A

Operator Method for the Harmonic Oscillator Problem

Hamiltonian

The Hamiltonian of a particle of mass m moving in a one-dimensional harmonic potential is

$$H = \frac{p^2}{2m} + \frac{1}{2} m \omega^2 x^2. \quad (A.1)$$

The quantum mechanical operators p and x satisfy the commutation relation $[p, x] = -i\hbar$ where $i = \sqrt{-1}$. The Hamiltonian can be written

$$H = \frac{1}{2m} (m \omega x - ip)(m \omega + ip) + \frac{1}{2} \hbar \omega. \quad (A.2)$$

To see the equivalence of (A.1) and (A.2) one need only multiply out the product in (A.2) remembering that p and x are operators which do not commute. Equation (A.2) can be rewritten by

$$H = \hbar \omega \left\{ \frac{(m \omega x - ip)(m \omega + ip)}{2m \hbar \omega} + \frac{1}{2} \right\}. \quad (A.3)$$

We now define the operator a and its adjoint a^\dagger by the relations

$$a = \frac{m \omega x + ip}{\sqrt{2m \hbar \omega}} \quad (A.4)$$

$$a^\dagger = \frac{m \omega x - ip}{\sqrt{2m \hbar \omega}}. \quad (A.5)$$

These two equations can be solved for the operators x and p to give

$$x = \left(\frac{\hbar}{2m \omega} \right)^{1/2} (a^\dagger + a), \quad (A.6)$$

$$p = i \left(\frac{m \hbar \omega}{2} \right)^{1/2} (a^\dagger - a). \quad (A.7)$$
It follows from the commutation relation satisfied by x and p that

$$[a, a^\dagger]_- = 1, \quad \text{(A.8)}$$
$$[a, a]_- = [a^\dagger, a^\dagger]_- = 0. \quad \text{(A.9)}$$

By using the relation

$$[A, BC]_- = B [A, C]_- + [A, B]_- C, \quad \text{(A.10)}$$

it is not difficult to prove that

$$[a, a^\dagger^2]_- = 2a^\dagger, \quad [a, a^\dagger^3]_- = 3a^\dagger^2, \quad \ldots$$
$$[a, a^\dagger^n]_- = na^\dagger^{n-1}. \quad \text{(A.11)}$$

Here, a^\dagger and a are called as raising and lowering operators, respectively.

From (A.3)–(A.5) it can be seen that

$$H = \hbar \omega \left(a^\dagger a + \frac{1}{2} \right). \quad \text{(A.12)}$$

Now, assume that $|n>\rangle$ is an eigenvector of H with an eigenvalue ε_n. Operate on $|n>\rangle$ with a^\dagger, and consider the energy of the resulting state. We can certainly write

$$H (a^\dagger|n>\rangle) = a^\dagger H |n>\rangle + [H, a^\dagger] |n>\rangle. \quad \text{(A.13)}$$

But we have assumed that $H |n>\rangle = \varepsilon_n |n>\rangle$, and we can evaluate the commutator $[H, a^\dagger]$.

$$[H, a^\dagger] = \hbar \omega [a^\dagger a, a^\dagger] = \hbar \omega a^\dagger [a, a^\dagger]$$
$$= \hbar \omega a^\dagger. \quad \text{(A.14)}$$

Therefore, (A.13) gives

$$Ha^\dagger |n>\rangle = (\varepsilon_n + \hbar \omega) a^\dagger |n>\rangle. \quad \text{(A.15)}$$

Equation (A.15) tells us that if $|n>\rangle$ is an eigenvector of H with eigenvalue ε_n, then $a^\dagger |n>\rangle$ is also an eigenvector of H with eigenvalue $\varepsilon_n + \hbar \omega$. Exactly the same technique can be used to show that

$$Ha |n>\rangle = (\varepsilon_n - \hbar \omega) a |n>\rangle. \quad \text{(A.16)}$$

Thus, a^\dagger and a act like raising and lowering operators, raising the energy by $\hbar \omega$ or lowering it by $\hbar \omega$.
Ground State

Since $V(x) \geq 0$ everywhere, the energy must be greater than or equal to zero. Suppose the ground state of the system is denoted by $|0 >$. Then, by applying the operator a to $|0 >$ we generate a state whose energy is lower by $\hbar \omega$, i.e.,

$$H a |0 > = (\varepsilon_0 - \hbar \omega) a |0 > .$$ \hspace{1cm} (A.17)

The only possible way for (A.17) to be consistent with the assumption that $|0 >$ was the ground state is to have $a |0 >$ give zero. Thus, we have

$$a |0 >= 0 .$$ \hspace{1cm} (A.18)

If we use the position representation where $\Psi_0(x)$ is the ground state wavefunction and p can be represented by $p = -i \hbar \partial / \partial x$, (A.18) becomes a simple first-order differential equation

$$\left(\frac{\partial}{\partial x} + \frac{m \omega}{\hbar} x \right) \Psi_0(x) = 0 .$$ \hspace{1cm} (A.19)

One can see immediately see that the solution of (A.19) is

$$\Psi_0(x) = N_0 e^{-\frac{1}{2} \alpha^2 x^2} ,$$ \hspace{1cm} (A.20)

where N_0 is a normalization constant, and $\alpha^2 = \frac{m \omega}{\hbar}$. The normalization constant is given by $N_0 = \alpha^{1/2} \pi^{-1/4}$. The energy is given by $\varepsilon_0 = \frac{\hbar \omega}{2}$, since $a^\dagger a |0 > = 0$.

Excited States

We can generate all the excited states by using the operator a^\dagger to raise the system to the next higher energy level, i.e., if we label the nth excited state by $|n >$,

$$| 1 > \propto a^\dagger |0 > , \quad \varepsilon_1 = \hbar \omega \left(1 + \frac{1}{2} \right) ,$$

$$| 2 > \propto a^\dagger^2 |0 > , \quad \varepsilon_2 = \hbar \omega \left(2 + \frac{1}{2} \right) ,$$

$$\vdots$$

$$| n > \propto a^\dagger^n |0 > , \quad \varepsilon_n = \hbar \omega \left(n + \frac{1}{2} \right) .$$ \hspace{1cm} (A.21)

Because a^\dagger creates one quantum of excitation and a annihilates one, a^\dagger and a are often called creation and annihilation operators, respectively.

If we wish to normalize the eigenfunctions $|n >$ we can write

$$|n > = C_n a^\dagger^n |0 > .$$ \hspace{1cm} (A.22)
Assume that $|0\rangle$ is normalized (see (A.20)). Then, we can write
\[\langle n|n \rangle = |C_n|^2 \left \langle 0 \left | a^n a^\dagger^n \right | 0 \right \rangle. \] (A.23)

Using the relations given by (A.12) allows one to show that
\[a^n a^\dagger^n |0\rangle = n! |0\rangle. \] (A.24)

So that
\[|n\rangle = \frac{1}{\sqrt{n!}} a^\dagger^n |0\rangle \] (A.25)
is the normalized eigenfunction for the \(n\)th excited state.

One can use \(\Psi_0(x) = \alpha^{1/2} \pi^{-1/4} e^{-\frac{1}{2} \alpha^2 x^2} \) and express \(a^\dagger^n\) in terms of \(p\) and \(x\) to obtain
\[\Psi_n(x) = \frac{1}{\sqrt{n!}} \left [-i (-i \hbar \partial/\partial x) + m\omega x \right]^n \frac{\alpha^{1/2}}{\pi^{1/4}} e^{-\frac{\alpha^2 x^2}{2}}, \] (A.26)

This can be simplified a little to the form
\[\Psi_n(x) = \frac{(\alpha/\sqrt{\pi})^{1/2} (-)^n}{\alpha^n (2^n n!)^{1/2}} \left (\frac{\partial}{\partial x} - \alpha^2 x \right)^n e^{-\frac{\alpha^2 x^2}{2}}. \] (A.27)

Summary

The Hamiltonian of the simple harmonic oscillator can be written
\[H = \hbar \omega \left (a^\dagger a + \frac{1}{2} \right). \] (A.28)

and \(H|n\rangle = \hbar \omega (n + \frac{1}{2})|n\rangle\). The excited eigenkets can be written
\[|n\rangle = \frac{1}{\sqrt{n!}} a^\dagger^n |0\rangle \] (A.29)

The eigenfunctions (A.29) form a complete orthonormal set, i.e.,
\[\langle n|m \rangle = \delta_{nm}, \] (A.30)

and
\[\sum_n |n\rangle \langle n| = 1. \] (A.31)

The creation and annihilation operators satisfy the commutation relation
\[[a, a^\dagger] = 1. \]

Problems

A.1. Prove that \([\hat{A}, \hat{B} \hat{C}]_- = \hat{B}[\hat{A}, \hat{C}]_- + [\hat{A}, \hat{B}]_- \hat{C},\) where \(\hat{A}, \hat{B},\) and \(\hat{C}\) are quantum mechanical operators.

A.2. Prove that \([\hat{a}, (\hat{a}^\dagger)^n]_- = n(\hat{a}^\dagger)^{n-1} \).
Neutron Scattering

A beam of neutrons interacts with a crystal through a potential

\[V(\mathbf{r}) = \sum_{\mathbf{R}_i} v(\mathbf{r} - \mathbf{R}_i), \quad (B.1) \]

where \(\mathbf{r} \) is the position operator of the neutron, and \(\mathbf{R}_i \) is the position operator of the \(i^{th} \) atom in the crystal. It is common to write \(v(\mathbf{r} - \mathbf{R}_i) \) in terms of its Fourier transform \(v(\mathbf{r}) = \sum_k v_k e^{ik \cdot \mathbf{r}} \). Then, (B.1) can be rewritten

\[V(\mathbf{r}) = \sum_{k, \mathbf{R}_i} v_k e^{ik \cdot (\mathbf{r} - \mathbf{R}_i)}. \quad (B.2) \]

The potential \(v(\mathbf{r}) \) is very short-range, and \(v_k \) is almost independent of \(k \). The \(k \)-independent coefficient \(v_k \) is usually expressed as

\[v_k = \frac{2\pi}{\bar{\hbar}} \frac{1}{a M_n}, \]

where \(a \) is defined as the scattering length and \(M_n \) is the mass of the neutron.

The initial state of the system can be expressed as

\[\Psi_i(\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{r}) = V^{-1/2} e^{i\mathbf{p} \cdot \mathbf{r}} |n_1, n_2, \ldots, n_N\rangle. \quad (B.3) \]

Here, \(V^{-1/2} e^{i\mathbf{p} \cdot \mathbf{r}} \) is the initial state of a neutron of momentum \(\mathbf{p} \). The ket \(|n_1, n_2, \ldots, n_N\rangle \) represents the initial state of the crystal, with \(n_i \) phonons in mode \(i \). The final state, after the neutron is scattered, is

\[\Psi_f(\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{r}) = V^{-1/2} e^{i\mathbf{p'} \cdot \mathbf{r}} |m_1, m_2, \ldots, m_N\rangle. \quad (B.4) \]

The transition rate for going from \(\Psi_i \) to \(\Psi_f \) can be calculated from Fermi’s golden rule.

\[R_{i\rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i). \quad (B.5) \]

Here, \(E_i \) and \(E_f \) are the initial and final energies of the entire system. Let us write \(\varepsilon_i = E_i - \frac{p^2}{2M_n} \) and \(\varepsilon_f = E_f - \frac{p'^2}{2M_n} \). The total rate of scattering out of
initial state Ψ_i is given by

$$R_{\text{out of } i} = \frac{2\pi}{\hbar} \sum_f \delta (\varepsilon_f - \varepsilon_i - \hbar \omega) |\langle \Psi_f | V | \Psi_i \rangle|^2,$$

(B.6)

where $\hbar \omega = \frac{p'^2 - p^2}{2M_n}$ is the change in energy of the neutron. If we write $p' = p + \hbar k$, where $\hbar k$ is the momentum transfer, the matrix element becomes

$$\sum_{i,k} \langle m_1, m_2, \ldots, m_N | v_k e^{-i k \cdot R_i} | n_1, n_2, \ldots, n_N \rangle.$$

(B.7)

But we can take $v_k = v$ outside the sum since it is a constant. In addition, we can write $R_j = R^0_j + u_j$ and

$$u_j = \sum_{q\lambda} \left(\frac{\hbar}{2MN\omega_{q\lambda}} \right)^{1/2} e^{i q \cdot R^0_j} \tilde{\epsilon}_{q\lambda} (a_{q\lambda} - a_{-q\lambda}^\dagger).$$

(B.8)

The matrix element of $e^{i q \cdot u_j}$ between harmonic oscillator states $|n_1, n_2, \ldots, n_N\rangle$ and $|m_1, m_2, \ldots, m_N\rangle$ is exactly what we evaluated earlier in studying the Mössbauer effect. By using our earlier results and then summing over the atoms in the crystal, one can obtain the transition rate. The cross-section is related to the transition rate divided by the incident flux.

One can find the following result for the cross-section:

$$\frac{d\sigma}{d\Omega d\omega} = \frac{p'}{p} N \frac{a^2}{\hbar} S(q, \omega),$$

(B.9)

where $d\Omega$ is solid angle, $d\omega$ is energy transfer, N is the number of atoms in the crystal, a is the scattering length, and $S(q, \omega)$ is called the dynamic structure factor. It is given by

$$S(q, \omega) = N^{-1} \sum_f \left| \sum_j \langle m_1, \ldots, m_N | e^{i q \cdot u_j} | n_1, \ldots, n_N \rangle \right|^2 \delta (\varepsilon_f - \varepsilon_i - \hbar \omega).$$

(B.10)

Again, there is an elastic scattering part of $S(q, \omega)$, corresponding to no-phonon emission or absorption in the scattering process. For that case $S(q, \omega)$ is given by

$$S_0(q, \omega) = e^{-2W} \delta(\omega) N \sum_{K} \delta_{q,K}.$$

(B.11)

Here, e^{-2W} is the Debye–Waller factor. W is proportional to

$$\left[\langle n_1, \ldots, n_N | q \cdot u_0 | n_1, \ldots, n_N \rangle \right]^2.$$
From (B.11) we see that there are Bragg peaks. In the harmonic approximation
the peaks are δ-functions [because of $\delta(\omega)$] due to energy conservation. The
peaks occur at momentum transfer $\mathbf{p}' - \mathbf{p} = \mathbf{K}$, a reciprocal lattice vector.

In the early days of X-ray scattering there was some concern over whether
the motion of the atoms (both zero point and thermal motion) would broaden
the δ-function peaks and make X-ray diffraction unobservable. The result,
in the harmonic approximation, is that the δ-function peaks are still there,
but their amplitude is reduced by the Debye–Waller factor e^{-2W}.

For the one-phonon contribution to the cross-section, we obtain

$$
\frac{d\sigma}{d\Omega d\omega} = N e^{-2W} \frac{p'}{p} \sum_{\lambda} \frac{(\mathbf{q} \cdot \hat{\mathbf{q}}_\lambda)^2}{2M\omega_{q\lambda}} \{ (1 + n_{q\lambda}) \delta(\omega + \omega_{q\lambda}) + n_{q\lambda} \delta(\omega - \omega_{q\lambda}) \}.
$$

(B.12)

There are still unbroadened δ-function peaks at $\varepsilon_f \pm \hbar \omega_{q\lambda} = \varepsilon_i$, corresponding
to the emission or absorption of a phonon. The peaks occur at a scattering
angle determined from $\mathbf{p}' - \mathbf{p} = \mathbf{q} + \mathbf{K}$ where \mathbf{K} is a reciprocal lattice vector.
The amplitude again contains the Debye–Waller factor e^{-2W}. Inelastic neutron scattering allows a experimentalist to determine the phonon frequencies
$\omega_{q\lambda}$ as a function of \mathbf{q} and of λ.

The broadening of the δ-function peaks occurs only when anharmonic
terms are included in the calculation. Anharmonic forces lead to phonon–phonon scattering and to finite phonon lifetimes.
Bibliography

General Reading

Chapter 1 Crystal Structures

Chapter 2 Lattice Vibrations

L. Brillouin, *Wave Propagation in Periodic Structures* (Dover, New York, 1953)

Chapter 3 Free Electron Theory of Metals

Chapter 4 Elements of Band Theory

W.A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980)

Chapter 5 Use of Elementary Group Theory in Calculating Band Structure

H. Jones, The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland, Amsterdam, 1975)

Chapter 6 More Band Theory and the Semiclassical Approximation

J.C. Slater, Symmetry and Energy Band in Crystals (Dover, New York, 1972)

Chapter 7 Semiconductors

P.S. Kireev, Semiconductor Physics (Mir, Moscow, 1978)
G. Bastard, wave mechanics applied to semiconductor heterostructures (Halsted, New York, 1986)
Chapter 8 Dielectric Properties of Solids

Chapter 9 Magnetism in Solids

Chapter 10 Magnetic Ordering and Spin Waves

Chapter 11 Many Body Interactions – Introduction

Chapter 12 Many Body Interactions – Green’s Function Method

Chapter 13 Semiclassical Theory of Electrons

D. Shoenberg, Phil. Roy. Soc. (London), Ser A 255, 85 (1962)

Chapter 14 Electrodynamics of Metals

For a review of magnetoplasma surface waves see, for example, J.J. Quinn, K.W. Chiu, Magnetoplasma Surface Waves in Metals and Semiconductors, Polaritons, ed. by E. Burstein, F. DeMartini (Pergamon, New York, 1971), p. 259
I. Bernstein, Phys. Rev. 109, 10 (1958)

Chapter 15 Superconductivity

J.R. Schrieffer, Superconductivity, (W.A. Benjamin, New York, 1964)
A.A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988)

Chapter 16 The Fractional Quantum Hall Effect

Z.F. Ezawa, Quantum Hall Effects: Field Theoretical Approach and Related Topics (World Scientific, Singapore, 2000)
Index

acceptor, 185
acoustic attenuation, 417
acoustic wave, 441
 electromagnetic generation of, 443
adiabatic approximation, 366
adiabatic demagnetization, 265
Aharanov–Bohm phase, 494
amorphous semiconductor, 206
Anderson localization, 205
Anderson model, 207
anharmonic effect, 69
anisotropy constant, 281
anisotropy energy, 280
antiferromagnet, 283
 ground state energy, 299
antiferromagnetism, 282
anyon, 492
anyon parameter, 492
atomic polarizability, 217
atomic scattering factor, 21
attenuation coefficient, 381
Azbel–Kaner effect, 430

Bohr magneton, 250
 effective number of, 257
Boltzmann’s equation, 83
 linearized, 95
Bose–Einstein distribution, 56
Bragg reflection, 17
Bragg’s law, 17
Bravais lattice
 three-dimensional, 10
 two-dimensional, 9
Brillouin function, 256
bulk mode
 for an infinite homogeneous medium, 230
 longitudinal mode, 230
 of coupled plasmon–LO phonon, 231
 transverse mode, 230, 232
carrier concentration, 182
 extrinsic case, 187
 intrinsic case, 184
Cauchy’s theorem, 344
charge density, 334
 external, 217
 polarization, 217
chemical potential, 86
 actual overall, 347
 local, 346
Chern–Simons term, 492
Chern–Simons transformation, 493
effective magnetic field, 494
Clausius Mossotti relation, 221

BCS theory, 462
 ground state, 467
Bernstein mode, 435
binding energy, 27
Bloch electron
 in a dc magnetic field, 391
 semiclassical approximation for, 168
Bloch’s theorem, 112
Bogoliubov–Valatin transformation, 469
coefficient
 of fractional grandparentage, 505
collision
 effect of, 346
collision drag, 442
collision time, 79
compatibility relation, 145
composite fermion, 494
 filling factor, 495
 picture, 494
 transformation, 495
compressibility, 29, 94
 isothermal, 29
conductivity
 local, 412
 nonlocal, 411
connected diagram, 371
contraction, 368
Cooper pair, 464
 binding energy, 467
core repulsion, 27
correlation effect, 317, 326
 in phonon spectrum, 64
crystal binding, 24
crystal structure
 body centered cubic, 10
 calcium fluoride, 13
 cesium chloride, 13
 diamond, 13
 face centered cubic, 11
 graphite, 14
 hexagonal close packed, 12
 simple cubic, 10
 simple hexagonal, 12
 sodium chloride, 13
 wurtzite, 13
 zincblende structure, 13
crystal structures, 3
Curie temperature, 266
Curie’s law, 256
current
 conduction, 401
 diffusion, 401
current density, 334
 including the effect of collisions, 348
cyclotron frequency, 204, 395
cyclotron mode, 435
cyclotron orbit
 radius of, 412
cyclotron resonance
 Azbel–Kaner, 427
 Doppler shifted, 435
cyclotron wave, 435
de Haas–van Alphen effect, 262
de Haas–van Alphen oscillation, 417, 448
Debye, 223
Debye model, 59
Debye temperature, 60
Debye–Waller factor, 520
density matrix, 328
 equation of motion of, 332
 equilibrium, 346
 single particle, 332
density of states, 57, 88
depletion layer
 surface, 197
depletion length, 191
depletion region, 191
depolarization factor, 218
depolarization field, 218
diamagnetic susceptibility, 254
 Landau, 261
 of metals, 259
diamagnetism, 252
 classical, 259
 origin of, 254
 quantum mechanical, 260
dielectric constant
 longitudinal, 340
dielectric function, 101
 Lindhard, 339
 longitudinal, 339
 of a metal, 224
 of a polar crystal, 225
 transverse, 339
dielectric tensor, 217
diffraction
 electron wave, 17
 neutron wave, 17
 X-ray, 17
diffusion tensor, 444
dipole moment, 215
direct gap, 181
direct term, 276
disorder
 compositional, 207
 positional, 207
 topological, 207
 types of, 207
disordered solid, 207
distribution function
 Boltzmann, 83
 Fermi–Dirac, 87
 Maxwell–Boltzmann, 84
divalent metal, 123
domain structure, 279
 emergence energy, 279
domain wall, 280
donor, 185
Doppler shifted cyclotron resonances, 446
drift mobility, 80
Drude model, 79
criticisms of, 82
Dyson’s equation, 372
easy direction, 281
effective electron–electron interaction, 463
effective Hamiltonian, 173
effective mass, 121
 cyclotron, 395, 406
effective mass approximation, 121
effective mass tensor, 167, 171
effective phonon propagator, 381
 effective potential, 163
 Einstein function, 56
 Einstein model, 55
 Einstein temperature, 56
electric breakdown, 170
electric polarization, 216
electrical conductivity, 80, 97
 intrinsic, 180
electrical susceptibility, 221
 electrical susceptibility tensor, 217
electrodynamics of metal, 409
 electron–electron interaction, 326, 374
 electron–hole continuum, 351
 electron–phonon interaction, 462
elementary excitation, 44
 empty lattice band, 137
ensemble
 canonical, 86
 grand canonical, 86
 enthalpy, 89
 entropy, 89
 envelope function, 173
 envelope wave function, 199
 equation of states
 Fermi gas, 94
 Euler’s relation, 89
 Evjen method, 30
 Ewald construction, 19
 exchange field, 275
 exchange interaction, 303
 direct exchange, 303
 double exchange, 304
 indirect exchange, 303
 superexchange, 303
 exchange term, 276
 exchange–correlation potential, 198
 exclusion principle, 84
 extended states, 205
 Faraday effect, 446
 Fermi energy, 85
 Fermi function integrals, 91
 Fermi liquid, 384
 Fermi liquid picture, 499
 Fermi liquid theory, 383
 Fermi temperature, 85
 Fermi velocity, 85
 Fermi–Dirac statistics, 84
 Fermi–Thomas screening parameter, 380
 ferrimagnet, 283
 ferromagnetism, 266
 field effect transistor, 199
 finite size effect, 502
 first Brillouin zone, 52
 Floquet’s theorem, 112
 flux penetration, 477
 free electron model, 118
 free energy
 Gibbs, 89
 Helmholtz, 89
 Friedel oscillation, 350
 gap parameter, 473
 gauge invariance, 335
generation current, 193
geometric resonance, 448
geometric structure amplitude, 22
giant quantum oscillation, 448
glide plane, 8
grand partition function, 86
graphene, 124, 159
Green’s function, 361, 368
group, 3
 2mm, 6
 4mm, 5
 Abelian, 4
class, 130
cyclic, 130
generator, 130
multiplication, 3
multiplication table, 4
of matrices, 131
of wave vector, 138
order of, 130
point, 4
representation, 131
space, 8
translation, 4
group representation, 131
character of, 135
faithful, 134
irreducible, 135
reducible, 134
regular, 134
unfaithful, 134
GW approximation, 373
Haldane sphere, 486
Hall coefficient, 101
hard direction, 281
harmonic approximation, 38
Hartree potential, 198
Hartree–Fock approximation, 314
ferromagnetism of a degenerate
electron gas in, 316
heat capacity
 Debye model, 59
due to antiferromagnetic magnons,
 303
 Dulong–Petit law, 54
 Einstein model, 55
Heisenberg antiferromagnet
 zero-temperature, 286
Heisenberg exchange interaction, 275
Heisenberg ferromagnet
 zero-temperature, 283
Heisenberg picture, 362
helicon, 433
helicon frequency, 446
helicon–phonon coupling, 446
hole, 171
Holstein–Primakoff transformation, 287
hopping term, 208
Hund’s rules, 251
hybrid-magnetoplasma modes, 434
improper rotation, 148
impurity band, 194, 208
indirect gap, 181
insulator, 123
interaction
 direct, 326
 exchange, 326
interaction representation, 363
intermediate state, 477
internal energy, 28, 89
itinerant electrons, 304
itinerant ferromagnetism, 304
Jain sequence, 496
Kohn anomaly, 354
Kohn effect, 353, 381
k · p method, 165
Kramers–Kronig relation, 343
Landé g-factor, 251
Landau damping, 435
Landau gauge, 203
Landau level, 483, 484
 filling factor, 205
Landau’s interaction parameter, 384
Langevin function, 223, 256
lattice, 3
 with a basis, 7
 Bravais, 7
 hexagonal, 10
 monoclinic, 10
 oblique, 10
 orthorhombic, 10
 reciprocal, 15
 rectangular, 9
square, 9
tetragonal, 10
translation vector, 3
triclinic, 10
trigonal, 10
lattice vibration, 37
acoustic mode, 48
anharmonic effect, 69
dispersion relation, 50
equation of motion, 38
in three-dimension, 50
long wave length limit, 40
longitudinal waves, 60
monatomic linear chain, 37
nearest neighbor force, 40
normal coordinates, 41
normal modes, 41
optical mode, 48
phonon, 44
polarization, 51
quantization, 43
transverse waves, 60
Laue diamagnetism, 260
Laue equation, 17
Laue method, 23
Lindemann melting formula, 63
Lindhard dielectric function, 339, 380
linear response theory, 328, 332
gauge invariance of, 335
linear spin density wave, 325
linked diagram, 372
local field
in a solid, 217
localized states, 205
London theory, 459
penetration depth, 461
long range order, 207
Lorentz field, 219
Lorentz relation, 221
Lorentz sphere, 218, 219
Lorentz theory, 82
Lorenz number, 82
Mössbauer effect, 44, 62
macroscopic electric field, 218
Madelung constant, 28
CsCl, 33
evaluation of, 30
Evjen method, 30
NaCl, 33
wurzite, 33
zincblende, 33
magnetic breakdown, 170
magnetic flux, 204
quantum of, 205
magnetic length, 205, 392
magnetic moment
of an atom, 250
orbital, 250
spin, 250
magnetic monopole, 486
magnetization
spontaneous, 293
magnetococonductivity, 99, 401
free electron model, 407
quantum theory, 413
magnetoplasma wave, 431
magnetoresistance, 101, 396, 397
influence of open orbit, 398
longitudinal, 396
transverse, 396
magnetoroton, 498
magnon, 289
acoustic, 291
dispersion relation, 291
heat capacity, 292, 303
optical, 291
stability, 295
magnon-magnon interaction, 291
magnetoplasma surface wave, 440
mean field theory, 307
mean squared displacement
of an atom, 54
Meissner effect, 455
metal-oxide-semiconductor structure, 195
Miller index, 14
miniband structure, 202
mobility edge, 209
molecular beam epitaxy, 200
monopole harmonics, 487
monovalent metal, 123
MOSFET, 199
N-process, 72
Néel temperature, 283
nearest neighbor distance, 10
nearly free electron model, 119
negative resistance, 195
neutron scattering, 519
 cross section, 520
 dynamic structure factor, 520
 scattering length, 519
non-retarded limit, 239
nonlocal theory
discussion of, 434
normal form, 368

occupation number representation, 312
open orbit, 392, 398
operator
 annihilation, 517
 creation, 517
 lowering, 516
 raising, 516
optical constant, 236
orbit
 electron, 392
 hole, 392
 open, 392
orthogonality theorem, 136
orthogonalized plane waves, 161

p–n junction, 189
 semiclassical model, 190
pair approximation, 379
pairing, 368
paramagnetic state, 316
paramagnetism, 252
 classical, 257
 of atoms, 255
 Pauli spin, 257
partition function, 86
Pauli principle, 85
Pauli spin paramagnetism
 of metals, 257
Pauli spin susceptibility, 259
periodic boundary condition, 37
perturbation theory
 divergence of, 326
phase transition
 magnetic, 306
phonon, 44
 collision rate, 72
 density of states, 57
 emission, 45
phonon–phonon scattering, 72
renormalized, 381
phonon collision
 N-process, 72
 U-process, 73
phonon gas, 74
phonon scattering
 Feynman diagram, 70
plasma frequency, 102, 375
 bare, 353
plasmon, 239
 bulk, 239
 surface, 239
plasmon–polariton mode, 240
point group
 of cubic structure, 148
polariton mode, 234
Polarizability
 dipolar, 222
 electronic, 222
 ionic, 222
 of bound electrons, 224
polarizability factor, 376
polarization part, 373, 379
population
 donor level, 186
powder method, 23
projection operator, 162
proper rotation, 148
pseudo-wavefunction, 163, 173
pseudopotential, 163, 499
 harmonic, 500, 513
 subharmonic, 501, 513
 superharmonic, 501, 513
pseudopotential method, 162
quantization condition
 Bohr–Sommerfeld, 394
quantum Hall effect
 fractional, 205, 483, 485
 integral, 205, 484
quantum limit, 264
quantum oscillation, 431
quantum wave, 435
quantum well
 semiconductor, 200
quasicrystal, 7
quasielectron, 383
quasihole, 383
quasiparticle, 44
interaction, 383
quasiparticle excitation
effective mass of, 383
lifetime, 382

random phase approximation, 373
rearrangement theorem, 130
reciprocal lattice, 16
recombination current, 193
rectification, 194
reflection coefficient, 236
reflectivity
of a solid, 235
refractive index, 232
relaxation time, 79
relaxation time approximation, 83
renormalization factor, 382
renormalization group theory, 307
repopulation energy, 324
representation
change of, 329
interaction, 363
reststrahlen region, 234
rotating crystal method, 23
RPA, 373
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, 304

saddle point
the first kind, 65
the second kind, 65
Schrödinger picture, 362
screened interaction
Lindhard, 374
RPA, 374
screening, 349
dynamic, 349
static, 349
screw axis, 8
second quantization, 311
interacting terms, 314
single particle energy, 312
self energy
electron, 382
self energy part, 372
self-consistent field, 328
semiconductor, 123
semimetal, 123

short range order, 206
Shubnikov–de Haas oscillation, 264, 417
sine integral function, 352
singlet spin state, 275
skin depth, 237
normal, 426

skin effect
anomalous, 237, 426
normal, 236, 425
S matrix, 364, 388
Sommerfeld model, 84
critique of, 99

sound waves
first sound, 74
second sound, 74
spectral function, 382
spin density waves, 318
linear, 319
spiral, 318
spin deviation operator, 287
spin wave, 275, 290
in antiferromagnet, 296
in ferromagnet, 287
spontaneous magnetization, 266, 277
star of k, 138
Stoner excitation, 305
Stoner model, 305
structure amplitude, 22
subband structure, 198
sublattice, 283
sublattice magnetization
finite temperature, 301
zero-point, 300
sum rules, 505
supercell, 200

superconductivity, 455
BCS theory, 462
Cooper pair, 464
excited states, 472
ground state, 467
London theory, 459
magnetic properties, 456
microscopic theory, 462
phenomenological observation, 455

superconductor
acoustic attenuation, 459
coherece length, 475
condensation energy, 472
elementary excitation, 473
flux penetration, 477
gap parameter, 473
isotope effect, 462
London equation, 459
London penetration depth, 461
pair correlations, 462
Peltier effect, 455
quasiparticle density of states, 473
resistivity, 455
specific heat, 457
thermal current, 455
thermoelectric properties, 455
transition temperature, 455, 475
tunneling behavior, 458
type I, 456, 475
type II, 457, 475
superlattice
 semiconductor, 200
surface impedance, 428
surface inversion layer
 semiconductor, 198
surface polariton, 239
surface wave, 237, 437
surface space charge layer, 195
symmetric gauge, 203, 483
thermal conductivity, 72, 80, 97
 in an insulator, 71
thermal expansion, 67
thermodynamic potential, 89
Thomas–Fermi dielectric constant, 350
Thomas–Fermi screening wave number, 350
tight binding method, 112
 in second quantization representation, 115
time ordering operator, 365
translation group, 3
translation operator, 110
triplet spin state, 275
tunnel diode, 194
two-dimensional electron gas, 198
U-process, 73
uniform mode
 of antiferromagnetic resonance, 302
unit cell, 8
 primitive, 8
 Wigner–Seitz, 8
vacuum state, 313
valley, 181
Van der Monde determinant, 485
wave equation
 in a material, 229
Weis field, 266
Weis internal field
 source of the, 277
Wick’s theorem, 369
Wiedemann–Franz law, 82
Wigner–Eckart theorem, 500
zero point vibration, 22