References

References

Index

A
acceptor impurities 64
active medium 49, 51
amplitude 7, 10, 16, 21, 59
amplitude-division interference 111
amplitude-division interferometers 112
amplitude noise 80
angular frequency modulation
excursion 20
angular frequency modulation rate 20
angular frequency of a modulation signal 33
angular frequency of a beat signal 15, 20, 29, 33
angular frequency of an optical wave 7, 8, 13
atomic system 48
attenuation 129
avalanche photodiodes (APD) 91

B
beat signal 3, 15, 19
birefringent fibers 126
birefringent fiber FMCW gyroscopes 219, 221
birefringent fiber FMCW strain sensors 186, 189
birefringent fiber FMCW stress sensors 197, 198
Boltzmann constant 47, 63
Bragg acousto-optic diffraction 58
Bragg angle 59
Bragg frequency modulator 58
Brewster constant 196
butt-jointed connectors 138

central angular frequency 20, 40, 102
central angular frequency bandwidth 102
central wavelength 28, 32, 42, 215
characteristic equation 124
chopping frequency 84
coherece length 104, 150, 155
coherece theory 99
coherece time 104
coherece-division multiplexed fiber-optic FMCW interferometers 156
coherece-division multiplexing method 156
cohereent 12
collisional broadening 53
comple complex amplitude 10
comple complex degree of temporal coherence 105
comple complex wave function 15
conduction band 63
contrast 12, 19, 22, 34, 40
coupling-loss coefficient 198, 200
coupling ratio 131, 133
critical acceptance angle 121
cross talk 152, 157, 169
crystal-clad fiber-optic polarizers 136
current carriers 63
current density 73
cutoff wavelength 86

dark current 84, 96
de Broglie wave 64
degree of temporal coherence 105
delay time 19, 22, 26, 29, 104
deployment region 67
detectivity 85
differential birefringent fiber FMCW gyroscope 219
differential single-mode all-fiber FMCW gyroscope 215
digital signal processing method 233
direct band-gap semiconductors 65
direct transition 65
directivity 132
dispersion 129
distributed fiber-optic sensors 160
donor impurities 64
Doppler broadening 53
Doppler effect 27, 53
Doppler frequency shift 27, 32, 60, 164
double-beam interference 38
double-beam interferometers 111
double heterojunction lasers 72
driving circuits 79

effective refractive index 126, 129, 135, 143
eigen-value equation 123
Einstein spontaneous emission coefficient 49
Einstein stimulated absorption coefficient 49, 69
Einstein stimulated emission coefficient 49, 69
electric field 7, 10, 12
electric voltage 61, 96
electrons 62,
electro-optic coefficient 61
electro-optic effect 61, 161
electro-optic phase modulator 60
energy levels 47, 57, 62
excess loss 132
excited states 47, 50
expanded-beam connectors 138
external modulation 57
extrinsic fiber-optic sensors 160
extrinsic semiconductors 64
feedback light 80, 82, 109, 113
Fermi distribution 63, 70
Fermi energy (Fermi level) 63
fiber-optic components 130
fiber-optic connectors 138
fiber-optic directional couplers 131
fiber-optic Fabry-Perot FMCW interferometers 146
fiber-optic FMCW displacement sensors 161
fiber-optic FMCW gyroscopes 213, 215, 216, 219
fiber-optic FMCW strain sensors 182
fiber-optic FMCW stress sensors 194
fiber-optic FMCW temperature sensors 201
fiber-optic Mach-Zehnder FMCW interferometers 145
fiber-optic Michelson FMCW interferometers 142
fiber-optic phase modulator 60
fiber-optic polarization controllers 136
fiber-optic polarizers 135
fiber-optic sensors 159
fiber-optic splices 141
Fabry-Perot FMCW interferometer 119
forbidden bands 62
frequency bandwidth 56, 76, 85, 99
frequency-division multiplexed fiber-optic FMCW interferometers 150
frequency-division multiplexing method 150
frequency drift 80, 164, 216
frequency measurement 224
frequency modulation 57
frequency-modulated continuous-wave (FMCW) interference 16
frequency-modulated continuous-wave (FMCW) radar 2
frequency-modulated continuous-wave (FMCW) lidar 2
frequency of a beat signal 15
frequency of a modulation signal 24
frequency of an optical wave 8
fringes 11
fused fiber-optic directional couplers 134

F
Faraday effect 114
1/f noise 97

G
gain 51, 79, 94
gain coefficient 51, 73, 77
gain factor 73
gate signal 225, 227
gate width 225, 227
geometrical path difference 13
geometrical path length 13
gradient-index lenses 138, 140
ground state 47
guided modes 124, 135
gyroscopes 204

H
heterodyne interference 14
holes 63
homodyne interference 11
homojunction lasers 72

I
impurities 63, 73
incandescent sources 45
incoherent 12
indirect band-gap semiconductors 65
indirect transition 65, 66
initial phase of a beat signal 15
initial phase of an optical wave 11
insertion loss 115, 132
integrated optics (IO) 212
intensity (or irradiance) 10
intensity-division multiplexing method 181
intensity noise of the optical source 80, 107, 157, 211
interferometers 3, 111
interferometric fiber-optic sensors 161
intermodal dispersion 129
internal modulation 57
intrinsic fiber-optic sensors 160
intrinsic semiconductors 63
longitudinal modes 55
Lorentzian linetype 53
luminescent sources 45

M
Mach-Zehnder FMCW interferometer 118
material dispersion 129
Maxwell-Boltzmann statistics 47
mechanical phase modulator 60
metal-clad fiber-optic polarizer 135
metastable level 48, 50
Michelson FMCW interferometer 116
M×N multiple-port couplers 134
mode-coupling coefficient 200
modes of a fiber 124
modes of a laser 55, 74
modulation angular frequency 167
modulation frequency 77
modulation period 20
modulation signal 20, 24
multiple-beam interferometers 111
multiple-beam optical FMCW
interference 38
multiple-wavelength optical FMCW
interference 40
multiplexed fiber-optic FMCW
displacement sensors 165
multiplexed fiber-optic FMCW
temperature sensors 203
multiplexed fiber-optic FMCW
interferometers 149
multiplexed fiber-optic sensors 160
multiplication factor 92

N
noise-equivalent power (NEP) 83
noise in the detection process 96
normalized frequency 124
n-type semiconductors 64
number-fixed cycle-counting method 226
numerical aperture (NA) 122

O
occupational probability 63
open-loop gain 94
operating point 209
optical detectors (photodetectors) 83
optical fibers 121
optical FMCW waves 16
optical gradient-index lenses 140
optical interference 1
optical isolator 114
optical path difference 13, 20, 24
optical path length 13
optical sources 45
optical wavelength 13, 24, 42
optical waves 7
quantum detectors (photodetectors) 83
quantum efficiency 84
quantum-well lasers 73
quasi-distributed fiber-optic sensors 160
quasi-Fermi levels 68

R
radar 2
radiation energy density 49, 69
radiation mode 124
radiative transition 47, 51
Rayleigh scattering 130
reflectivity 56, 88
reflectometric birefringent fiber
 FMCW interferometric strain sensor 189
reflectometric distributed birefringent fiber
 FMCW stress sensor 198
reflectometric single-mode fiber
 FMCW temperature sensor 201
refractive index 13, 17, 28
relative refractive index difference 124
resistance 89
responsivity 84
rotation sensors (gyroscopes) 204

S
Sagnac effect 204
Sagnac interferometers 205
sawtooth-wave optical FMCW
 interference 20
sawtooth-wave optical FMCW waves 20
scale factor 209
self-coherence function 105
semiconductor lasers 62
semiconductors 62
sensitivity 83
shot noise 96
signal processing 223
single-mode all-fiber FMCW
 gyroscopes 215
single-mode fiber gyroscopes 207
single-mode optical fiber 125
sinusoidal-wave optical FMCW
 interference 32

P
period of a beat signal 223
period of a modulation signal 20
period of an optical wave 7, 8
permittivity 89
phase 7
phasor diagram 171
phase-locked-loop method (PLL) 232
phase measurement 230
phase modulation efficiency 60
phase noise of a beat signal 106
phase noise of an optical source 80
photocurrent 87, 93
photodiode biasing 93
photodiodes 83
PIN photodiodes 90
Planck constant 48, 86
p-n junction 67, 71
PN photodiodes 87
Pockels effect 61
polarization-division multiplexing
 method 219
polished fiber couplers 133
population density 47, 49
position vector 10
propagation number 8, 13, 24
propagation speed 8
propagation time 17, 38
propagation vector 10
p-type semiconductors 64, 90
pulse-filling method 228, 230
pumping 50

Q
Q factor 58
quantification error 226
Index 245

sinusoidal-wave optical FMCW waves 32
spatial coherence 104
specific detectivity 85
speed 8, 17, 24, 28, 32
spontaneous emission 48, 74
standard deviation 108
step-index fibers 121
stimulated absorption 48, 69
stimulated emission 49, 69
synthetic wave 41
synthetic wavelength 42

T
temporal coherence 104
temporal period 7, 107
thermal detectors 83
thermal expansion coefficient 202
thermal noise 96
threshold condition 54
threshold gain coefficient 54
time constant 84
time-division multiplexed fiber-optic FMCW interferometer 152
time-division multiplexing method 152
time-frequency-division multiplexed fiber-optic FMCW interferometer 154
time-frequency-division multiplexing method 154
time-fixed cycle-counting method 225
transmissive distributed birefringent fiber FMCW stress sensor 196
transmissive birefringent fiber FMCW strain sensor 186
transverse modes 55, 74
triangular-wave optical FMCW interference 28
triangular-wave optical FMCW waves 28

V
vacant bands 62
Verdet constant 114
V-groove splices 142
visibility 12

W
wave function 8, 17
wave number 8
wavelength 8, 13, 24
wave-front-division interference 111
wave-front-division interferometers 112
waveguide 121, 129, 212
waveguide dispersion 129

X
X-type couplers 134

Y
Y-type couplers 134
Springer Series in
OPTICAL SCIENCES

Volume 1

1 Solid-State Laser Engineering
 By W. Koechner, 5th revised and updated ed. 1999, 472 figs., 55 tabs., XII, 746 pages

Published titles since volume 80

80 Optical Properties of Photonic Crystals

81 Photonic Analog-to-Digital Conversion
 By B.L. Shoop, 2001, 259 figs., 11 tabs., XIV, 330 pages

82 Spatial Solitons
 By S. Trillo, W.E. Torruellas (Eds), 2001, 194 figs., 7 tabs., XX, 454 pages

83 Nonimaging Fresnel Lenses
 Design and Performance of Solar Concentrators
 By R. Leutz, A. Suzuki, 2001, 139 figs., 44 tabs., XII, 272 pages

84 Nano-Optics
 By S. Kawata, M. Ohtsu, M. Irie (Eds.), 2002, 258 figs., 2 tabs., XVI, 321 pages

85 Sensing with Terahertz Radiation
 By D. Mittleman (Ed.), 2003, 207 figs., 14 tabs., XVI, 337 pages

86 Progress in Nano-Electro-Optics I
 Basics and Theory of Near-Field Optics
 By M. Ohtsu (Ed.), 2003, 118 figs., XIV, 161 pages

87 Optical Imaging and Microscopy
 Techniques and Advanced Systems
 By P. Török, F.-J. Kao (Eds.), 2003, 260 figs., XVII, 395 pages

88 Optical Interference Coatings
 By N. Kaiser, H.K. Pulker (Eds.), 2003, 203 figs., 50 tabs., XVI, 504 pages

89 Progress in Nano-Electro-Optics II
 Novel Devices and Atom Manipulation
 By M. Ohtsu (Ed.), 2003, 115 figs., XIII, 188 pages

90/1 Raman Amplifiers for Telecommunications 1
 Physical Principles
 By M.N. Islam (Ed.), 2004, 488 figs., XXVIII, 328 pages

90/2 Raman Amplifiers for Telecommunications 2
 Sub-Systems and Systems
 By M.N. Islam (Ed.), 2004, 278 figs., XXVIII, 420 pages

91 Optical Super Resolution
 By Z. Zalevsky, D. Mendlovic, 2004, 164 figs., XVIII, 232 pages

92 UV-Visible Reflection Spectroscopy of Liquids
 By J.A. Rätty, K.-E. Peiponen, T. Asakura, 2004, 131 figs., XII, 219 pages

93 Fundamentals of Semiconductor Lasers
 By T. Numai, 2004, 166 figs., XII, 264 pages
94 Photonic Crystals
Physics, Fabrication and Applications
By K. Inoue, K. Ohtaka (Eds.), 2004, 209 figs., XV, 320 pages

95 Ultrafast Optics IV
Selected Contributions to the 4th International Conference
on Ultrafast Optics, Vienna, Austria
By F. Krausz, G. Korn, P. Corkum, I.A. Walmsley (Eds.), 2004, 281 figs., XIV, 506 pages

96 Progress in Nano-Electro Optics III
Industrial Applications and Dynamics of the Nano-Optical System
By M. Ohtsu (Ed.), 2004, 186 figs., 8 tabs., XIV, 224 pages

97 Microoptics
From Technology to Applications
By J. Jahns, K.-H. Brenner, 2004, 303 figs., XI, 335 pages

98 X-Ray Optics
High-Energy-Resolution Applications
By Y. Shvyd’ko, 2004, 181 figs., XIV, 404 pages

99 Few-Cycle Photonics and Optical Scanning Tunneling Microscopy
Route to Femtosecond Ångstrom Technology
By M. Yamashita, H. Shigekawa, R. Morita (Eds.) 2005, 241 figs., XX, 393 pages

100 Quantum Interference and Coherence
Theory and Experiments
By Z. Ficek and S. Swain, 2005, 178 figs., approx. 432 pages

101 Polarization Optics in Telecommunications
By J. Damask, 2005, 110 figs., XVI, 528 pages

102 Lidar
Range-Resolved Optical Remote Sensing of the Atmosphere
By C. Weitkamp (Ed.), 161 figs., approx. 416 pages

103 Optical Fiber Fusion Splicing
By A. D. Yablon, 2005, 100 figs., approx. 310 pages

104 Optoelectronics of Molecules and Polymers
By A. Moliton, 2005, 200 figs., approx. 460 pages

105 Solid-State Random Lasers
By M. Noginov, 2005, 149 figs., approx. 380 pages

106 Coherent Sources of XUV Radiation
Soft X-Ray Lasers and High-Order Harmonic Generation
By P. Jaegle, 2005, 150 figs., approx. 264 pages

107 Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry
By J. Zheng, 2005, 219 figs., XVIII, 245 pages

108 Laser Resonators and Beam Propagation
Fundamentals, Advanced Concepts and Applications
By N. Hodgson and H. Weber, 2005, 497 figs., approx. 790 pages

109 Progress in Nano-Electro Optics IV
Characterization of Nano-Optical Materials and Optical Near-Field Interactions
By M. Ohtsu (Ed.), 2005, 127 figs., approx. 225 pages