References

Aarts, E. (2005), Ambient Intelligence Drives Open Innovation, Interactions, XII.4, 66–68.

Argyle, M., and J. Dean (1965), Eye Contact, Distance and Affiliation, Sociometry, 28, pp 289–304.

Bohn, V., M. Coroama, F. Langheinrich, M. Mattern, and M. Rohs (2004), Social, Economic, and Ethical Implications of Ambient Intelligence and Ubiq-
References

References

Cordis Esprit (online), Homepage, http://www.cordis.lu/esprit.

Cordis FP5 (online), Homepage, http://www.cordis.lu/fp5.

Cordis Telematics (online), Homepage, http://www.cordis.lu/telematics.
References

CUHTec (online), Homepage, http://www.cuhtec.org.uk.

DAME (online), Homepage, http://www.cs.york.ac.uk/dame.

DIAMOND (online), Homepage, http://www.diamond.ac.uk.

References

eGOIA (online), Homepage, http://www.egoia.info.

EITO (online), European Information Technology Observatory, European Economic Interest Grouping, Homepage, http://www.eito.org.

Emory (online), Homepage, http://www.emory.edu.

Eurobarometer (2002), Internet Usage and the Public at Large, Flash Eurobarometer 125, European Commission, Brussels, Belgium.

References

GENIE (online), Homepage, http://www.genie.ac.uk.

GeWiTTS (online), Webpage, http://www.nesc.ac.uk/events/sc2004/talks.

GTI (online), http://www.vw.co.uk/company/press/GTIadvert.

Integrative Biology (online), Homepage, http://www.integrativebiology.ox.ac.uk.

Ishibashi, K., T. Yamashita, Y. Arima, I. Minematsu, and T. Fujimoto, T. (2003), A 9 mW 50 MHz 32b Adder Using a Self-adjusted Forward
References

IST Ambient Networks (online), Homepage, http://www.ambient-networks.org/.

IST VESPER (online), Virtual Home Environment for Service Personalization and Roaming Users, http://www.ee.surrey.ac.uk/CCSR/IST/Vesper/.

References

LivTom (online), Homepage, http://www.livingtomorrow.be.

McCorduck (1979), *Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence*, Freeman, New York, NY, USA.

Miles, I., K. Flanagan, and D. Cox (2002), Ubiquitous Computing: Toward Understanding European Strengths and Weaknesses, European Science and Technology Observatory Report for IPTS, PREST, Manchester, UK.

References

Natural Motion (online), Homepage, http://www.naturalmotion.com.
NERC (online), Homepage, http://www.ndg.nerc.ac.uk.

Papanikolaou, A., M. Miranda, H. Wang, F. Lobmaier, and F. Catthoor (2005), A System-Level Methodology for Fully Compensating Process Variability Impact of Memory Organizations in Periodic Applications, Proceed-
Pinto, P., L. Bernardo, and P. Sobral (2004), UMTS–WLAN Service Integration at Core Network Level, in: M. Freire, P. Chemouil, P. Lornz, and A.
References

Polanyi, M. (1962), Personal Knowledge Towards a Post-critical Philosophy, University of Chicago, Chicago, IL, USA.

Reeves, B., and C. Nass (1996), The Media Equation, Cambridge University, New York, NY, USA.

Reidsma, D., R. op den Akker, R. Rienks, A. Nijholt, R. Poppe, D. Heylen, and J. Zwiers (2005), Virtual Meeting Rooms: from

Sanger (online), Homepage, http://www.sanger.ac.uk.

Scheirer, J., R. Fernandez, and R.W. Picard (1999), Expression Glasses: A Wearable Device for Facial Expression Recognition, Extended abstract, In-
ternational Conference on Human Factors in Computer Systems, May 15–20, Pittsburgh, PA, USA.

Shadbolt, N. (2003), Ambient Intelligence, IEEE Intelligent Systems, 18(4), 2–3.

Storz, O., A. Friday, and N. Davies (2003), Towards “Ubiquitous” Ubiquitous Computing: An alliance with “the Grid”, *Proceedings of the Fifth International Conference on Ubiquitous Computing*, October 12, Seattle, WA, USA.

Svanæs, D., and G. Seland (2004), Putting the Users Center Stage: Role Playing and Low-fi Prototyping Enable End Users to Design Mobile Systems,
References

Talkingproducts (online), Homepage, http://www.talkingproducts.co.uk.

Taylor, J.M. (online), http://www.e-science.clrc.ac.uk.

UK e-Science (online), Webpage, http://www.nesc.ac.uk/events/townmeeting0405.

References 429

Vicente, K.J. (1999), Cognitive Work Analysis, Lawrence Erlbaum Associates, Mahwah, NJ, USA.

Winston, P.H. (1992), Artificial Intelligence (3rd edition), Addison-Wesley, Reading, MA, USA.
W3C (online), http://www.w3.org/TR/2004/NOTE-ws-arch-20040211.
W3C OWL (online), http://www.w3.org/TR/owl-features.
Zoschke, K., J. Wolf, M. Toepper, O. Ehrmann, T. Fritzsch, K. Scherpin-
ski, H. Reichl, and F.J. Schmuckle (2005), Fabrication of Application Spe-
cific Integrated Passive Devices Using Wafer Level Packaging Technologies,
Proceedings of the Electronic Components and Technology Conference, May
31–June 3, Orlando, FL, USA.
Zrínyi, M. (online), Department of Physical Chemistry, Budapest Univer-
sity of Technology and Economics Laboratory of Soft Matters, Homepage,
Index

A
ad hoc networks 197
adaptation 243
affective computing 5
affective interactions 287
ambient informatics 233, 237
Ami@Work 9
anthropomorphization 292, 300–305
Anthropomorphized Product Shelf (APS) 325
application software 154
approximation algorithm 272
architectonic integration 328
Artemis 9
autonomous wireless transducers 132
Aware-Home 351

B
batteries 105, 106
Bayesian network 264
Bayesian statistcs 312
behavior questionnaire 284
bioinformatics 214
biometric identification 31
biometric sensors 341
biomimetic design 316
BlueTooth 125, 177
bottom of the pyramid 48

C
Calm Technology 367, 371
chromogenic films 54
chromogenic materials 54
clothing 113
code transformations 134
COMOTION 316
complexity 271
computational intelligence 245
computer vision 233
conductive polymers 74
conductive yarn 116
constraint propagation 259
constraint satisfaction 259
context aware media browsers 4
context aware systems 361
context aware 232, 233, 238, 343
context awareness 197, 217, 231, 339, 340
context discovery 197
context management 154
context model 235, 237, 240, 242
creative industries 4, 307, 308, 313
cross-talk 140
cues 278
cyber infrastructure 211, 212

D
data-level parallelism 134
dialogical robots 276
dielectric elastomers 69
distributed computing 169
dynamic behavior 156, 157, 160–164
dynamic programming 257
 DynAMITE 16
E

EasyLiving 323
eGovernance 30
e-Government 390
e-Grains 83, 102–109
electroactive polymers 68, 72
electronic passports 181
electronic skin 63
EMBASSI 324
embedded components 101
embroidered contacts 119
embroidery 118–121, 125
empirical techniques 380
encapsulation 121, 127
energy scavenging 86
e-payment 180
equilibrium theory 278
e-Science 209
European Dream 27
evolutionary computing 268
expectation maximization 265
Experience and Application Research Centers (EARC) 21, 379–381, 385–389
experience economy 4
experience prototyping 385, 386
expert system 261

F

facial expressions 277, 288
Fastkin FSII swimsuit 317
feasibility and quality in interaction 380, 382
feature selections 297
flip-chip technology 93, 123, 126
frame problem 232
Framework Programmes (FP) 20
fuel cells 107–109
function orientation 10
furniture assembly 340, 344

G

gel structure 62
Global Positioning System (GPS) 175, 190
goal orientation 10
goal-based interaction 330
Google 315
Grid computing 209
Group Management (GM) 164

H

hardware architecture 139
health care 28
heuristic 272
hidden Markov model 252
Hit Song Science (HSS) 315
home dialog system 280
home experience 364
Home Radio 367, 368
HomeLab 8, 281, 369, 370
House of the Future 390
human centered 362
human genome 214
human interaction 341
human-centric sensing 343
human-computer interaction 280
human sensing 340

I

iCat 279–284, 325
Information and Communication Technology (ICT) 17
IDEO 318
IEEE standards 187
IKEA PAX 345, 346
Industrial Light and Magic (ILM) 313
Intelligent Nursing Education Environment System (INES) 276, 279, 285, 286, 363, 377
Information Society and Technologies Advisory Group (ISTAG) 7, 17, 362, 374
InHaus 8, 391
INI-GraphicsNet 15
Innovation Lab 391
instruction-level parallelism 134
intelligent agent 269
Intelligent Classroom 323
intelligent environments 313
interconnect 93, 117, 119, 139
Internet 3
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>knowledge representation 253, 262</td>
</tr>
</tbody>
</table>
| L | La Casa Prossima Futura 41, 43, 46
Local Area Network (LAN) 187
leakage power 136
liquid crystals 56, 61, 77
Living Memory 43, 44
Living Tomorrow 389
local search 260
logic programming 312
Loop Level Parallelism (LLP) 141
low power 85, 135, 144 |
| M | machine learning 255, 312
Markov chains 348, 350, 351
Markov decision process 267
MavHome 324
mechanical response 66
media equation 5, 250
memory 140
Metropolitan Area Network (MAN) 189
microcontroller 85
microprocessors 88, 90, 134
micro-systems 123
middleware 149, 152, 160, 162, 219, 333, 334
mobile commerce 170
Mobile ShopAssist (MSA) 292, 297, 299, 302
Moore’s law 3, 132, 144, 211, 214
multimedia 311
multi-modal interaction 276, 277, 285, 296, 322, 370
multi-modal interfaces 291, 292, 296, 369
multi-processors 141 |
| N | Near Field Communication (NFC) 177
neighborhood structure 260
network-on-a-chip 139
Neural Network House 323
nearal network 255, 266
New Nomads 42, 43
nomadic devices 131 |
| O | object model 302
object-oriented 150
Ockham’s razor 272
on-line community 169
tonology 262
open innovation 9
open tools 50
open integration 329
OWL 218, 219, 220
Oxygen 6, 206, 324 |
| P | packaging 90, 101, 119
paintable displays 63
peer-to-peer computing 19
peer-to-peer networking 313
Personal Area Networks (PANs) 312
Personal Digital Assistant (PDA) 292, 294, 297, 300, 302
personal network 199
personal networking 192
pervasive computing 220, 224
pervasive devices 217
phase transition 81
Phenom 366
polymer backbone 57
polymer gel 62, 79
polymer structure 101
power management 86
power supply 105
PRADA 318
Principle Workflow Cycle (PWC) 12
privacy 198
public services 173 |
| Q | quality of service (QoS) 152, 154, 156, 164, 186 |
| R | Radio Frequency IDentification (RFID) 176, 180, 293, 294, 316, 318
reactive video-conferencing 323
reality TV 51 |
Index

reasoning 261
reinforcement learning 255, 267, 332
relations 235
Resource Description Framework (RDF) 218, 220
responsive hardware 67
responsive home 390
responsive materials 53
responsive polymers 76, 82
road safety 172
role 234, 238, 239
routing 197

S

scenarios 15, 323, 362
scheduling 136, 138
script 234
search algorithm 257
security 186, 198
self-organization 196
Semantic Grid 209, 219, 220, 227
Semantic Web 4, 218, 223, 262
semantics 328, 330, 331
sensor experiments 348
sensor networks 216, 223
sensor nodes 53, 85, 93, 109, 123, 144, 343
sensor-actuator layer 235
service configuration 154
service discovery 154, 198
service Interaction 154
service-oriented 150
services 236
Shazam 308
Short Message Service (SMS) 19, 174
situation graph 241, 242
situation model 235
situations 235, 239
smart dust 83
smart environment 275, 276
smart homes 364
smart materials 53
smart player 11
Social Behaviors Questionnaire (SBQ) 283
social drivers 25
social intelligence 277, 280, 281
social interaction 275, 276
social interfaces 277
social neutrality 282
software architecture (SA) 149, 151, 153, 162
software defined radio 176
stacking 97
stationary devices 131
sustainability 38
switchable mirrors 58
T
tangible user interfaces 292
tangible objects 372
Task Manager (TM) 155
task-level parallelism 134, 136
technology roadmap 111
textile wires 115
thermochromic materials 56
thin film 93, 97, 98
transport safety 172
triple play 4
Turing test 247
U
ubiquitous computing 2
Ultra-Wide Band (UWB) 187
Universal Mobile Telephony Standard (UMTS) 175, 190, 191, 312
usability study 303
user experience 365
user study 354
user-centered design 5, 374
user-centric 149
user-system interaction 275
V
validation 152, 380–383
verification 89
vertical system integration 103
virtual environments 311
virtual instructions 343
virtual tutor 286
Vision of the Future 42
virtual agents 276
W
wearable computing 113
wearable devices 114
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wearable electronic</td>
<td>130</td>
</tr>
<tr>
<td>WiFi</td>
<td>177</td>
</tr>
<tr>
<td>wireless communication</td>
<td>174, 178, 187</td>
</tr>
<tr>
<td>wireless network</td>
<td>231, 327</td>
</tr>
<tr>
<td>wireless technologies</td>
<td>192</td>
</tr>
<tr>
<td>Wizard of Oz</td>
<td>279, 282, 374</td>
</tr>
<tr>
<td>Wireless Local Area Network (WLAN)</td>
<td>175, 191</td>
</tr>
<tr>
<td>World Wide Web Consortium</td>
<td>218</td>
</tr>
<tr>
<td>WWICE</td>
<td>372</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XML</td>
<td>155, 298</td>
</tr>
</tbody>
</table>