Contents

1 Introduction to Modern Physics .. 1
 1.1 Fundamental Physical Constants 2
 1.2 Derived Physical Constants and Relationships 4
 1.3 Milestones in Modern Physics and Medical Physics 5
 1.4 Physical Quantities and Units 6
 1.4.1 Rules Governing Physical Quantities and Units 6
 1.4.2 The SI System of Units 6
 1.4.3 Non-SI Units 8
 1.5 Classification of Forces in Nature 8
 1.6 Classification of Fundamental Particles 9
 1.7 Classification of Radiation 9
 1.8 Classification of Ionizing Radiation 10
 1.8.1 Directly and Indirectly Ionizing Radiation 11
 1.8.2 Low LET and High LET Radiation 11
 1.8.3 Use of Ionizing Radiation 12
 1.9 Classification of Directly Ionizing Radiation 13
 1.9.1 Electrons 13
 1.9.2 Positrons 14
 1.9.3 Heavy Charged Particles 14
 1.9.4 Pions .. 16
 1.10 Classification of Indirectly Ionizing Photon Radiation .. 17
 1.11 Radiation Quantities and Units 17
 1.12 Dose Distribution in Water for Various Radiation Beams .. 18
 1.12.1 Dose Distribution in Water for Photon Beams 21
 1.12.2 Dose Distribution in Water for Neutron Beams 21
 1.12.3 Dose Distribution in Water for Electron Beams 22
 1.12.4 Dose Distribution in Water for Heavy Charged Particle Beams .. 23
 1.12.5 Choice of Radiation Beam and Prescribed Target Dose .. 24
1.13 Basic Definitions for Atomic Structure ... 25
 1.13.1 Mean Atomic Mass (Standard Atomic Weight) 26
 1.13.2 Unified Atomic Mass Unit and the Mole 27
 1.13.3 Mean Molecular Mass (Standard Molecular Weight) 29
1.14 Basic Definitions for Nuclear Structure .. 30
1.15 Nuclear Binding Energies ... 31
1.16 Nuclear Models .. 33
 1.16.1 Liquid-Drop Nuclear Model .. 33
 1.16.2 Shell Structure Nuclear Model ... 34
1.17 Physics of Small Dimensions and Large Velocities 35
1.18 Planck Energy Quantization ... 35
1.19 Quantization of Electromagnetic Radiation 36
1.20 Special Theory of Relativity ... 37
1.21 Important Relativistic Relations ... 39
 1.21.1 Relativistic Mass .. 39
 1.21.2 Relativistic Force and Relativistic Acceleration 40
 1.21.3 Relativistic Kinetic Energy ... 41
 1.21.4 Total Relativistic Energy as a Function of Momentum 43
 1.21.5 Taylor Expansion and Classical Approximations for Kinetic Energy and Momentum 44
 1.21.6 Relativistic Doppler Shift .. 45
1.22 Particle–Wave Duality ... 45
 1.22.1 De Broglie Equation and De Broglie Wavelength 46
 1.22.2 Davisson–Germer Experiment .. 48
 1.22.3 Thomson–Reid Experiment .. 49
 1.22.4 General Confirmation of Particle–Wave Duality 50
1.23 Matter Waves ... 51
 1.23.1 Introduction to Wave Mechanics 51
 1.23.2 Quantum Mechanical Wave Equation 52
 1.23.3 Time-independent Schrödinger Equation 54
 1.23.4 Measurable Quantities and Operators 56
 1.23.5 Transition Rate and the Fermi Second Golden Rule 57
 1.23.6 Particle Scattering and Born Collision Formula 58
1.24 Uncertainty Principle ... 61
1.25 Complementarity Principle ... 62
1.26 Emission of Electrons from Material Surface: Work Function 63
1.27 Thermionic Emission ... 64
1.28 Tunneling .. 65
 1.28.1 Alpha Decay Tunneling ... 66
 1.28.2 Field Emission Tunneling .. 66
1.29 Maxwell Equations ... 67
1.30 Poynting Theorem and Poynting Vector 69
1.31 Normal Probability Distribution .. 71
 1.31.1 Standard Probability Density Function 71
 1.31.2 Cumulative Distribution Function 72
 1.31.3 Error function .. 75

2 Coulomb Scattering .. 77
 2.1 General Aspects of Coulomb Scattering 78
 2.2 Geiger–Marsden Experiment ... 79
 2.2.1 Thomson Model of the Atom 80
 2.2.2 Rutherford Model of the Atom 82
 2.3 Rutherford Scattering ... 83
 2.3.1 Kinematics of Rutherford Scattering 83
 2.3.2 Distance of Closest Approach in Head-on Collision
 Between α-Particle and Nucleus 85
 2.3.3 General Relationship between Impact Parameter
 and Scattering Angle ... 87
 2.3.4 Hyperbolic Trajectory and Distance of Closest
 Approach ... 89
 2.3.5 Hyperbola in Polar Coordinates 91
 2.4 Cross Sections for Rutherford Scattering 91
 2.4.1 Differential Cross-Section for Rutherford
 Scattering: Classical Derivation 91
 2.4.2 Differential Cross Section for Rutherford
 Scattering (Quantum-Mechanical Derivation) 93
 2.4.3 Screening of Nuclear Potential by Orbital
 Electrons .. 94
 2.4.4 Minimum Scattering Angle 96
 2.4.5 Effect of the Finite Size of the Nucleus 97
 2.4.6 Maximum Scattering Angle 99
 2.4.7 General Relationships for Differential Cross
 Section in Rutherford Scattering 100
 2.4.8 Total Rutherford Scattering Cross Section 102
 2.4.9 Mean Square Scattering Angle
 for Single Rutherford Scattering 103
 2.4.10 Mean Square Scattering Angle
 for Multiple Rutherford Scattering 105
 2.4.11 Importance of the Rutherford Scattering
 Experiment .. 106
 2.5 Mott Scattering ... 108
 2.5.1 Correction for Electron Spin 109
 2.5.2 Correction for Recoil of the Nucleus 111
 2.5.3 Differential Cross Section for Mott Scattering
 of Electrons on Point-Like Atomic Nuclei 114
 2.5.4 Hofstadter Correction for Finite Nuclear Size
 and the Form Factor ... 114
2.6 General Aspects of Elastic Scattering
of Charged Particles ... 116
 2.6.1 Differential Scattering Cross Section
 for a Single Scattering Event 117
 2.6.2 Characteristic Scattering Distance 118
 2.6.3 Minimum and Maximum Scattering Angles 120
 2.6.4 Total Cross Section for a Single Scattering Event . . . 124
 2.6.5 Mean Square Scattering Angle for a Single
 Scattering Event 124
 2.7 Molière Multiple Elastic Scattering 126
 2.7.1 Mean Square Scattering Angle for Multiple
 Scattering ... 127
 2.7.2 Radiation Length 129
 2.7.3 Mass Scattering Power 130
 2.7.4 Mass Scattering Power for Electrons 130
 2.7.5 Fermi-Eyges Pencil Beam Model for Electrons 132
 2.7.6 Dose Distribution for Pencil Electron Beam 136
 2.7.7 Determination of Electron beam Kinetic Energy
 from Measured Mass Scattering Power 137

3 Rutherford-Bohr Model of the Atom 139
 3.1 Bohr Model of the Hydrogen Atom 140
 3.1.1 Radius of the Bohr Atom 141
 3.1.2 Velocity of the Bohr Electron 142
 3.1.3 Total Energy of the Bohr Electron 142
 3.1.4 Transition Frequency and Wave Number 144
 3.1.5 Atomic Spectra of Hydrogen 145
 3.1.6 Correction for Finite Mass of the Nucleus 145
 3.1.7 Positronium, Muonium, and Muonic Atom 147
 3.1.8 Quantum Numbers 149
 3.1.9 Stern–Gerlach Experiment and Electron Spin 149
 3.1.10 Spin–Orbit Coupling 151
 3.1.11 Successes and Limitations of the Bohr Model
 of the Atom ... 151
 3.1.12 Correspondence Principle 152
 3.2 Multi-Electron Atom 154
 3.2.1 Exclusion Principle 154
 3.2.2 Hartree Approximation for Multi-Electron Atoms ... 155
 3.2.3 Periodic Table of Elements 158
 3.2.4 Ionization Potential of Atoms 161
 3.3 Experimental Confirmation of the Bohr Atomic Model 161
 3.3.1 Emission and Absorption Spectra of Monoatomic
 Gases ... 163
 3.3.2 Moseley Experiment 164
 3.3.3 Franck–Hertz Experiment 165
3.4 Schrödinger Equation for Hydrogen Atom 166
 3.4.1 Schrödinger Equation for Ground State of Hydrogen . 168
 3.4.2 Sample Calculations for Ground State of Hydrogen . . 172

4 Production of X Rays 177
 4.1 X-Ray Line Spectra 178
 4.1.1 Characteristic Radiation 179
 4.1.2 Fluorescence Yield and Auger Effect 182
 4.2 Emission of Radiation by Accelerated Charged Particle
 (Bremsstrahlung Production) 185
 4.2.1 Stationary Charged Particle:
 No Emission of Radiation 186
 4.2.2 Charged Particle Moving with Uniform Velocity:
 No Emission of Radiation 186
 4.2.3 Accelerated Charged Particle:
 Emission of Radiation 191
 4.2.4 Intensity of Radiation Emitted
 by Accelerated Charged Particle 192
 4.2.5 Power Emitted by Accelerated Charged Particle
 Through Electromagnetic Radiation
 (Classical Larmor Relationship) 193
 4.2.6 Relativistic Larmor Relationship 195
 4.2.7 Relativistic Electric Field Produced
 by Accelerated Charged Particle 195
 4.2.8 Characteristic Angle 196
 4.2.9 Electromagnetic Fields Produced by Charged
 Particles 201
 4.3 Synchrotron Radiation 201
 4.4 Čerenkov Radiation 203

5 Two–Particle Collisions 207
 5.1 Collisions of Two Particles: General Aspects 208
 5.2 Nuclear Reactions 212
 5.2.1 Conservation of Momentum in Nuclear Reaction ... 213
 5.2.2 Conservation of Energy in Nuclear Reaction 213
 5.3 Two-Particle Elastic Scattering: Energy Transfer 216
 5.3.1 General Energy Transfer from Projectile
 to Target in Elastic Scattering 217
 5.3.2 Energy Transfer in a Two-Particle Elastic
 Head-on Collision 218
 5.3.3 Classical Relationships for a Head-on Collision ... 218
 5.3.4 Special Cases for Classical Energy Transfer
 in a Head-on Collision 219
 5.3.5 Relativistic Relationships for a Head-on Collision .. 221
XXVI Contents

5.3.6 Special Cases for Relativistic Energy Transfer in Head-on Collision .. 222
5.3.7 Maximum Energy Transfer Fraction in Head-on Collision .. 223

6 Interactions of Charged Particles with Matter 227

 6.1 General Aspects of Energy Transfer from Charged Particle to Medium 228
 6.1.1 Charged Particle Interaction with Coulomb Field of the Nucleus (Radiation Collision) 229
 6.1.2 Hard (Close) Collision ... 229
 6.1.3 Soft (Distant) Collision ... 230
 6.2 General Aspects of Stopping Power 230
 6.3 Radiation (Nuclear) Stopping Power 232
 6.4 Collision (Electronic) Stopping Power for Heavy Charged Particles 235
 6.4.1 Momentum and Energy Transfer from Heavy Charged Particle to Orbital Electron 235
 6.4.2 Minimum Energy Transfer and Mean Ionization/Excitation Potential 239
 6.4.3 Maximum Energy Transfer ... 241
 6.4.4 Classical Derivation of the Mass Collision Stopping Power ... 241
 6.4.5 Bethe Collision Stopping Power 243
 6.4.6 Fano Correction to Bethe Collision Stopping Power Equation .. 251
 6.4.7 Collision Stopping Power Equations for Heavy Charged Particles 252
 6.5 Collision Stopping Power for Light Charged Particles 254
 6.6 Total Mass Stopping Power .. 256
 6.7 Radiation Yield ... 257
 6.8 Range of Charged Particles ... 259
 6.8.1 CSDA Range ... 261
 6.8.2 Maximum Penetration Depth ... 261
 6.8.3 Range of Heavy Charged Particles in Absorbing Medium ... 261
 6.8.4 Range of Light Charged Particles (Electrons and Positrons) in Absorbers 264
 6.9 Mean Stopping Power .. 266
 6.10 Restricted Collision Stopping Power 267
 6.11 Bremsstrahlung Targets ... 269
 6.11.1 Thin X-Ray Targets .. 271
 6.11.2 Thick X-Ray Targets ... 272
7 Interactions of Photons with Matter

7.1 General Aspects of Photon Interactions with Absorbers

7.1.1 Narrow Beam Geometry

7.1.2 Characteristic Absorber Thicknesses

7.1.3 Other Attenuation Coefficients and Cross Sections

7.1.4 Energy Transfer Coefficient and Energy Absorption Coefficient

7.1.5 Broad Beam Geometry

7.1.6 Classification of Photon Interactions with Absorber Atoms

7.2 Thomson Scattering

7.2.1 Thomson Differential Electronic Cross Section per Unit Solid Angle

7.2.2 Thomson Total Electronic Cross Section

7.2.3 Thomson Total Atomic Cross Section

7.3 Incoherent Scattering (Compton Effect)

7.3.1 Compton Wavelength-Shift Equation

7.3.2 Relationship Between Scattering Angle and Recoil Angle

7.3.3 Scattered Photon Energy as Function of Incident Photon Energy and Photon Scattering Angle

7.3.4 Energy Transfer to Compton Recoil Electron

7.3.5 Differential Electronic Cross Section for Compton Scattering

7.3.6 Differential Electronic Cross Section per Unit Scattering Angle

7.3.7 Differential Electronic Cross Section per Unit Recoil Angle

7.3.8 Differential Klein–Nishina Energy Transfer Cross Section

7.3.9 Energy Distribution of Recoil Electrons

7.3.10 Total Electronic Klein–Nishina Cross Section for Compton Scattering

7.3.11 Electronic Energy Transfer Cross Section for Compton Effect

7.3.12 Mean Energy Transfer Fraction for Compton Effect

7.3.13 Binding Energy Effects and Corrections

7.3.14 Compton Atomic Cross Section and Mass Attenuation Coefficient

7.3.15 Compton Mass Energy Transfer Coefficient

7.4 Rayleigh Scattering

7.4.1 Differential Atomic Cross Section for Rayleigh Scattering

7.4.2 Form Factor for Rayleigh Scattering

7.4.3 Scattering Angles in Rayleigh Scattering
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.4</td>
<td>Atomic Cross Section for Rayleigh Scattering</td>
<td>334</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Mass Attenuation Coefficient for Rayleigh Scattering</td>
<td>335</td>
</tr>
<tr>
<td>7.5</td>
<td>Photoelectric Effect</td>
<td>336</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Conservation of Energy and Momentum in Photoelectric Effect</td>
<td>336</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Angular Distribution of Photoelectrons</td>
<td>338</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Atomic Cross Section for Photoelectric Effect</td>
<td>338</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Mass Attenuation Coefficient for Photoelectric Effect</td>
<td>341</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Energy Transfer to Charged Particles in Photoelectric Effect</td>
<td>341</td>
</tr>
<tr>
<td>7.5.6</td>
<td>Photoelectric Probability</td>
<td>343</td>
</tr>
<tr>
<td>7.5.7</td>
<td>Fluorescence Yield</td>
<td>347</td>
</tr>
<tr>
<td>7.5.8</td>
<td>Mean Fluorescence Photon Energy</td>
<td>348</td>
</tr>
<tr>
<td>7.5.9</td>
<td>Mean Fluorescence Emission Energy</td>
<td>349</td>
</tr>
<tr>
<td>7.5.10</td>
<td>Mean Photoelectric Energy Transfer Fraction</td>
<td>351</td>
</tr>
<tr>
<td>7.5.11</td>
<td>Mass Energy Transfer Coefficient for Photoelectric Effect</td>
<td>355</td>
</tr>
<tr>
<td>7.6</td>
<td>Pair Production</td>
<td>355</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Conservation of Energy, Momentum and Charge in Pair Production</td>
<td>355</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Threshold Energy for Nuclear Pair Production and Triplet Production</td>
<td>357</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Energy Distribution of Electrons and Positrons in Nuclear Pair Production and Triplet Production</td>
<td>359</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Angular Distribution of Charged Particles in Pair Production</td>
<td>361</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Nuclear Screening</td>
<td>361</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Atomic Cross Section for Pair Production</td>
<td>361</td>
</tr>
<tr>
<td>7.6.7</td>
<td>Mass Attenuation Coefficient for Pair Production</td>
<td>363</td>
</tr>
<tr>
<td>7.6.8</td>
<td>Energy Transfer to Charged Particles in Nuclear Pair Production and Triplet Production</td>
<td>364</td>
</tr>
<tr>
<td>7.6.9</td>
<td>Mass Energy Transfer Coefficient for Pair Production</td>
<td>365</td>
</tr>
<tr>
<td>7.6.10</td>
<td>Positron Annihilation</td>
<td>367</td>
</tr>
<tr>
<td>7.7</td>
<td>Photonuclear Reactions (Photodisintegration)</td>
<td>372</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Cross Section for Photonuclear Reaction</td>
<td>373</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Threshold Energy for Photonuclear Reaction</td>
<td>374</td>
</tr>
<tr>
<td>8</td>
<td>Energy Transfer and Energy Absorption in Photon Interactions with Matter</td>
<td>377</td>
</tr>
<tr>
<td>8.1</td>
<td>Macroscopic Attenuation Coefficient</td>
<td>378</td>
</tr>
<tr>
<td>8.2</td>
<td>Energy Transfer from Photons to Charged Particles in Absorber</td>
<td>381</td>
</tr>
<tr>
<td>8.2.1</td>
<td>General Characteristics of the Mean Energy Transfer Fractions</td>
<td>381</td>
</tr>
</tbody>
</table>
8.2.2 Relative Weights for Individual Effects 384
8.2.3 Regions of Predominance for Individual Effects 387
8.2.4 Mean Weighted Energy Transfer Fractions 389
8.2.5 Total Mean Energy Transfer Fraction 391
8.2.6 Mass Energy Transfer Coefficient 393
8.2.7 Mean Energy Transferred from Photon to Charged
Particles .. 393
8.3 Energy Absorption 397
8.3.1 Mean Radiation Fraction 397
8.3.2 Total Mean Energy Absorption Fraction 401
8.3.3 Mass Energy Absorption Coefficient 402
8.3.4 Mean Energy Absorbed in Absorbing Medium 402
8.4 Coefficients of Compounds and Mixtures 404
8.5 Effects Following Photon Interactions
with Absorber .. 409
8.6 Summary of Photon Interactions 409
8.6.1 Photoelectric Effect 414
8.6.2 Rayleigh Scattering 415
8.6.3 Compton Effect 415
8.6.4 Pair Production 416
8.6.5 Photoinuclear Reactions 417
8.7 Sample Calculations 417
8.7.1 Example 1: Interaction of 2 MeV Photon
with Lead Absorber 418
8.7.2 Example 2: Interaction of 8 MeV Photon
with Copper Absorber 421

9 Interactions of Neutrons with Matter 429
9.1 General Aspects of Neutron Interactions with Absorbers ... 430
9.2 Neutron Interactions with Nuclei of the Absorber 431
9.2.1 Elastic Scattering 431
9.2.2 Inelastic Scattering 432
9.2.3 Neutron Capture 433
9.2.4 Spallation ... 433
9.2.5 Nuclear Fission Induced by Neutron Bombardment . 434
9.3 Neutron Kerma .. 434
9.4 Neutron Kerma Factor 435
9.5 Neutron Dose Deposition in Tissue 436
9.5.1 Thermal Neutron Interactions in Tissue 437
9.5.2 Interactions of Intermediate and Fast Neutrons
with Tissue ... 439
9.6 Neutron Beams in Medicine 440
9.6.1 Boron Neutron Capture Therapy (BNCT) 441
9.6.2 Radiotherapy with Fast Neutron Beams 442
9.6.3 Machines for Production of Clinical Fast Neutron Beams .. 443
9.6.4 Californium-252 Neutron Source ... 446
9.6.5 In-vivo Neutron Activation Analysis .. 447
9.7 Neutron Radiography .. 448

10 Kinetics of Radioactive Decay .. 451
10.1 General Aspects of Radioactivity .. 452
10.2 Decay of Radioactive Parent into a Stable Daughter 454
10.3 Radioactive Series Decay .. 457
 10.3.1 Parent → Daughter → Granddaughter Relationships 458
10.3.2 Characteristic Time .. 459
10.4 General Form of Daughter Activity 460
10.5 Equilibria in Parent–Daughter Activities 465
 10.5.1 Daughter Longer-Lived than Parent 467
10.5.2 Equal Half-Lives of Parent and Daughter 467
10.5.3 Daughter Shorter-Lived than Parent: Transient Equilibrium 467
10.5.4 Daughter much Shorter-Lived than Parent: Secular Equilibrium . 468
10.5.5 Conditions for Parent–Daughter Equilibrium 469
10.6 Bateman Equations for Radioactive Decay Chain 470
10.7 Mixture of Two or More Independently Decaying Radionuclides in a Sample 471
10.8 Branching Decay and Branching Fraction 472

11 Modes of Radioactive Decay .. 475
11.1 Introduction to Radioactive Decay Processes 476
11.2 Alpha Decay .. 478
 11.2.1 Decay Energy in Alpha Decay 479
11.2.2 Alpha Decay of Radium-226 into Radon-222 481
11.3 Beta Decay .. 483
 11.3.1 General Aspects of Beta Decay 483
11.3.2 Beta Particle Spectrum 484
 11.3.3 Daughter Recoil in Beta Minus and Beta Plus Decay 486
11.4 Beta Minus Decay .. 487
 11.4.1 General Aspects of Beta Minus Decay 487
11.4.2 Beta Minus Decay Energy 488
11.4.3 Beta Minus Decay of Free Neutron into Proton 488
11.4.4 Beta Minus Decay of Cobalt-60 into Nickel-60 490
11.4.5 Beta Minus Decay of Cesium-137 into Barium-137 491
11.5 Beta Plus Decay .. 492
 11.5.1 General Aspects of the Beta Plus Decay 492
 11.5.2 Decay Energy in Beta Plus Decay 493
11.5.3 Beta Plus Decay of Nitrogen-13 into Carbon-13 494
11.5.4 Beta Plus Decay of Fluorine-18 into Oxygen-18 495
11.6 Electron Capture .. 496
 11.6.1 Decay Energy in Electron Capture 496
 11.6.2 Recoil Kinetic Energy of Daughter Nucleus
 in Electron Capture Decay 497
 11.6.3 Electron Capture Decay of Beryllium-7
 into Lithium-7 .. 498
 11.6.4 Decay of Iridium-192 499
11.7 Gamma Decay .. 500
 11.7.1 General Aspects of Gamma Decay 500
 11.7.2 Emission of Gamma Rays in Gamma Decay 501
 11.7.3 Gamma Decay Energy 501
 11.7.4 Resonance Absorption and Mössbauer Effect 502
11.8 Internal Conversion 503
 11.8.1 General Aspects of Internal Conversion 503
 11.8.2 Internal Conversion Factor 504
11.9 Spontaneous Fission 505
11.10 Proton Emission Decay 506
 11.10.1 Decay Energy in Proton Emission Decay 506
 11.10.2 Example of Proton Emission Decay 508
 11.10.3 Example of Two-Proton Emission Decay 508
11.11 Neutron Emission Decay 509
 11.11.1 Decay Energy in Neutron Emission Decay 509
 11.11.2 Example of Neutron Emission Decay 511
11.12 Chart of the Nuclides (Segrè Chart) 511
11.13 Summary of Radioactive Decay Modes 517

12 Production of Radionuclides 523
 12.1 Origin of Radioactive Elements (Radionuclides) 524
 12.2 Naturally-Ocurring Radionuclides 524
 12.3 Man-Made (Artificial) Radionuclides 526
 12.4 Radionuclides in the Environment 527
 12.5 General Aspects of Nuclear Activation 527
 12.5.1 Nuclear Reaction Cross Section 528
 12.5.2 Thin Targets 528
 12.5.3 Thick Target 529
 12.6 Nuclear Activation with Neutrons (Neutron Activation) . 530
 12.6.1 Infinite Number of Parent Nuclei: Saturation Model . 530
 12.6.2 Finite Number of Parent Nuclei: Depletion Model ... 533
 12.6.3 Maximum Attainable Specific Activities
 in Neutron Activation 539
 12.6.4 Examples of Parent Depletion: Neutron Activation
 of Cobalt-59, Iridium-191, and Molybdenum-98 544
14.4 Traditional Sources of X Rays: X-Ray Tubes 615
 14.4.1 Crookes Tube and Crookes X-Ray Tube 617
 14.4.2 Coolidge X-Ray Tube 619
 14.4.3 Carbon Nanotube Based X-Ray Tube 620
14.5 Circular Accelerators 622
 14.5.1 Betatron .. 622
 14.5.2 Cyclotron ... 625
 14.5.3 Microtron ... 628
 14.5.4 Synchrotron 628
 14.5.5 Synchrotron Light Source 629
14.6 Clinical Linear Accelerator 630
 14.6.1 Linac Generations 630
 14.6.2 Components of Modern Linacs 631
 14.6.3 Linac Treatment Head 633
 14.6.4 Configuration of Modern Linacs 635
 14.6.5 Pulsed Operation of Linacs 637
 14.6.6 Practical Aspects of Megavoltage X-Ray Targets and Flattening Filters 639

Bibliography ... 645

Appendices .. 647

Main Attributes of Nuclides Presented in this Book 647

Basic Characteristics of the Main Radioactive Decay Modes ... 651

Short Biographies of Scientists Whose Work is Discussed in This Book .. 657

Roman Letter Symbols .. 703

Greek Letter Symbols ... 713

Acronyms .. 717

Electronic Databases of Interest in Nuclear and Medical Physics .. 719

International Organizations 725

Nobel Prizes for Research in X Rays 727

Index ... 729