Contents

Part I Quantum Computation

Quantum Identification of Boolean Oracles
Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, Shigeru Yamashita
3

1. Introduction
2. Formalization
3. General Upper Bounds
4. Relation With Learning Theory
5. Tight Upper Bounds for Small M
6. Classical Lower and Upper Bounds
7. Concluding Remarks
References
Index

Query Complexity of Quantum Biased Oracles
Kazuo Iwama, Rudy Raymond, Shigeru Yamashita
19

1. Introduction
2. Goldreich–Levin Problem and Biased Oracles
 2.1 The Model of Quantum Biased Oracles
3. Upper Bounds of the Query Complexity of Biased Oracles With Special Conditions
 3.1 Basic Tools for Quantum Computation
 3.2 Quantum Biased Oracles With the Same Bias Factor
 3.3 Quantum Biased Oracles With Resettable Condition
4. Lower Bounds of the Query Complexity of Biased Oracles
5. Concluding Remarks
References
Index

Part II Quantum Information

Quantum Statistical Inference
Masahito Hayashi
45
Quantum Key Distribution: Security, Feasibility and Robustness
Xiang-Bin Wang ... 185
1 Introduction .. 185
2 Security Proof of BB84 QKD With Perfect Single-Photon Source . 187
 2.1 Hashing and Error-Correction in Classical Communication ... 188
 2.2 The Main Idea of Entanglement Purification 190
 2.3 Error Test ... 192
 2.4 Entanglement Purification by Hashing 192
 2.4.1 Bit-Flip Error Correction 193
 2.4.2 Phase-Flip Error Correction 194
 2.5 Classicalization 195
3 Secure Key Distillation With a Known Fraction of Tagged Bits ... 196
 3.1 Final Key Distillation With a Fraction of Tagged Bits . 196
 3.2 PNS Attack .. 198
4 The Decoy-State Method 200
 4.1 The Main Ideas and Results 201
 4.2 The Issue of Unconditional Security 206
 4.3 Robustness Analysis 206
 4.4 Final Key Rate and Further Studies 209
 4.5 Summary .. 210
5 QKD With Asymmetric Channel Noise 210
 5.1 Channel Error, Tested Error and Key-Bits Error 211
 5.2 QKD With One-Way Classical Communication 212
 5.3 Six-State Protocol With Two-Way Classical Communications. 214
6 Quantum Key Distribution With Encoded BB84 States 217
 6.1 A Protocol For Collective Channel Noise .. 219
 6.1.1 Protocol 1 and Security Proof 220
 6.1.2 Protocol 2 ... 221
 6.1.3 Physical Realization 223
 6.1.4 Another Protocol For Robust QKD With Swinging
 Objects ... 223
 6.1.5 Summary and Discussion 224
 6.2 A Protocol With Independent Noise 225
 6.2.1 The Method and the Main Idea 225
Why Quantum Steganography Can Be Stronger Than Classical Steganography
Shin Natori .. 235
1 Introduction .. 235
2 Definitions .. 235
 2.1 General Model of Steganography System 235
 2.2 Classical Model of Steganography System 237
3 Related Works ... 237
4 Quantum Steganography 237
 4.1 Model of Quantum Steganography System 237
 4.2 Comparison Between Classical and Quantum Steganography 238
5 Conclusions and Future Work 240
References .. 240
Index .. 240

Part IV Realization of Quantum Information System
Photonic Realization of Quantum Information Systems
Akihisa Tomita, Bao-Sen Shi 243
1 Introduction .. 243
2 Cryptography .. 244
 2.1 High-Sensitivity Photon Detector 245
 2.1.1 Requirement for Single-Photon Detectors 245
 2.1.2 Improved Single-Photon Detector for Fiber Transmission 246
 2.2 Single-Photon Transmission Over 150 km in a Unidirectional System With Integrated Interferometers 248
 2.3 Refinements Toward a Practical QKD System 251
 2.3.1 Temperature-Insensitive Interferometer 251
 2.3.2 High-Speed Operation 253
3 Quantum Computation 256
 3.1 Measured Quantum Fourier Transform 256
 3.1.1 Implementation and Experimental Results 256
 3.1.2 Effects of Imperfection 258
 3.1.3 Validity of Majority Voting 260
 3.1.4 Toward Quantum Computers 262
 3.2 Control-Unitary Gates 263
3.2.1 Solid-State Bell State Measurement Devices by Two-Photon Absorption .. 264
4 Generation of Entangled Photon Pairs by SPDC 265
 4.1 SPDC With Two-Crystal Geometry 266
 4.2 Interferometric Generation of Entangled Photon Pairs 269
 4.3 A New Material for SPDC: Periodically Poled KTP 270
5 Conclusion .. 272
References .. 273
Index .. 275

Index .. 277