees of freedom. Although strips can be aligned in all three rotations, doing so with pixels is far easier. A second important thing is the very high precision of the pitch along one sensor and its constantness on the full area.

Module size. Larger size leads to more hits on one module for a given spatial hit density. This immediately improves the alignment precision by \sqrt{N}. It also improves the determination of angular alignment, as a larger module size translates to a longer lever arm.

Rigid mounting vs. precision mounting. Experiences from CMS show, that certain modules can be aligned even though they are displaced by few mm (sic!) from the design position. If resolution and size are already well chosen, precision mounting does not necessarily help in improving alignment. There might be some configurations for trigger layers, where precision mounting may help for other reasons.

On the other hand, rigid mounting is very important. We understand this as that the modules stay in their position over time. Track-based alignment needs data gathered over long time-periods. As it is averaging in nature, it assumes stability during the time required for recording the data it uses. Movements due to vibrations or imposed by changing conditions like temperature or magnetic field must be slower than the typical data-taking time.

Geometric shape. Barrel-and-endcap configurations have a great advantage for alignment: They deviate sufficiently from an “ideal” sphere-shaped layered detector. The modules are also flat (or just slightly bowed), which naturally leads to a spread in incident angles on top of what the event topologies may deliver. This helps in creating constraints on several alignment modes.

Tracks from non-standard origin. Such tracks add more constraints on possible movements of modules which are weakly sensitive or even insensitive of changing the χ^2. Cosmic ray muons are an example in the case of CMS. They come at large d_0 for free whereas in collision data tracks with large d_0 are rare events from secondary vertices. They also may connect parts of the detector with straight tracks which would normally not
be connected without imposing special constraints. An exam-
ple for this are the upper and lower hemispheres of a detector,
which are connected with a straight track in the case of cosmic
muons. Collision tracks connect these parts as well, but the use
of a common-vertex constraint is necessary.

Optical survey. Survey has a huge drawback. Usually, survey
is performed under certain artificial conditions before the final
commissioning. It is a, hopefully well established, assumption
that the survey data stays reliable over time.

Survey is still helpful in several ways. It delivers an indepen-
dent knowledge on the geometry at the beginning of the detec-
tors’ operation. As the already mentioned tradeoff is present,
the investment in survey should be limited. Think of an easy
way of determining the positions of modules. In our case, po-
sition marks from the layer masks used by the manufacturing
process were still visible after mounting. A standard single-
reflex digital camera with a decent macro lens was used to de-
termine relative positions of modules w.r.t their neighbours at a
precision of a few micrometers. Such information can be used as
an independent measurement for validation of the alignment
or it may be treated as independent measurements included in
the alignment algorithm.

Overlap. Regions with overlap are useful for alignment and
monitoring of it: Particle tracks have short propagation dis-
tances and therefore their trajectories are less prone to effects
imposed by multiple Coulomb scattering. The short distance
between two sensors along a particle trajectory in regions of
overlap connects them together very tightly.

Unnecessary features. In the case of silicon detectors, imple-
menting hardware-based alignment systems is a difficult task.
Either they rely on precision mounting (e.g. some independent
sensors mounted on the frame of the silicon sensors) or they
mimick tracks by using lasers and holes in the metalization.
Only when their precision is at least comparable to the intrin-
sic track hit resolution, a benefit may be realizable. They also
may suffer from systematic problems, as their tracks have no
geometric spread.

Alignment studies. The main reason why CMS achieved to
align its inner tracker within that short timeframe was the use of
well-known algorithms, the work of experienced people and the
extensive use of a versatile alignment simulation framework. It
is paramount to have the ability to simulate the detector as close
to reality as possible before the final construction. There will
still be surprises, like the bowed sensors.

5. Conclusions

The inclusion of a more complex surface description of the
silicon sensors of the CMS inner tracker has been shown. This
was able to accommodate for discrepancies found in studies on
the alignment quality and will improve the track reconstruction
in CMS. The sensor bows can be determined with a statisti-
cal precision of a few micrometers. We also presented some
thoughts on how future tracking detectors might benefit from
the experience gathered during our work.

6. Acknowledgment

The authors would like to express gratitude to Volker Blobel
for the invention and implementation of the Milleped-II algo-
rithm and the support for it.

The extensions for multithreading and storage optimizations
in Millepede-II was supported by the German Helmholtz Alli-
ance which also maintains the software package[13].

References

[9] V. Blobel, C. Kleinwort and F. Meier. Fast alignment of a complex track-
[10] C. C. Paige and M. A. Saunders Solution of sparse indefinite systems of