Index

absorption constant 84
absorption grating 91, 92
active stabilization 164
active stabilization system 381
anisotropic diffraction 99
anisotropic media 96
anisotropic wave mixing 299
anisotropy of the photoexcitation 85
anisotropy parameter 107
antisite defects 237
attenuated total reflection 294
attractors 166
average electro-optic coefficient 404

band grating 213
band-gap 203
barium titanate 303, 398, 403, 407, 408, 414
BaTiO$_3$ 87, 90, 104, 111, 113, 260, 305, 398, 403, 410, 413, 414
beam coupling 2
beam coupling direction 305
beam fanning
birefringence 9, 23
bound surface charge density 413
Bragg angle 213
Bragg condition 33
Bragg conditions 94
Bragg matching 98
Bragg mismatch 97
Bragg selectivity 101
bright solitons

carrier diffusion 26
carrier drift mobility 90
carrier mobilities 209
channel waveguides 301
charge density 209
clamped static dielectric tensor 86
codirectional two-wave mixing 38
coercive field 398, 399, 409
coherence 16
coherent oscillation 263
combinational gratings 387
complex refractive index 22
(complex) modulation index 86
congruent LiTaO$_3$ 217
counterpropagating beams 255
counterpropagating pattern formation 262
coupled first order equations: relaxation modes 374
coupled wave model 91
coupled-wave equation 35, 93
coupled-wave theory 91
coupling coefficient 39
coupling constant 36
coupling strength 165
cross-talk effects 60
Curie temperature 295
dark conductivity 218
dark decays of diffraction efficiency 386
dark electronic conductivity 373
dark intensity I_d 218
dark solitons
DAST 99
Debye screening length 57
developing 377
developing process 382
development without light 383
dichroic materials 83
dichroism 23, 84
dielectric gratings 91
dielectric relaxation time 56, 111
dielectric tensor 85
difference frequency 19
diffraction efficiency 34, 37, 95, 96, 97, 101, 293
diffusion 29
diffusion coefficient of hydrogen in lithium niobate 384
diffusion field 104, 207
diffusion length 56
diffusion time 209
direct recombination constant 205
dispersion law 126
dispersion relation 125
displacement vector field 87
domain fixing 402, 413
domain walls 400, 409, 413
drift 29
drift length 56
dynamic grating 7, 102
dynamic holograms 1, 204
effective amplitude absorption constants 96
effective dielectric constant 84, 86, 104, 110, 112, 205
effective electro-optical coefficient 84, 112
effective mobility 216
effective third-rank electro-optic tensor 89
efficient diffraction without developing 383
Einstein summation convention 86
elastic stiffness tensor 86
electric displacement vector 86
electrical fixing 397, 398
electro-optic coefficients 267, 299
electro-optic effect 30
electro-optic tensor 89
electrochemical reduction 303
electron density 205
electron tunneling 231
electron-hole competition factor 66
electronic feedbacks 163
energy density 12
energy transfer 2
excitation time 203
exponential gain 103, 107
feedback condition 164, 165, 166, 195
feedback equation 168, 169
feedback loop 168
feedback loop response time 169
feedback setup 168
feedback signal 171
feedback-controlled beam coupling 163, 167
feedback-controlled grating recording 170
feedback-controlled steady states 177
Fermi function 25
ferroelectric domains 398
ferroelectrics 122
fiber Bragg gratings 308
fidelity 413, 414
filamentation 258
final developed ratio 382
fixed gratings 414
fixing after recording 378
fixing in photorefractive waveguides 388
flat-top hat beam 73
four-wave mixing 1
Fourier control is 281
Fourier transform 34
frame rate 223, 223
Franz-Keldysh effect 204
free charge limiting field 211
free-carrier absorption 28
gain media 93
gain-length product 106
Gaussian 77
Gaussian beam 8, 10
Gaussian beams 70
general equations 372
generation of subharmonics 61
Ginzburg-Landau 273
graded-index waveguide 291
grating anisotropy 100
grating coupler 292
grating enhancement 57
grating instabilities 61
Index

grating 34
grating period 12

Helmholtz equation 34
hexagonal structure 260
high-contrast effects 145
hole density 205
hologram lifetime 231, 377
holographic memory 223
holographic sensitivity 298
hysteresis loop 400

ideal conditions 170
ideal feedback 180
incoherent-to-coherent conversion 204, 221
inertial feedback 181
inertial feedback conditions 166
integrated optics 290
interband absorption 26
interband photorefractive effect 203
interference tensor 13
intrinsic levels 203
ion implantation 302
ionic conductivity 231
isotropic wave mixing 299

JFT correlator 223

\(K_{1-x}Li_xTa_{1-y}Nb_yO_3 \) 398
Kerr medium 255
KNbO\(_3\) 90, 104, 111, 113, 206, 212, 213, 260, 398
Kogelnik [1] 91
Kogelnik’s expression 99, 100
Kramers–Kronig relation 27

large-angle electro-optical switch/deflector 392
level population 23
lifetime of the holograms 244
light domains 190
light fanning 113
light induced domain switching 225
light induced waveguides 225
light intensities 107
light-matter interaction 31
linear electro-optic effect 88
linear excitation 131
linear polarization 15
linear stability analysis 269
liquid crystals 100
LiTaO\(_3\) 212
lithium niobate 297
lithium tantalate (LiTaO\(_3\)) 217, 301
local response 172
local thermal fixing 382
localized optical beams 67
long-term fixing 4
longitudinal geometry 212
low-frequency peculiarities 145

material excitation 19, 21
maximization of the diffraction efficiency 167
Maxwell dielectric time 90, 203
mechanical deformation fields 84
Mg doped LiTaO\(_3\) 217
mixed transmission gratings 95
mobile charge carriers 85
mobility 84
mobility tensor 84, 90, 111
modified elasto-optic tensor 89
modified intensity ratio 107
modulation depth 53
modulation technique 168
modulational instability 256
molecular beam epitaxy 295
multiple active centers 65
multiple pattern region 274
multiple quantum-well 204

\(Nb^{4+}_{Li} \) defects as electron donors 379
near-stoichiometric LiTaO\(_3\) 217
nondestructive readout 231
nonlinear optics 1
nonlinear stability analysis 272
nonlocal response 172, 179
nonreciprocal behavior of light-diffraction 96
nucleation 400

one-photon processes 204
optical correlation 204, 223
optical damage 289, 298, 301
Index

optical indicatrix 88, 92
optical interconnections 307
optical path difference 32
optical tunneling 302
optical waveguides 289
oxide crystals 289

parallel processing 204
parametric instability 137
parametric processes 63
pattern control 253
pattern formation 253
periodic state 166, 180
permittivity 9
phase conjugate 2
phase coupling factor 103
phase fluctuations 163
phase grating 92
phase-matching conditions 135
photoconductivity 206, 218, 298
photoexcitation 84, 203
photoexcitation anisotropy 104, 113
photoexcitation constant 205
photoexcitation tensor 107
photogalvanic effect 104, 217
photorefractive effects 1
photorefractive materials 119
photorefractive nonlinearity 43
photorefractive space-charge electric field 85
photovoltaic current 299
photovoltaic drift 48
photovoltaic effect 300, 373
photovoltaic length 57
photovoltaic solitons
physical model for
thermocouple fix 371
piezoelectric stress tensor 86
planar waveguide 291
plane hologram 92
Pockels electro-optic coefficients 46
polarization 11
polarization conversion 300
polarons 237
polymer-dispersed liquid crystals 100
population gratings 20
potassium niobate 213, 304
Poynting vector 8, 94, 105
prism coupler 291

proton exchange 295, 296
pulsed lasers 1
pulses 10
pump depletion 106
pump wave amplitude 95
pyroelectric 231
pyroelectric field 241

quality factor 120
quantum efficiency 85
quantum-confined Stark effect 204

rate equations 47
recombination fields 207
recombination time 56
reconfigurable optical interconnects 226
recording at high temperature 375
reflection filters 308
reflection gratings 100, 109, 226
reflection volume grating 33, 36
refractive index 91
refractive index change 292
refractive index profiles 294
resolution 221
resonant response 179
resonant wave effects 119
response speed 203
response time 303
rippled domain 409
rippled-domain wall 414
rocking curve 213

Sagnac interferometer 309
Sawyer-Tower 400
Sawyer-Tower circuit 399
SBN 259
scalar coupling constants 94
scalar effective electro-optic coefficient 90, 94
scaling relations 183
screening nonlinearity
screening solitons 72
second harmonic generation 301
self-consistency 290
self-focusing 225
self-organizing phenomena 254
semiconductor 24, 204
separatrix 176
Index 421

shallow levels 231
shallow trap 217
sillenites 307
singularities 76
slowly varying envelope amplitude approximation 255
Sn$_2$P$_2$S$_6$, (SPS) 212, 219
soft proton-exchanged (SPE) LiNbO$_3$ guides 388
soliton-induced waveguiding
space charge field 29, 48, 103, 107
space-charge field amplitude 89
space-charge waves 64, 119
spatial coherence 18
spatial light modulator 223
spatial solitons 4
spatio-temporal structures 253
spontaneous polarization P_s 397, 398, 402
sputtering 295
Sr$_{0.61}$Ba$_{0.39}$Nb$_2$O$_6$ 398, 408, 409, 414, steady state 175
stop band 101
strain tensor 86
strain-optic effect 306
strontium-barium niobate 305
subharmonic generation 119
surface charge density 400
symmetry breaking bifurcation 257

telecommunication applications 231
temporal coherence 16
tensor gratings 22
thermal fixing 309, 369, 370
thick gratings 33, 91
Ti:LiNbO$_3$ waveguides 392
thin dynamic hologram 223
thin gratings 31
third-rank effective electro-optic tensor 94
three-step method 372, 378
three-valence model 235
tin hypothiodiphosphate 219
titanium diffusion 295
transmission gratings 94, 106
transmission volume grating 33, 36
transverse effects 254
transverse geometry 212
transverse instabilities 253
transverse nonlinear optics 255
trap grating 213
trap-free model 205
trap-limited field 104
tunable Bragg filters 226
two-beam interference 11
two-center model 234
two-level models 234
two-photon processes 204
two-photon recording 370
two-step excitation 231
two-step method 372
two-step recording 4
two-wave mixing 102, 258, 260
two-wave mixing gain 214
two-wavelength technique 370
unclamped (free) dielectric tensor 88
unclamped electro-optic tensor 112
undepleted pump approximation 103
usefully dissipated energy 85
"usefully dissipated energy" 85
vapor-phase proton exchange 297

walkoff angle 99
wave equation 91
wave-mixing 299
waveguide devices 392
waveguides 204
wavelength division multiplexing 308
wavelength filters 101
wavelength-demultiplexer 247
wavevectors 84
wavevector diagram 93
wavevector mismatch 94
Wiener–Khintchine theorem 17
WKB method 294
writing beams 14
Springer Series in
OPTICAL SCIENCES

Volume 1

1 Solid-State Laser Engineering
 By W. Koechner, 5th revised and updated ed. 1999, 472 figs., 55 tabs., XII, 746 pages

Published titles since volume 90

90/1 Raman Amplifiers for Telecommunications 1
 Physical Principles
 By M.N. Islam (Ed.), 2004, 488 figs., XXVIII, 328 pages

90/2 Raman Amplifiers for Telecommunications 2
 Sub-Systems and Systems
 By M.N. Islam (Ed.), 2004, 278 figs., XXVIII, 420 pages

91 Optical Super Resolution
 By Z. Zalevsky, D. Mendlovic, 2004, 164 figs., XVIII, 232 pages

92 UV-Visible Reflection Spectroscopy of Liquids
 By J.A. Räty, K.-E. Peiponen, T. Asakura, 2004, 131 figs., XII, 219 pages

93 Fundamentals of Semiconductor Lasers
 By T. Numai, 2004, 166 figs., XII, 264 pages

94 Photonic Crystals
 Physics, Fabrication and Applications
 By K. Inoue, K. Ohtaka (Eds.), 2004, 209 figs., XV, 320 pages

95 Ultrafast Optics IV
 Selected Contributions to the 4th International Conference on Ultrafast Optics, Vienna, Austria
 By F. Krausz, G. Korn, P. Corkum, I.A. Walmsley (Eds.), 2004, 281 figs., XIV, 506 pages

96 Progress in Nano-Electro Optics III
 Industrial Applications and Dynamics of the Nano-Optical System
 By M. Ohtsu (Ed.), 2004, 186 figs., 8 tabs., XIV, 224 pages

97 Microoptics
 From Technology to Applications
 By J. Jahns, K.-H. Brenner, 2004, 303 figs., XI, 335 pages

98 X-Ray Optics
 High-Energy-Resolution Applications
 By Y. Shvyd’ko, 2004, 181 figs., XIV, 404 pages

99 Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy
 Route to Femtosecond Angstrom Technology
 By M. Yamashita, H. Shigekawa, R. Morita (Eds.) 2005, 241 figs., XX, 393 pages

100 Quantum Interference and Coherence
 Theory and Experiments
 By Z. Ficek and S. Swain, 2005, 178 figs., XV, 418 pages

101 Polarization Optics in Telecommunications
 By J. Damask, 2005, 110 figs., XVI, 528 pages

102 Lidar
 Range-Resolved Optical Remote Sensing of the Atmosphere
 By C. Weitkamp (Ed.), 161 figs., XX, 416 pages

103 Optical Fiber Fusion Splicing
 By A.D. Yablon, 2005, 137 figs., XIII, 306 pages
Springer Series in

OPTICAL SCIENCES

104 Optoelectronics of Molecules and Polymers
 By A. Moliton, 2005, 200 figs., approx. 460 pages

105 Solid-State Random Lasers
 By M. Noginov, 2005, 149 figs., approx. XII, 380 pages

106 Coherent Sources of XUV Radiation
 Soft X-Ray Lasers and High-Order Harmonic Generation
 By P. Jaegle, 2005, 150 figs., approx. 264 pages

107 Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry
 By J. Zheng, 2005, 137 figs., XVIII, 254 pages

108 Laser Resonators and Beam Propagation
 Fundamentals, Advanced Concepts and Applications
 By N. Hodgson and H. Weber, 2005, 497 figs., approx. 790 pages

109 Progress in Nano-Electro Optics IV
 Characterization of Nano-Optical Materials and Optical Near-Field Interactions
 By M. Ohtsu (Ed.), 2005, 123 figs., XIV, 206 pages

110 Kramers-Kronig Relations in Optical Materials Research
 By V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen, 2005, 37 figs., X, 162 pages

111 Semiconductor Lasers
 Stability, Instability and Chaos
 By J. Ohtsubo, 2005, 169 figs., XII, 438 pages

112 Photovoltaic Solar Energy Generation
 By A. Goetzberger and V.U. Hoffmann, 2005, 139 figs., XII, 234 pages

113 Photorefractive Materials and Their Applications 1
 Basic Effects
 By P. Günter and J.P. Huignard, 2005, 169 figs., approx. XII, 300 pages

114 Photorefractive Materials and Their Applications 2
 Materials
 By P. Günter and J.P. Huignard, 2006, 100 figs., approx. XII, 300 pages

115 Photorefractive Materials and Their Applications 3
 Applications
 By P. Günter and J.P. Huignard, 2006, 100 figs., approx. XII, 300 pages