Mathematical Analysis of Evolution, Information, and Complexity

Edited by
Wolfgang Arendt and Wolfgang P. Schleich
Contents

Preface XV

List of Contributors XIX

Prologue XXIII
Wolfgang Arendt, Delio Mugnolo and Wolfgang Schleich

1 Weyl's Law 1
Wolfgang Arendt, Robin Nittka, Wolfgang Peter, Frank Steiner

1.1 Introduction 1

1.2 A Brief History of Weyl's Law 2

1.2.1 Weyl's Seminal Work in 1911–1915 2

1.2.2 The Conjecture of Sommerfeld (1910) 5

1.2.3 The Conjecture of Lorentz (1910) 7

1.2.4 Black Body Radiation: From Kirchhoff to Wien's Law 8

1.2.5 Black Body Radiation: Rayleigh's Law 10

1.2.6 Black Body Radiation: Planck's Law and the Classical Limit 12

1.2.7 Black Body Radiation: The Rayleigh–Einstein–Jeans Law 14

1.2.8 From Acoustics to Weyl's Law and Kac's Question 18

1.3 Weyl's Law with Remainder Term. I 19

1.3.1 The Laplacian on the Flat Torus \mathbb{T}^2 19

1.3.2 The Classical Circle Problem of Gauss 20

1.3.3 The Formula of Hardy–Landau–Voronoï 21

1.3.4 The Trace Formula on the Torus \mathbb{T}^2 and the Leading Weyl Term 22

1.3.5 Spectral Geometry: Interpretation of the Trace Formula on the Torus \mathbb{T}^2 in Terms of Periodic Orbits 24

1.3.6 The Trace of the Heat Kernel on d-Dimensional Tori and Weyl's Law 25

1.3.7 Going Beyond Weyl's Law: One can Hear the Periodic Orbits of the Geodesic Flow on the Torus \mathbb{T}^2 27

1.3.8 The Spectral Zeta Function on the Torus \mathbb{T}^2 28

1.3.9 An Explicit Formula for the Remainder Term in Weyl's Law on the Torus \mathbb{T}^2 and for the Circle Problem 29
1.3.10 The Value Distribution of the Remainder Term in the Circle Problem 32
1.3.11 A Conjecture on the Value Distribution of the Remainder Term in Weyl's Law for Integrable and Chaotic Systems 34
1.4 Weyl's Law with Remainder Term. II 38
1.4.1 The Laplace–Beltrami Operator on d-Dimensional Compact Riemann Manifolds M^d and the Pre-Trace Formula 38
1.4.2 The Sum Rule for the Automorphic Eigenfunctions on M^d 39
1.4.3 Weyl's Law on M^d and its Generalization by Carleman 40
1.4.4 The Selberg Trace Formula and Weyl's Law 42
1.4.5 The Trace of the Heat Kernel on M^2 44
1.4.6 The Trace of the Resolvent on M^2 and Selberg's Zeta Function 45
1.4.7 The Functional Equation for Selberg's Zeta Function $Z(s)$ 48
1.4.8 An Explicit Formula for the Remainder Term in Weyl's Law on M^2 and the Hilbert–Polya Conjecture on the Riemann Zeros 49
1.4.9 The Prime Number Theorem vs. the Prime Geodesic Theorem on M^2 51
1.5 Generalizations of Weyl's Law 52
1.5.1 Weyl's Law for Robin Boundary Conditions 52
1.5.2 Weyl's Law for Unbounded Quantum Billiards 53
1.6 A Proof of Weyl's Formula 54
1.7 Can One Hear the Shape of a Drum? 59
1.8 Does Diffusion Determine the Domain? 63
References 64

2 Solutions of Systems of Linear Ordinary Differential Equations 73
Werner Balser, Claudia Röscheisen, Frank Steiner, Eric Sträng
2.1 Introduction 73
2.2 The Exponential Ansatz of Magnus 76
2.3 The Feynman–Dyson Series, and More General Perturbation Techniques 78
2.4 Power Series Methods 80
2.4.1 Regular Points 80
2.4.2 Singularities of the First Kind 81
2.4.3 Singularities of Second Kind 82
2.5 Multi-Summability of Formal Power Series 84
2.5.1 Asymptotic Power Series Expansions 84
2.5.2 Gevrey Asymptotics 85
2.5.3 Asymptotic Existence Theorems 85
2.5.4 k-Summability 86
2.5.5 Multi-Summability 89
2.5.6 Applications to PDE 90
2.5.7 Perturbed Ordinary Differential Equations 91
2.6 Periodic ODE 92
2.6.1 Floquet–Lyapunov Theorem and Floquet Theory 92
Contents

2.6.2 The Mathieu Equation 93
2.6.3 The Whittaker–Hill Formula 93
2.6.4 Calculating the Determinant 94
2.6.5 Applications to PDE 94

References 95

3 Ascalar–Tensor Theory of Gravity with a Higgs Potential 99
 Nils Manuel Bezares-Roder, Frank Steiner

3.1 Introduction 99
3.1.1 General Relativity and the Standard Model of Particle Physics 99
3.1.2 Alternative Theories of Gravity and Historical Overview 111
3.2 Scalar-Tensor Theory with Higgs Potential 115
3.2.1 Lagrange Density and Models 115
3.2.2 The Field Equations 118
3.2.3 Field Equations After Symmetry Breakdown 119
3.2.4 Outlook 124
References 131

4 Relating Simulation and Modeling of Neural Networks 137
 Stefano Cardanobile, Heiner Markert, Delio Mugnolo, Günther Palm,
 Friedhelm Schwenker

4.1 Introduction 137
4.2 Voltage-Based Models 138
4.3 Changing Paradigm – From Biological Networks of Neurons to Artificial Neural Networks 142
4.4 Numerical Simulation of Neural Networks 143
4.5 Population-Based Simulation of Large Spiking Networks 148
4.6 Synaptic Plasticity and Developing Neural Networks 152
References 153

5 Boolean Networks for Modeling Gene Regulation 157
 Christian Wawra, Michael Kühl, Hans A. Kestler

5.1 Introduction 157
5.2 Biological Background 158
5.3 Aims of Modeling 160
5.4 Modeling Techniques 161
5.5 Modeling GRNs with Boolean Networks 162
5.6 Dynamic Behavior of Large Random Networks 165
5.7 Inference of Gene Regulatory Networks from Real Data 169
5.7.1 Problem Definition 170
5.7.2 Identifying Algorithms 170
5.7.3 Noisy Data and the Data First Approach 171
5.7.4 An Information Theoretical Approach 174
5.7.5 Using the Chi-Square Test to Find Relationships Among Genes 175
5.8 Conclusion 175
References 177

6
Symmetries in Quantum Graphs 181
 Jens Bolte, Stefano Cardanobile, Delio Mugnolo, Robin Nittka
6.1 Symmetries 181
6.2 Quantum Graphs 185
6.3 Energy Methods for Schrödinger Equations 186
6.4 Symmetries in Quantum Graphs 190
6.5 Schrödinger Equation with Potentials 192
6.6 Concluding Remarks and Open Problems 193
References 195

7
Distributed Architecture for Speech-Controlled Systems
 Based on Associative Memories 197
 Zöhre Kara Kayikci, Dmitry Zaykovskiy, Heiner Markert, Wolfgang Minker, Günther Palm
7.1 Introduction 197
7.2 System Architecture 199
7.3 Feature Extraction on Mobile Devices 202
7.3.1 ETSI DSR Front-End 202
7.3.1.1 Feature Extraction 202
7.3.1.2 Feature Compression 203
7.3.2 Implementation of the Front-End on Mobile Phones 204
7.3.2.1 Multi-Threading 204
7.3.2.2 Fixed-Point Arithmetic 204
7.3.2.3 Processing Time on Real Devices 205
7.4 Speech Recognition Systems Based on Associative Memory 205
7.4.1 Features to Subword Units Conversion using HMMs 206
7.4.1.1 Acoustic Models 206
7.4.1.2 Language Model and Dictionary 207
7.4.2 Subword Units to Words Conversion
 using Neural Associative Memory 207
7.4.2.1 Neural Associative Memories 207
7.4.2.2 The Neural Associative Memory-Based Architecture
 for Word Recognition 209
7.4.2.3 The Functionality of the Architecture 210
7.4.2.4 Learning of New Words 211
7.5 Words to Semantics Conversion using Associative Memory 211
7.5.1 Spoken Word Memory 212
7.5.2 Language Parser 213
7.5.3 Ambiguities 214
7.5.4 Learning of New Objects 215
7.6 Sample System/Experimental Results 215
7.7 Conclusion 216
References 217
Machine Learning for Categorization of Speech Utterances
Amparo Albalate, David Suendermann, Roberto Pieraccini, Wolfgang Minker

8.1 Introduction 219
8.2 An Overview of Pattern Recognition 222
8.3 Utterance Classification as a Text-Classification Problem 224
8.4 Utterance Corpus Description 225
8.5 Utterance Preprocessing 226
8.6 Feature Extraction Based on Term Clustering 227
8.6.1 Term Vector of Lexical Co-occurrences 228
8.6.2 Hard Term Clustering 229
8.6.2.1 Disambiguation 230
8.6.3 Fuzzy Term Clustering 231
8.6.4 Pole-Based Overlapping Clustering 231
8.6.4.1 PoBOC with Fuzzy C-medoids 232
8.6.5 Utterance Categorization 232
8.7 Supervised Methods for Utterance Categorization 233
8.7.1 Naïve Bayes Classifier 233
8.7.2 Vector Model with Term Weighting for Utterance Classification 233
8.7.2.1 Term Frequency 234
8.7.2.2 IDF, RIDF and ISCF Scores 234
8.8 Evaluation Methods and Results 235
8.8.1 Classification with One Labeled Utterance and Feature Extraction 235
8.8.2 Classification Based on F Samples per Category 236
8.9 Summary and Conclusion 239

References 239

Semi-Supervised Clustering in Functional Genomics
Johann M. Kraus, Günther Palm, Friedhelm Schwenker, Hans A. Kestler

9.1 Introduction 243
9.2 Biological Background 244
9.2.1 Functional Genomics 244
9.2.2 DNA Microarray Technology 244
9.3 Cluster Analysis 245
9.3.1 Clustering Microarray Data 246
9.3.2 Cluster Methods 248
9.3.2.1 Hierarchical Clustering 248
9.3.2.2 Partitional Clustering 250
9.3.2.3 Incremental Updates 252
9.3.2.4 Model-Based Clustering 253
9.3.2.5 Spectral Clustering and Other Graph-Based Methods 254
9.3.2.6 Biclustering 255
9.3.3 Cluster Validation 257
10.6 Invariant Features of Images 296
10.6.1 Statistical Moments and Fourier Descriptors 297
10.6.1.1 Statistical Joint Central Moments 297
10.6.1.2 Fourier Descriptors 297
10.6.2 Stereography and Topology 298
10.6.2.1 Stereography 298
10.6.2.2 Topology 299
10.6.3 Minkowski Functionals and Minkowski Valuations 301
10.6.3.1 Stochastic Geometry 301
10.6.3.2 Integral Geometry 302
10.6.3.3 Applications 303
10.7 Concluding Remarks 307
References 309

11 Boosting Ensembles of Weak Classifiers in High Dimensional Input Spaces 311
Ludwig Lausser, Friedhelm Schwenker, Hans A. Kestler
11.1 Introduction 311
11.2 Hypothesis Boosting Problem 312
11.3 Learn 313
11.4 Boosting by Majority 315
11.5 AdaBoost 316
11.5.1 Training Sample Error 317
11.5.2 Generalization Error 318
11.5.3 AdaBoost on Noisy Data 319
11.6 BrownBoost 320
11.7 AdaBoost for Feature Selection 323
11.8 Conclusion 325
References 331

12 The Sampling Theorem in Theory and Practice 333
Wolfgang Arendt, Michal Chovanec, Jürgen Lindner, Robin Nittka
12.1 Introduction and History 333
12.2 The Sampling Theorem in Applications 334
12.2.1 Applications in Theory 334
12.2.2 Applications in Practice 335
12.2.3 Special Case: Applications in the Field of Information Transmission 336
12.3 Mathematical Formulation of the Sampling Theorem 339
12.3.1 Notation 339
12.3.2 The Sampling Theorem 340
12.3.3 Efficient Proof 341
12.3.3.1 Dirichlet's Theorem 341
12.3.3.2 A First Attempt of a Proof 342
12.3.3.3 The Efficient Proof 343
12.3.4 Conventional Proof 344
12.3.4.1 Tempered Distributions 344
12.3.4.2 Fourier Transformation 345
12.3.4.3 Inversion Theorem 346
12.3.4.4 Examples 347
12.3.4.5 Convolution 348
12.3.4.6 The Conventional Proof 350
12.3.4.7 A Convolution Theorem for a Specific Function 352

References 353

13 Coding and Decoding of Algebraic–Geometric Codes 355
Martin Bossert, Werner Lütkebohmert, Jörg Marhenke
13.1 Introduction 355
13.2 Introduction to Linear Codes 355
13.3 Introduction to Forward Error Correction 357
13.3.1 Binary Symmetric Channel, BSC 358
13.3.2 Additive White Gaussian Noise Channel, AWGN 358
13.3.3 Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Decoding 359
13.3.4 Hard- and Soft-Decision Decoding 360
13.3.5 Bounded Distance Decoding 360
13.4 Algebraic–Geometric Codes 360
13.5 Computation of Riemann–Roch Spaces 363
13.6 Decoding up to Half the Minimum Distance 365
13.7 Interpolation-Based Decoding 368
13.8 Power Decoding of Low Rate Reed–Solomon Codes 372
13.9 Interpolation-Based Soft-Decision Decoding 373
13.10 Soft-Decision Decoding with the Dorsch Algorithm 376
References 377

14 Investigation of Input–Output Gain in Dynamical Systems for Neural Information Processing 379
Stefano Cardanobile, Michael Cohen, Silvia Corchs, Delio Mugnolo, Heiko Neumann
14.1 Overview 379
14.2 Introduction 379
14.3 The Basic Unit: Analytical Study of the Dipole 383
14.3.1 Well-Posedness Results 384
14.3.2 Linearization 385
14.4 The Basic Unit: Numerical Analysis of the Dipole 388
14.5 Model of a Recurrent Network 389
14.6 Discussion and Conclusions 391
References 392

15 Factorization 395
Rüdiger Mack, Wolfgang P. Schleich, Daniel Haase, Helmut Maier
15.1 Introduction 395
15.G.3 Discreteness of Momentum due to Interference 427
15.H Factorization with a Gauss Sum due to its Periodicity 429
References 430

16 Isomorphism and Factorization — Classical and Quantum Algorithms 433
Sebastian Dörn, Daniel Haase, Jacobo Torán, Fabian Wagner
16.1 Introduction 433
16.2 Factorization of Integers: Classical Algorithms 434
16.3 Graph Isomorphism: Classical Algorithms 435
16.4 Quantum Algorithms for Integer Factorization 436
16.4.1 The Quantum Fourier Transform and Period Finding 437
16.4.2 Generalization of the Period-Finding Algorithm 439
16.5 Quantum Approach to Graph Isomorphism 443
16.5.1 The Hidden-Subgroup Problem and Graph Isomorphism 443
16.5.2 The Quantum Query Model and Graph Isomorphism 444
16.5.3 Quantum Walks and the Fix-Automorphism Problem 445
16.6 Reductions of Integer Factorization and Graph Isomorphism to Ring Isomorphism 447
16.6.1 Factoring Integers and Finding Ring Automorphisms 448
16.6.2 Graph Isomorphism and Ring Isomorphism 449
References 451

17 QuickSort from an Information Theoretic View 455
Beatrice List, Markus Maucher, Uwe Schöning, Rainer Schuler
17.1 Introduction 455
17.1.1 Recursion for the Expected Number of Comparisons 457
17.2 An Upper Bound 458
17.3 A Lower Bound 459
17.4 The δ-Random Source 462
17.5 Conclusion 464
References 464
Further Reading 464

Index 465