Contents

Chapters marked with * may form the matter of a basic introductory course

Part I Stellar Equilibrium With and Without Rotation

1 The Mechanical Equilibrium of Stars* .. 3
 1.1 Momentum and Continuity Equations 3
 1.1.1 Hydrodynamical Equations ... 3
 1.1.2 Hydrostatic Equilibrium .. 5
 1.1.3 Mass Conservation and Continuity Equation 5
 1.1.4 Lagrangian and Eulerian Variables 6
 1.1.5 Estimates of Pressure, Temperature and Timescales 7
 1.2 The Potential Energy .. 10
 1.2.1 Relation to the Potential and Poisson Equation 11
 1.2.2 The Potential Energy as a Function of Pressure 12
 1.2.3 The Internal Stellar Temperature 13
 1.3 The Virial Theorem for Stars .. 13
 1.3.1 Star with Perfect Gas Law ... 14
 1.3.2 Star with a General Equation of State 16
 1.3.3 Slow Contraction, the Kelvin–Helmholtz Timescale 17

2 The Mechanical Equilibrium of Rotating Stars 19
 2.1 Equilibrium Configurations .. 19
 2.1.1 From Maclaurin Spheroids to the Roche Models 19
 2.1.2 Hydrostatic Equilibrium for Solid Body Rotation 20
 2.1.3 Stellar Surface and Gravity .. 22
 2.1.4 Critical Velocities .. 24
 2.1.5 Polar Radius as a Function of Rotation 27
 2.2 Equations of Stellar Structure for Shellular Rotation 29
 2.2.1 Properties of the Isobars .. 30
 2.2.2 Hydrostatic Equilibrium .. 31
 2.2.3 Continuity Equation .. 32
 2.2.4 Equation of the Surface for Shellular Rotation 33
3 The Energetic Equilibrium of Stars

3.1 The Radiative Transfer
3.1.1 Equation of Radiative Transfer
3.1.2 Radiation Properties in Stellar Interiors
3.1.3 Transfer Equation
3.1.4 The Rosseland Mean Opacity
3.1.5 The Mass–Luminosity Relation
3.1.6 Photon Travel Times and $M–L$ Relation

3.2 Energetic Equilibrium of a Star
3.2.1 Why Are Stars Stable Nuclear Reactors?
3.2.2 Energy Conservation
3.2.3 Combined Equation of Conservation and Transfer
3.2.4 Relation with the Heat Conduction

3.3 Energy Generation Rate from Gravitational Contraction.
3.3.1 Contraction of a Star with Perfect Gas
3.3.2 Case of a General Equation of State
3.3.3 The Entropy of Mixing
3.3.4 The Difference of Specific Heats
3.3.5 Adiabatic Gradient for Constant μ
3.3.6 Adiabatic Gradient for Variable μ

3.4 Changes of T and ρ for Non-adiabatic Contraction
3.4.1 Major Consequences for Evolution

3.5 Secular Stability of Nuclear Burning
3.5.1 Shell Source Instability

3.6 The Role of Radiation Pressure in Stars
3.6.1 The Radiative Pressure as a Function of Mass
3.6.2 The Eddington Luminosity

4 The Energy Conservation and Radiative Equilibrium in Rotating Stars

4.1 Radiative Equilibrium for Rotating Stars
4.1.1 The Equation of Radiative Transfer
4.1.2 Conservation of Energy
4.1.3 Structure Equations for Rotating Stars

4.2 Radiative Transfer in Rotating Stars
4.2.1 Breakdown of Radiative Equilibrium
4.2.2 The Von Zeipel Theorem
4.2.3 Interferometric Observations of Stellar Distortion and Gravity Darkening

4.3 Interactions of Rotation and Radiation Effects
4.3.1 The Γ, Ω and $\Omega\Gamma$ Limits
4.3.2 The $\Omega\Gamma$ Limit: Combined Eddington and Rotation Limits

4.4 Critical Rotation Velocities
4.4.1 No Break-up Velocity for Differential Rotation?
5 Stellar Convection

5.1 Gravity Waves and the Brunt–Väisälä Frequency

5.1.1 Relation with the Entropy Gradient

5.1.2 The Schwarzschild and Ledoux Criteria

5.1.3 The Four T Gradients

5.2 Mixing-Length Theory for the Convective Flux

5.2.1 Orders of Magnitude

5.3 Convection in Stellar Interiors

5.4 Non-adiabatic Convection

5.4.1 Radiative Losses

5.4.2 Thermal Adjustment Timescale

5.4.3 Solutions for Non-adiabatic Convection

5.4.4 Limiting Cases, Fraction Carried by Convection

5.5 Convection in the Most Luminous Stars

5.5.1 Convection Near the Eddington Limit

5.5.2 Density Inversion

5.5.3 Pressure and Flux of Turbulence

6 Overshoot, Semiconvection, Thermohaline Convection, Rotation and Solberg–Hoiland Criterion

6.1 Convective Overshooting

6.1.1 Overshooting in an MLT Non-local Model

6.1.2 The Roxburgh Criterion for Convective Overshoot

6.1.3 Turbulence Modeling and Overshooting

6.1.4 Observational Constraints

6.2 Semiconvection and Thermohaline Convection

6.2.1 Various Approaches

6.2.2 Kato Equation, Thermohaline Convection

6.2.3 Diffusion Coefficient for Semiconvection

6.3 Time-Dependent Convection

6.4 Effects of Rotation on Convection

6.4.1 Oscillation Frequency in a Rotating Medium

6.4.2 The Rayleigh Criterion and Rayleigh–Taylor Instability

6.4.3 The Solberg–Hoiland Criterion

6.4.4 Numerical Simulations

6.5 Convective Envelope in Rotating O-stars
Part II Physical Properties of Stellar Matter

7 The Equation of State∗

7.1 Excitation and Ionization of Gases 137

7.1.1 Excitation .. 137

7.1.2 Ionization of Gases: The Saha Equation 139

7.1.3 The Saha–Boltzmann Equation 140

7.1.4 Ionization Potentials and Negative Ions 142

7.2 Perfect Gas and Mean Molecular Weights 143

7.3 Partially Ionized Stellar Medium 145

7.3.1 Coupled Equations for a Medium Partially Ionized 146

7.3.2 Thermodynamic Coefficients for Partial Ionization 148

7.4 Adiabatic Exponents and Thermodynamic Functions 149

7.4.1 Definitions of the Adiabatic Exponents 149

7.4.2 Relation Between the Γ_i and Specific Heats 151

7.5 Thermodynamics of Mixture of Gas and Radiation 153

7.6 Electrostatic Effects 156

7.6.1 The Debye–Hückel Radius 156

7.6.2 Electrostatic Effects on the Gas Pressure 158

7.6.3 Ionization by Pressure 159

7.6.4 Crystallization .. 160

7.7 Degenerate Gases .. 161

7.7.1 Partially Degenerate Gas 164

7.7.2 Non-Relativistic Partial Degeneracy 164

7.7.3 Completely Degenerate Gas 166

7.7.4 Electrostatic Effects in a Degenerate Medium 169

7.7.5 A Note on the Consequences ofDegeneracyand on White Dwarfs .. 170

7.8 Global View on the Equation of State 172

8 The Opacities∗

8.1 Line Absorption, Electron Scattering, Rayleigh Diffusion 177

8.1.1 Recalls on the Atomic Oscillators 177

8.1.2 Spectral Lines or Bound–Bound Transitions 178

8.2 Electron Scattering 179

8.2.1 Electron Scattering at High Energies 180

8.2.2 Rayleigh Diffusion 181

8.3 Photoionization or Bound–Free Transitions 181

8.3.1 Negative H Absorption 183

8.4 Hyperbolic Transitions or Free–Free Opacity 185

8.5 Electronic Conduction 186

8.5.1 Electron Conduction in Non-degenerate Gas 186

8.5.2 Electron Conduction in Degenerate Gas 188

8.6 Global View on Stellar Opacities 189

8.6.1 Dependence on T and φ, Changes with Masses 189

8.6.2 Opacity Tables ... 191
9 Nuclear Reactions and Neutrino Processes

9.1 Physics of the Nuclear Reactions

9.1.1 Reaction Energy

9.2 Nuclear Reaction Rates

9.2.1 Particle Lifetimes and Energy Production Rates

9.3 Nuclear Cross-Sections

9.3.1 The Rate of Non-resonant Reactions

9.3.2 The Rate of Resonant Nuclear Reactions

9.4 Electron Screening

9.5 Neutrino Emission Processes

9.5.1 Photo-neutrinos

9.5.2 Pair Annihilation Neutrinos

9.5.3 Plasma, Bremsstrahlung, Recombination Neutrinos

Part III Hydrodynamical Instabilities and Transport Processes

10 Transport Processes: Diffusion and Advection

10.1 General Properties of Diffusion

10.1.1 Absence of Global Mass Flux

10.1.2 Continuity Equation: Atomic Diffusion and Motion

10.1.3 Fluxes of Particles, Velocities and Diffusion Coefficient

10.2 Diffusion by an Abundance Gradient

10.2.1 Equation of Diffusion

10.2.2 Boundary Conditions and Interpolations

10.2.3 Caution About the Use of Concentrations

10.3 Microscopic or Atomic Diffusion

10.3.1 Gravitational Settling

10.3.2 Equations of Motion of Charged Particles

10.3.3 The Electric Field and the Diffusion Velocities

10.3.4 Diffusion Equation

10.3.5 Effect of a Thermal Gradient

10.4 The Radiative Diffusion

10.4.1 Radiative Acceleration

10.4.2 Acceleration by Spectral Lines

10.4.3 Continuum Absorption, Redistribution, Magnetic Field

10.4.4 Orders of Magnitude, Diffusion in A Stars

10.4.5 Atomic Diffusion in the Sun

10.5 Transport of Angular Momentum in Stars

10.5.1 Equation of Transport

10.5.2 Transport of Angular Momentum by Shears

10.5.3 Some Properties of Shellular Rotation

10.5.4 Transport in Shellular Rotation

10.5.5 Boundary Conditions
<table>
<thead>
<tr>
<th>11 Meridional Circulation</th>
<th>249</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 The Energy Conservation on an Isobar</td>
<td>249</td>
</tr>
<tr>
<td>11.1.1 Thermal Imbalance</td>
<td>250</td>
</tr>
<tr>
<td>11.1.2 The Horizontal Thermal Balance</td>
<td>253</td>
</tr>
<tr>
<td>11.2 Some Properties of Baroclinic Stars</td>
<td>255</td>
</tr>
<tr>
<td>11.2.1 The Fluctuations of T, μ, ε and χ</td>
<td>255</td>
</tr>
<tr>
<td>11.2.2 The Baroclinic Equation</td>
<td>258</td>
</tr>
<tr>
<td>11.2.3 The Horizontal Fluctuations of Effective Gravity</td>
<td>259</td>
</tr>
<tr>
<td>11.3 The Velocity of Meridional Circulation</td>
<td>262</td>
</tr>
<tr>
<td>11.4 Properties of Meridional Circulation</td>
<td>267</td>
</tr>
<tr>
<td>11.4.1 Simplified Expressions and Timescale</td>
<td>267</td>
</tr>
<tr>
<td>11.4.2 T and μ Excesses and Circulation Patterns</td>
<td>269</td>
</tr>
<tr>
<td>11.5 The Major Role of the Gratton–Öpik Term</td>
<td>272</td>
</tr>
<tr>
<td>11.5.1 Departure from Solid Body and Initial Ω Convergence</td>
<td>272</td>
</tr>
<tr>
<td>11.5.2 Stationary Circulation in Equilibrium with Diffusion</td>
<td>273</td>
</tr>
<tr>
<td>11.5.3 The Gratton–Öpik Circulation and Evolution</td>
<td>274</td>
</tr>
<tr>
<td>11.6 Meridional Circulation with Horizontal Turbulence</td>
<td>276</td>
</tr>
<tr>
<td>11.6.1 Transport of the Elements</td>
<td>277</td>
</tr>
<tr>
<td>11.6.2 Transport of the Angular Momentum</td>
<td>281</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 Rotation-Driven Instabilities</th>
<th>283</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Horizontal Turbulence</td>
<td>283</td>
</tr>
<tr>
<td>12.1.1 The Horizontal Fluctuations of Ω</td>
<td>284</td>
</tr>
<tr>
<td>12.1.2 A First Estimate of the Horizontal Turbulence</td>
<td>287</td>
</tr>
<tr>
<td>12.1.3 Turbulent Diffusion from Laboratory Experiment</td>
<td>288</td>
</tr>
<tr>
<td>12.1.4 What Sets the Timescale of Horizontal Turbulence ?</td>
<td>290</td>
</tr>
<tr>
<td>12.1.5 Consequences</td>
<td>291</td>
</tr>
<tr>
<td>12.2 Shear Instabilities and Mixing</td>
<td>293</td>
</tr>
<tr>
<td>12.2.1 The Richardson Criterion</td>
<td>294</td>
</tr>
<tr>
<td>12.2.2 Dynamical Shears</td>
<td>296</td>
</tr>
<tr>
<td>12.2.3 Thermal Effects at Constant μ</td>
<td>296</td>
</tr>
<tr>
<td>12.2.4 The T Gradient in Shears</td>
<td>299</td>
</tr>
<tr>
<td>12.2.5 Thermal Effects and μ Gradient</td>
<td>300</td>
</tr>
<tr>
<td>12.3 Shear Mixing with Horizontal Turbulence</td>
<td>302</td>
</tr>
<tr>
<td>12.3.1 Richardson Criterion with Horizontal Turbulence</td>
<td>302</td>
</tr>
<tr>
<td>12.3.2 The Coefficient of Shear Diffusion with Turbulence</td>
<td>303</td>
</tr>
<tr>
<td>12.4 Baroclinic Instabilities</td>
<td>305</td>
</tr>
<tr>
<td>12.4.1 The Goldreich–Schubert–Fricke or GSF Instability</td>
<td>306</td>
</tr>
<tr>
<td>12.4.2 The ABCD Instability</td>
<td>308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13 Magnetic Field Instabilities and Transport Processes</th>
<th>311</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 The Equations of Magnetohydrodynamics (MHD)</td>
<td>311</td>
</tr>
<tr>
<td>13.1.1 The MHD Equations in Astrophysics</td>
<td>311</td>
</tr>
<tr>
<td>13.1.2 Equations of Stellar Structure with Magnetic Field</td>
<td>313</td>
</tr>
<tr>
<td>13.1.3 Alfvén Waves</td>
<td>315</td>
</tr>
</tbody>
</table>
15.3 Baker’s One-Zone Analytical Model 381
 15.3.1 Adiabatic Pulsations ... 384
15.4 Non-adiabatic Effects in Pulsations 385
 15.4.1 The κ and γ Mechanisms 385
 15.4.2 The Damping Timescale of Pulsations 389
 15.4.3 Secular Instability: Conditions on Opacities and Nuclear
 Reactions .. 390
15.5 Relations to Observations: Cepheids 391
 15.5.1 The Period-Luminosity-Color Relations 391
 15.5.2 Physics of the Instability Strip 394
 15.5.3 The Period–Luminosity Relation 397
 15.5.4 Light Curves ... 398

16 Nonradial Stellar Oscillations 401
 16.1 Basic Equations of Nonradial Oscillations 401
 16.1.1 Starting Equations ... 401
 16.1.2 Perturbations of the Equations 402
 16.1.3 Separation in Vertical and Horizontal Components 404
 16.1.4 Decomposition in Spherical Harmonics 405
 16.2 Nonradial Adiabatic Oscillations 409
 16.2.1 Basic Equations .. 409
 16.2.2 Some Properties of the Equations 411
 16.2.3 Simplification to a Second-Order Equation 412
 16.2.4 Domains of the Acoustic and Gravity Modes 414
 16.2.5 The Degree ℓ and Radial Order n 416
 16.3 Properties of Acoustic or p Modes 419
 16.3.1 Inner Turning Points of p Modes 419
 16.3.2 Properties of the Solar Cavity: Parabolic Relations 421
 16.3.3 Behavior of p Modes at the Surface 423
 16.3.4 Excitation and Damping 427
 16.4 The Asymptotic Theory of p Modes 428
 16.4.1 The Frequencies of p Modes 428
 16.4.2 Second-Order Effects 431
 16.5 Helioseismology and Asteroseismology 433
 16.5.1 Helioseismic Observations 433
 16.5.2 Asteroseismic Observations 436
 16.5.3 The Asteroseismic Diagram 438
 16.5.4 Effects of X, Z and Mixing Length on the Large
 and Small Separations 441
 16.6 Rotational Effects: Splitting and Internal Mixing 441
 16.6.1 The Rotational Splitting: First Approach 442
 16.6.2 Further Steps ... 443
 16.6.3 The Tachocline and Inner Solar Rotation 444
 16.6.4 Structural Effects of Rotation 447
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Transport by Gravity Waves</td>
<td>449</td>
</tr>
<tr>
<td>17.1</td>
<td>The Propagation of Gravity Waves</td>
<td>449</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Properties of Gravity Waves</td>
<td>449</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Propagation Equation</td>
<td>451</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Non-adiabatic Effects</td>
<td>454</td>
</tr>
<tr>
<td>17.2</td>
<td>Energy and Momentum Transport by Gravity Waves</td>
<td>458</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Wave Excitation</td>
<td>461</td>
</tr>
<tr>
<td>17.3</td>
<td>Consequences of Transport by Gravity Waves</td>
<td>465</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Shear Layer Oscillations “SLO”</td>
<td>465</td>
</tr>
<tr>
<td>17.3.2</td>
<td>The Solar Rotation Curve</td>
<td>467</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Waves and the Lithium Dip</td>
<td>469</td>
</tr>
<tr>
<td>17.4</td>
<td>Transport by Gravity Waves and Open Questions</td>
<td>470</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Particles Diffusion by Gravity Waves</td>
<td>470</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Open Questions and Further Developments</td>
<td>471</td>
</tr>
</tbody>
</table>

Part V Star Formation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Pre-stellar Phase*</td>
<td>475</td>
</tr>
<tr>
<td>18.1</td>
<td>Overview and Signatures of Star Formation</td>
<td>475</td>
</tr>
<tr>
<td>18.2</td>
<td>The Beginning of Cloud Contraction</td>
<td>477</td>
</tr>
<tr>
<td>18.2.1</td>
<td>The Jeans Criterion</td>
<td>477</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Various Expressions of the Jeans Criterion</td>
<td>480</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Initializing the Cloud Collapse</td>
<td>482</td>
</tr>
<tr>
<td>18.2.4</td>
<td>The Timescale</td>
<td>482</td>
</tr>
<tr>
<td>18.3</td>
<td>The Role of Magnetic Field and Turbulence</td>
<td>484</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Magnetic Fields</td>
<td>484</td>
</tr>
<tr>
<td>18.3.2</td>
<td>The Major Role of Turbulence in Star Formation</td>
<td>486</td>
</tr>
<tr>
<td>18.4</td>
<td>Isothermal Collapse and Cloud Fragmentation</td>
<td>487</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Dust Grains and Cooling</td>
<td>487</td>
</tr>
<tr>
<td>18.4.2</td>
<td>The Initial Cloud Structure and its Evolution</td>
<td>488</td>
</tr>
<tr>
<td>18.4.3</td>
<td>The Hierarchical Fragmentation</td>
<td>491</td>
</tr>
<tr>
<td>18.4.4</td>
<td>The Opacity-Limited Fragmentation</td>
<td>492</td>
</tr>
<tr>
<td>18.4.5</td>
<td>The Initial Stellar Mass Spectrum</td>
<td>494</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>The Protostellar Phase and Accretion Disks*</td>
<td>497</td>
</tr>
<tr>
<td>19.1</td>
<td>Accretion Disks</td>
<td>497</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Observations of Disks</td>
<td>497</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Disk Formation</td>
<td>498</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Disk Properties and Evolution</td>
<td>500</td>
</tr>
<tr>
<td>19.1.4</td>
<td>Stationary Disks</td>
<td>502</td>
</tr>
<tr>
<td>19.2</td>
<td>Accretion in Low and Intermediate Mass Stars</td>
<td>504</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Theoretical Estimates of the Accretion Rates</td>
<td>505</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Structure of the Protostar in the Accretion Phase</td>
<td>506</td>
</tr>
<tr>
<td>19.3</td>
<td>The Phase of Adiabatic Contraction</td>
<td>508</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Evolution of the Central Object</td>
<td>510</td>
</tr>
<tr>
<td>19.4</td>
<td>Properties at the End of the Protostellar Phase</td>
<td>511</td>
</tr>
</tbody>
</table>
The Pre-main Sequence Phase and the Birthlines

20.1 General Properties of Non-adiabatic Contraction
20.1.1 The Kelvin–Helmholtz Timescale
20.2 Pre-MS Evolution at Constant Mass
20.2.1 The Hayashi Line
20.2.2 Gravitational Energy Production and D Burning
20.2.3 From the Hayashi Line to the ZAMS
20.3 Pre-MS Evolution with Mass Accretion
20.3.1 The Birthline and Its Timescales
20.3.2 The Luminosity from D Burning
20.4 Evolution on the Birthline
20.5 Evolution from the Birthline to the ZAMS
20.6 Lifetimes, Ages and Isochrones
20.7 Lithium Depletion in Pre-MS Stars
20.7.1 Model Predictions
20.7.2 Li and D in T Tauri Stars and Residual Accretion
20.7.3 Li Depletion in Low-Mass Stars and Brown Dwarfs
20.7.4 Li Dating from Brown Dwarfs and Low-M Stars

Rotation in Star Formation

21.1 Steps in the Loss of Angular Momentum
21.1.1 From Interstellar Clouds to T Tauri Stars
21.1.2 From T Tauri Stars to the ZAMS
21.1.3 End of Pre-MS Phase and Early Main Sequence
21.2 Disk Locking and Magnetospheric Accretion
21.2.1 Observational Evidences
21.3 Magnetic Braking and Rotation in Clusters
21.3.1 Predicted Magnetic Braking
21.3.2 Comparisons with Rotation Velocities in Clusters

The Formation of Massive Stars

22.1 The Various Scenarios for Massive Star Formation
22.1.1 The Classical or Constant Mass Scenario
22.1.2 The Collision or Coalescence Scenario
22.1.3 The Accretion Scenario
22.2 Timescales for Accreting Stars
22.3 Limits on the Accretion Rates
22.3.1 The Upper Limit on Accretion
22.3.2 Conditions on Dust Opacity
22.3.3 The Lower Limit on Accretion Rates
22.3.4 The Role of Rotation
22.4 Accretion Models for Massive Star Formation
22.4.1 Formation with Initially Peaked Accretion
22.4.2 The Churchwell–Henning Relation
Contents

23 The Formation of First Stars in the Universe: Pop. III and Pop. II.5

Stars .. 571
23.1 The Pre- and Protostellar Phases at $Z = 0$ 572
 23.1.1 Molecular H$_2$ and Gas Cooling 572
 23.1.2 Fragmentation of Metal-Free Clouds 573
 23.1.3 Formation of an Adiabatic Core 574
 23.1.4 Accretion on the Core 575
23.2 The Mass–Radius Relation of $Z = 0$ Stars 576
23.3 Evolution of the Largest Masses at $Z = 0$ 579
 23.3.1 Critical Accretion for Massive Stars at $Z = 0$ 580
23.4 The HR Diagram of Accreting Stars at $Z = 0$ 581
 23.4.1 The Case of Non-zero Metallicities 581
 23.4.2 The Role of Rotation 582
23.5 The Upper Mass Limit at $Z = 0$ 582
 23.5.1 Main Effects 583
 23.5.2 HII Region in a Free-Falling Envelope 583
 23.5.3 Radiation Effect on an HII Region 585
23.6 The Pop. II.5 Stars 587
 23.6.1 HD Formation and Gas Cooling 587
 23.6.2 The Masses of the Pop. II.5 Stars 588

Part VI Main-Sequence and Post-MS Evolution

24 Solutions of the Equations and Simple Models* 593
 24.1 Hydrostatic and Hydrodynamic Models 593
 24.1.1 Hydrostatic Models and Vogt–Russel Theorem 593
 24.1.2 Hydrodynamic Equations 595
 24.1.3 Boundary Conditions at the Center and Surface 596
 24.1.4 Analytical Solutions in the Outer Layers 597
 24.2 The Henyey Method 599
 24.3 Homology Transformations: Relations $M–L–R$ 601
 24.3.1 Other Effects: Electron Scattering, P_{rad}, Convection 604
 24.4 The Helium and Generalized Main Sequences 605
 24.4.1 The Helium Sequence 605
 24.4.2 Generalized Main Sequences 605
 24.5 Polytropic Models 607
 24.5.1 Interesting Polytropes 609
 24.5.2 Isothermal Sphere 610

25 Evolution in the H-Burning Phases* 613
 25.1 Hydrogen Burning 613
 25.1.1 The pp Chains 614
 25.1.2 Equations for Composition Changes 615
 25.1.3 The CNO Cycles 618
 25.1.4 Energy Production in MS Stars 620
 25.1.5 The NeNa and MgAl Cycles 621
25.2 Basic Properties of MS Stars 624
 25.2.1 Differences in Structure 624
 25.2.2 Main Parameters as a Function of Mass 625
 25.2.3 Evolutionary Timescales 627
25.3 Solar Properties and Evolution 629
 25.3.1 Internal Structure 629
 25.3.2 The Evolution of the Sun 632
 25.3.3 Solar Neutrinos 634
25.4 Evolution on the Main Sequence 637
 25.4.1 Internal Properties, Tracks in the HR Diagram 637
25.5 The End of the Main Sequence 640
 25.5.1 The Schönberg–Chandrasekhar Limit 640
 25.5.2 Isochrones and Age Determinations 642
26 Evolution in the He Burning and AGB Phases of Low and Intermediate Mass Stars with Rotation* 645
 26.1 Helium Burning .. 645
 26.2 He Burning in Intermediate Mass Stars 647
 26.2.1 From Main Sequence to Red Giants 647
 26.2.2 Evolution in the He-Burning Phase and Dredge-up 651
 26.2.3 From AGB to the White Dwarfs 654
 26.2.4 The Blue Loops 656
 26.3 Some Metallicity Effects in Evolution 657
 26.4 Central Evolution and Domains of Stellar Masses 658
 26.4.1 The Mass Limits for Evolution 661
 26.4.2 Evolution of the Entropy per Baryon 664
 26.5 The Horizontal Branch 665
 26.6 Evolution and Nucleosynthesis in AGB Stars 667
 26.6.1 Structure and Instability of TP-AGB Stars 667
 26.6.2 Third Dredge-Up and TP-AGB Nucleosynthesis 671
 26.6.3 AGB Classification and Chemical Abundances 674
 26.6.4 Post-AGB Stars to Planetary Nebulae and White Dwarfs, Super-AGB Stars 676
 26.7 Rotation and Mixing Effects in AGB stars 678
 26.8 Nucleosynthesis in AGB Stars 681
 26.8.1 Nucleosynthesis in E-AGB stars 681
 26.8.2 Nucleosynthesis in TP-AGB Stars 683
27 Massive Star Evolution with Mass Loss and Rotation* 685
 27.1 The Need for Both 685
 27.2 Evolution at Constant Mass 686
 27.3 Internal Evolution and the HR Diagram 688
 27.3.1 Mass Loss Parametrizations 688
 27.3.2 Mass Loss Effects in the HR Diagram 690
 27.3.3 Internal Evolution with Mass Loss 692
27.3.4 Effects of Rotation in the MS Phase 693
27.3.5 Lifetimes and Age Estimates 694
27.3.6 He-Burning: Blue and Red Supergiants at Different Z ... 696

27.4 Evolution of the Chemical Abundances 697
27.4.1 Steps in the Peeling-Off by Mass Loss 697
27.4.2 Observed N/H Excesses 699
27.4.3 Chemistry in Models with Rotation 700
27.4.4 Abundances and Massive Star Filiations 702

27.5 Wolf–Rayet Stars: the Daughters of O stars 703
27.5.1 WR Properties: the Zebras in the Zoo 703
27.5.2 Optically Thick Winds. M–L–R–T_eff Relations 703

27.6 WR Star Chemistry ... 706
27.6.1 Observations ... 706
27.6.2 Mass Loss, Rotation and WR Chemistry 707
27.6.3 22Ne in WC Stars ... 709

27.7 Number Ratios of WR Stars in Galaxies 710
27.7.1 Observed Number Ratios 710
27.7.2 Models with Mass Loss and Rotation 711

27.8 Evolution of the Rotational Velocities 713
27.8.1 Rotation of LBV ... 715
27.8.2 WR Star Rotation ... 716

28 Advanced Evolutionary Stages and Pre-supernovae*

28.1 Nuclear Reactions in the Advanced Phases 719
28.1.1 C Burning .. 719
28.1.2 Ne Photodisintegration 723
28.1.3 O Burning .. 723
28.1.4 Silicon Burning ... 724

28.2 The Advanced Phases with and Without Rotation 725
28.2.1 Toward the “Onion Skin” Model 726
28.2.2 Decoupling of Core and Envelope 727
28.2.3 Evolution of Central Conditions 727
28.2.4 Lifetimes and Core Masses, Rotation 729

28.3 Chemical Yields: Z, Mass Loss and Rotation Effects 731
28.3.1 Chemical Yields of \(\alpha \)-Rich Nuclei 732

28.4 Toward the Supernovae 734
28.4.1 Supernova Types .. 734
28.4.2 Core Collapse and Explosion 736
28.4.3 Final Masses and Remnants 738

28.5 Explosive Synthesis .. 741
28.5.1 Elements with A < 56 741
28.5.2 The Fe Peak .. 743
28.5.3 The Heavy Elements A \(\geq \) 60 745
28.5.4 The s-Elements .. 746
28.5.5 The r-Elements .. 747
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.6</td>
<td>Evolution of Rotation: Pulsars and GRBs</td>
<td>750</td>
</tr>
<tr>
<td>28.6.1</td>
<td>Distribution of the Specific Angular Momentum</td>
<td>750</td>
</tr>
<tr>
<td>28.6.2</td>
<td>The Rotation of Pulsars</td>
<td>752</td>
</tr>
<tr>
<td>28.6.3</td>
<td>GRBs: A Challenging Problem</td>
<td>752</td>
</tr>
<tr>
<td>28.6.4</td>
<td>Models for the GRB Progenitors</td>
<td>753</td>
</tr>
<tr>
<td>29</td>
<td>Evolution of Z = 0 and Very Low Z Stars</td>
<td>755</td>
</tr>
<tr>
<td>29.1</td>
<td>Basic Properties and Evolution of Z = 0 Stars</td>
<td>755</td>
</tr>
<tr>
<td>29.1.1</td>
<td>Differences in the Physics</td>
<td>755</td>
</tr>
<tr>
<td>29.1.2</td>
<td>The HR and logT_c vs. logρ_c Diagrams</td>
<td>756</td>
</tr>
<tr>
<td>29.1.3</td>
<td>Low-Mass Stars ($M < 3 M_\odot$)</td>
<td>757</td>
</tr>
<tr>
<td>29.1.4</td>
<td>Intermediate Mass Stars ($3 M_\odot < M < 10 M_\odot$)</td>
<td>758</td>
</tr>
<tr>
<td>29.1.5</td>
<td>High-Mass Stars ($M > 10 M_\odot$)</td>
<td>760</td>
</tr>
<tr>
<td>29.1.6</td>
<td>Other Properties: Mass Limits and CO Cores</td>
<td>760</td>
</tr>
<tr>
<td>29.2</td>
<td>Rotation Effects at Z = 0</td>
<td>761</td>
</tr>
<tr>
<td>29.2.1</td>
<td>HR Diagram and Lifetimes</td>
<td>761</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Evolution of the Rotation, Final Masses</td>
<td>762</td>
</tr>
<tr>
<td>29.3</td>
<td>Rotation Effects in Very Low Z Models</td>
<td>764</td>
</tr>
<tr>
<td>29.3.1</td>
<td>Rotational Mass Loss in the First Generations</td>
<td>765</td>
</tr>
<tr>
<td>29.3.2</td>
<td>Enrichments by the Winds of the First Generations</td>
<td>766</td>
</tr>
<tr>
<td>A</td>
<td>Physical and Astronomical Constants</td>
<td>771</td>
</tr>
<tr>
<td>A.1</td>
<td>Physical Constants</td>
<td>771</td>
</tr>
<tr>
<td>A.2</td>
<td>Some Astronomical Constants</td>
<td>772</td>
</tr>
<tr>
<td>A.3</td>
<td>Initial Solar Abundances</td>
<td>772</td>
</tr>
<tr>
<td>B</td>
<td>Complements on Mechanics and Electromagnetism</td>
<td>773</td>
</tr>
<tr>
<td>B.1</td>
<td>Equations of Motion and Continuity</td>
<td>773</td>
</tr>
<tr>
<td>B.1.1</td>
<td>Equations of Continuity and of Motion</td>
<td>773</td>
</tr>
<tr>
<td>B.1.2</td>
<td>Remarks on Derivatives</td>
<td>774</td>
</tr>
<tr>
<td>B.1.3</td>
<td>Vectorial Operators in Spherical Coordinates</td>
<td>774</td>
</tr>
<tr>
<td>B.1.4</td>
<td>Viscous Terms</td>
<td>775</td>
</tr>
<tr>
<td>B.1.5</td>
<td>Navier–Stokes Equation</td>
<td>776</td>
</tr>
<tr>
<td>B.1.6</td>
<td>Equation of Motion with Rotation</td>
<td>777</td>
</tr>
<tr>
<td>B.1.7</td>
<td>Geostrophic Motions, Taylor–Proudman Theorem</td>
<td>778</td>
</tr>
<tr>
<td>B.2</td>
<td>Maxwell Equations</td>
<td>779</td>
</tr>
<tr>
<td>B.3</td>
<td>Statistical Mechanics: Pressure and Energy Density</td>
<td>780</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Non-relativistic Particles</td>
<td>781</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Relativistic Particles</td>
<td>781</td>
</tr>
<tr>
<td>B.4</td>
<td>Expressions of Viscosity, Conductivity and Diffusion</td>
<td>782</td>
</tr>
<tr>
<td>B.4.1</td>
<td>Viscosity from Turbulence, Radiation and Plasma</td>
<td>782</td>
</tr>
<tr>
<td>B.4.2</td>
<td>Conductivity</td>
<td>784</td>
</tr>
<tr>
<td>B.4.3</td>
<td>Diffusion Coefficient</td>
<td>785</td>
</tr>
<tr>
<td>B.5</td>
<td>Dimensionless Numbers</td>
<td>785</td>
</tr>
<tr>
<td>B.5.1</td>
<td>Reynolds Number</td>
<td>785</td>
</tr>
<tr>
<td>B.5.2</td>
<td>Prandtl Number</td>
<td>786</td>
</tr>
</tbody>
</table>
B.5.3 Peclet and Nusselt Numbers .. 786
B.5.4 The Rossby Number ... 787
B.6 More on the Physics of Rotation 787
B.6.1 The Angular Velocity in Spherical Functions 787
B.6.2 Rotational Splitting for Non-uniform Rotation 790

C Complements on Radiative Transfer and Thermodynamics 795
C.1 Radiation: Definitions .. 795
C.1.1 The Quasi-Isotropic Case .. 798
C.2 Expression of the Heat Changes $dq = dq(P, \rho)$ 798
C.3 Adiabatic Acoustic Waves .. 799
C.4 The Entropy of Radiation and Perfect Gas 800
C.4.1 Entropy of Radiation ... 800
C.4.2 Entropy of a Mixture of Perfect Gas and Radiation 801
C.4.3 Degenerate Gases and Minimum Entropy 802
C.4.4 The Entropy of Mixing .. 803
C.5 Recalls on Fundamental Statistics 804
C.6 Thermodynamic Equilibrium ... 805
C.6.1 Reactions with Changes of State 805
C.6.2 Maxwell–Boltzmann Distribution 806

References .. 807

Index .. 823