APPENDIX

1 List of Tables
2 List of Symbols
3 Glossary
4 Answers to Questions
5 Some Solutions of End of Chapter Problems
6 References

Index
APPENDIX 1

LIST OF TABLES

CHAPTER 2

Table 2.1:	Examples of coupling of processes	52
Table 2.2:	Examples of hydraulic power plants	56
Table 2.3:	Comparison of different processes	59
Table 2.4:	Capacitors with constant capacitance	65

CHAPTER 4

Table 4.1:	Comparison of some processes	110
Table 4.2:	Fluidlike quantities	112
Table 4.3:	Amounts of heat (rough values in Ct)	115
Table 4.4:	Some temperatures (in °C)	120
Table 4.5:	Linear coefficient of expansion	122
Table 4.6:	Resistivity and temperature coefficients of resistivity (at 20°C)	123
Table 4.7:	Entropy capacitance and temperature coefficient of energy	151
Table 4.8:	Seebeck coefficients at 0°C (relative to Platinum)	175
Table 4.9:	Water temperature	185
Table 4.10:	Data for water and Peltier device	187

CHAPTER 5

Table 5.1:	Latent entropy and enthalpy of fusion at 1 bar	191
Table 5.2:	Latent entropy and enthalpy of vaporization at 1 bar	192
Table 5.3:	Curie constant	235
Table 5.4:	Values of the molar temperature coefficient of enthalpy of argon	246
Table 5.5:	The ratio of specific heats for 273.15°C and 101.3 kPa	247

CHAPTER 6

Table 6.1:	Absolute chemical potentials of some isotopes	271
Table 6.2:	Chemical potential of some metal sulphides	271
Table 6.3:	Properties of water at standard temperature and pressure	272
Table 6.4:	Chemical potential of substances	280
Table 6.5:	Heating Values of Fuels	281
Table 6.6:	Composition of dry air	290
APPENDIX 1. LIST OF TABLES

Table 6.7:	Mass fractions of the components of dry air	295
Table 6.8:	Temperature coefficients of energy and of enthalpy of dry air	296
Table 6.9:	Hydrogen, iodine, and hydrogen iodide	319
Table 6.10:	Water chemistry	324
Table 6.11:	Mercury	329

CHAPTER 7

Table 7.1:	Thermal conductivity of some materials	341
Table 7.2:	Heat transfer coefficients with respect to energy	353
Table 7.3:	Emissivities and solar absorptivities	368

CHAPTER 8

Table 8.1:	A small portion of the steam tables	422
Table 8.2:	Molar enthalpy and entropy of substances involved in combustion	423
Table 8.3:	Entropy transferred and entropy produced	424

CHAPTER 15

Table 15.1:	Properties of saturated water (liquid–vapor)	611
Table 15.2:	Properties of moist air at constant entropy and humidity ratio	621
Table 15.3:	Properties of superheated water vapor	633
Table 15.4:	Steam properties at low and high pressure in the cycle	645
Table 15.5:	Irreversibilities in a power plant	648
APPENDIX 2

LIST OF SYMBOLS

The following tables list the most important symbols used in the text, along with their meanings and their units. The last column of each table identifies the chapter in which the symbol was introduced.

Table S.1 Symbols using latin letters
Table S.2 Symbols using greek letters
Table S.3 Subscripts and superscripts

TABLE S.1: Symbols using latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Steffan-Boltzmann constant</td>
<td>$J \cdot m^{-3}K^{-4}$</td>
</tr>
<tr>
<td>A</td>
<td>Surface area, cross section</td>
<td>m^2</td>
</tr>
<tr>
<td>\dot{A}</td>
<td>Rate of absorption of radiant energy per unit area</td>
<td>$W \cdot m^{-2}$</td>
</tr>
<tr>
<td>a</td>
<td>Absorptivity</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Magnetic flux density</td>
<td>T</td>
</tr>
<tr>
<td>c</td>
<td>Speed of sound, speed of light</td>
<td>$m \cdot s^{-1}$</td>
</tr>
<tr>
<td>c, c_V</td>
<td>Specific temperature coefficient of energy</td>
<td>$J \cdot K^{-1}kg^{-1}$</td>
</tr>
<tr>
<td>c_P</td>
<td>Specific temperature coefficient of enthalpy</td>
<td>$J \cdot K^{-1}fg^{-1}$</td>
</tr>
<tr>
<td>τ_P</td>
<td>Molar temperature coefficient of enthalpy</td>
<td>$J \cdot K^{-1}mole^{-1}$</td>
</tr>
<tr>
<td>τ_V</td>
<td>Molar temperature coefficient of energy</td>
<td>$J \cdot K^{-1}mole^{-1}$</td>
</tr>
<tr>
<td>ξ</td>
<td>Concentration</td>
<td>mole $\cdot m^{-3}$</td>
</tr>
<tr>
<td>C</td>
<td>Coulomb (unit of electrical charge)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Capacitance (electrical)</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>Temperature coefficient of energy</td>
<td>$J \cdot K^{-1}$</td>
</tr>
<tr>
<td>C</td>
<td>Concentration ratio</td>
<td></td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance</td>
<td></td>
</tr>
<tr>
<td>C_f</td>
<td>Friction coefficient</td>
<td></td>
</tr>
<tr>
<td>C_P</td>
<td>Temperature coefficient of enthalpy</td>
<td>$J \cdot K^{-1}$</td>
</tr>
</tbody>
</table>
TABLE S.1: Symbols using latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_V</td>
<td>Temperature coefficient of energy</td>
<td>J · K$^{-1}$</td>
</tr>
<tr>
<td>C_V</td>
<td>Hydraulic capacitance</td>
<td>m3Pa$^{-1}$</td>
</tr>
<tr>
<td>C'</td>
<td>Momentum capacitance per length</td>
<td>kg · m$^{-3}$</td>
</tr>
<tr>
<td>C^*</td>
<td>Ratio of capacitance rates</td>
<td></td>
</tr>
<tr>
<td>C_t</td>
<td>Carnot (unit of heat—entropy)</td>
<td></td>
</tr>
<tr>
<td>$°C$</td>
<td>Degrees Celsius</td>
<td></td>
</tr>
<tr>
<td>d_{ij}</td>
<td>Components of the velocity gradient tensor (symmetric part)</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion constant</td>
<td>m2s$^{-1}$</td>
</tr>
<tr>
<td>e</td>
<td>Specific energy</td>
<td>J · kg$^{-1}$</td>
</tr>
<tr>
<td>$\overline{\varepsilon}$</td>
<td>Molar energy</td>
<td>J · mole$^{-1}$</td>
</tr>
<tr>
<td>E</td>
<td>Energy of system (energy content)</td>
<td>J</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus</td>
<td>N · m$^{-2}$</td>
</tr>
<tr>
<td>E_{chem}</td>
<td>Energy exchanged (transported) in chemical process</td>
<td></td>
</tr>
<tr>
<td>E_{el}</td>
<td>Energy exchanged in electric process</td>
<td>J</td>
</tr>
<tr>
<td>E_{mech}</td>
<td>Energy exchanged in mechanical process</td>
<td>J</td>
</tr>
<tr>
<td>E_{th}</td>
<td>Energy exchanged in thermal process (heating and cooling)</td>
<td>J</td>
</tr>
<tr>
<td>\mathbf{E}</td>
<td>Electric flux density</td>
<td>V · m$^{-1}$</td>
</tr>
<tr>
<td>ε</td>
<td>Emissive power (rate of radiant energy emitted per unit area)</td>
<td>W · m$^{-2}$</td>
</tr>
<tr>
<td>ε_b</td>
<td>Emissive power of black body</td>
<td>W · m$^{-2}$</td>
</tr>
<tr>
<td>f</td>
<td>Degrees of freedom</td>
<td></td>
</tr>
<tr>
<td>f_Q</td>
<td>Specific source rate of quantity Q</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Force (flux of momentum)</td>
<td>N</td>
</tr>
<tr>
<td>F_{12}</td>
<td>Radiation shape factor</td>
<td></td>
</tr>
<tr>
<td>F'</td>
<td>Solar collector efficiency factor</td>
<td></td>
</tr>
<tr>
<td>F_R</td>
<td>Solar collector heat removal factor</td>
<td></td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>Faraday’s constant</td>
<td>C · mole$^{-1}$</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational field strength</td>
<td>N · kg$^{-1}$</td>
</tr>
<tr>
<td>G</td>
<td>Gravitational constant</td>
<td>N · m2kg$^{-2}$</td>
</tr>
<tr>
<td>G</td>
<td>Conductance</td>
<td></td>
</tr>
<tr>
<td>G_E</td>
<td>Energy conductance</td>
<td>W · K$^{-1}$</td>
</tr>
<tr>
<td>G_S</td>
<td>Entropy conductance</td>
<td>W · K$^{-2}$</td>
</tr>
<tr>
<td>G_V</td>
<td>Hydraulic conductance</td>
<td>m3Pa$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>G</td>
<td>Gibbs free energy</td>
<td>J</td>
</tr>
</tbody>
</table>
TABLE S.1: Symbols using latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Irradiance (rate of incident radiant energy per unit area)</td>
<td>W · m⁻²</td>
</tr>
<tr>
<td>G_{sc}</td>
<td>Solar constant</td>
<td>W · m⁻²</td>
</tr>
<tr>
<td>h</td>
<td>Height</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>Specific enthalpy</td>
<td>J/kg</td>
</tr>
<tr>
<td>H</td>
<td>Molar enthalpy</td>
<td>J · mole⁻¹</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant</td>
<td>J · s</td>
</tr>
<tr>
<td>h</td>
<td>Overall heat transfer coefficient with respect to energy</td>
<td>W · K⁻¹m⁻²</td>
</tr>
<tr>
<td>h</td>
<td>Convective heat transfer coefficient with respect to energy</td>
<td>W · K⁻¹m⁻²</td>
</tr>
<tr>
<td>h_S</td>
<td>Overall entropy transfer coefficient</td>
<td>W · K⁻²m⁻²</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpy</td>
<td>J</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field strength</td>
<td>A · m⁻¹</td>
</tr>
<tr>
<td>i_S</td>
<td>Entropy intensity of radiation</td>
<td>W · K⁻¹m⁻²s⁻¹</td>
</tr>
<tr>
<td>i_{SV}</td>
<td>Spectral entropy intensity (with respect to frequency)</td>
<td>W · K⁻¹m⁻²s⁻¹sr⁻¹</td>
</tr>
<tr>
<td>i_{SL}</td>
<td>Spectral entropy intensity (with respect to wavelength)</td>
<td>W · K⁻¹m⁻²m⁻¹sr⁻¹</td>
</tr>
<tr>
<td>i_E</td>
<td>Energy intensity of radiation</td>
<td>W · m⁻²sr⁻¹</td>
</tr>
<tr>
<td>i_{EV}</td>
<td>Spectral energy intensity (with respect to frequency)</td>
<td>W · m⁻²s⁻¹sr⁻¹</td>
</tr>
<tr>
<td>i_{EL}</td>
<td>Spectral energy intensity (with respect to wavelength)</td>
<td>W · m⁻²m⁻¹sr⁻¹</td>
</tr>
<tr>
<td>I</td>
<td>Current; flux</td>
<td></td>
</tr>
<tr>
<td>I_E</td>
<td>Flux of energy</td>
<td>W</td>
</tr>
<tr>
<td>I_L</td>
<td>Flux of angular momentum</td>
<td>kg · m²s⁻²</td>
</tr>
<tr>
<td>I_m</td>
<td>Flux of gravitational mass</td>
<td>kg · s⁻¹</td>
</tr>
<tr>
<td>I_{mag}</td>
<td>Hertz magnetic current</td>
<td>A</td>
</tr>
<tr>
<td>I_n</td>
<td>Flux of amount of substance</td>
<td>mole · s⁻¹</td>
</tr>
<tr>
<td>I_p</td>
<td>Flux of momentum</td>
<td>N</td>
</tr>
<tr>
<td>I_Q</td>
<td>Flux of electrical charge</td>
<td>A</td>
</tr>
<tr>
<td>I_S</td>
<td>Flux of entropy</td>
<td>W · K⁻¹</td>
</tr>
<tr>
<td>I_V</td>
<td>Volume flux</td>
<td>m³s⁻¹</td>
</tr>
<tr>
<td>J</td>
<td>Joule (unit of energy)</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Flux density</td>
<td></td>
</tr>
<tr>
<td>j_E</td>
<td>Energy flux density</td>
<td>W · m⁻²</td>
</tr>
</tbody>
</table>
TABLE S.1: Symbols using latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>j_p</td>
<td>Momentum flux density</td>
<td>$N \cdot m^{-2}$</td>
</tr>
<tr>
<td>j_S</td>
<td>Entropy flux density</td>
<td>$W \cdot K^{-1} \cdot m^{-2}$</td>
</tr>
<tr>
<td>j_p</td>
<td>Momentum current density tensor</td>
<td>$N \cdot m^{-2}$</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann’s constant</td>
<td>$J \cdot K^{-1}$</td>
</tr>
<tr>
<td>k_E</td>
<td>Thermal conductivity with respect to energy</td>
<td>$W \cdot K^{-1} \cdot m^{-1}$</td>
</tr>
<tr>
<td>k_S</td>
<td>Thermal conductivity with respect to entropy</td>
<td>$W \cdot K^{-2} \cdot m^{-1}$</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin (unit of temperature)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>See Greek letter kappa</td>
<td></td>
</tr>
<tr>
<td>K_p</td>
<td>Chemical equilibrium constant</td>
<td></td>
</tr>
<tr>
<td>l, L</td>
<td>Length</td>
<td>m</td>
</tr>
<tr>
<td>l_f, l_v</td>
<td>Specific entropy of fusion (vaporization)</td>
<td>$J \cdot K^{-1} \cdot kg^{-1}$</td>
</tr>
<tr>
<td>l_f, l_v</td>
<td>Molar latent entropy of fusion (vaporization)</td>
<td>$J \cdot K^{-1} \cdot mole^{-1}$</td>
</tr>
<tr>
<td>L</td>
<td>Electrical inductance</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>Luminosity of star</td>
<td>W</td>
</tr>
<tr>
<td>L_V</td>
<td>Hydraulic inductance</td>
<td>$Pa \cdot s^{-2} \cdot m^{3}$</td>
</tr>
<tr>
<td>L'</td>
<td>Momentum inductance per length</td>
<td>$N^{-1} \cdot m^{-2}$</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>Loss of available power</td>
<td>W</td>
</tr>
<tr>
<td>m</td>
<td>Meter (unit of length)</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Mass of a body</td>
<td>kg</td>
</tr>
<tr>
<td>m_a</td>
<td>Air mass</td>
<td></td>
</tr>
<tr>
<td>mole</td>
<td>Unit of amount of substance</td>
<td></td>
</tr>
<tr>
<td>M_0</td>
<td>Molar mass</td>
<td>$kg \cdot mole^{-1}$</td>
</tr>
<tr>
<td>n</td>
<td>Amount of substance</td>
<td>$mole$</td>
</tr>
<tr>
<td>n</td>
<td>Unit normal vector on surface (directed outward)</td>
<td></td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro’s constant</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Newton (unit of momentum flux—force)</td>
<td></td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
<td></td>
</tr>
<tr>
<td>NTU</td>
<td>Number of transfer units</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Momentum</td>
<td>$N \cdot s$</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>Power</td>
<td>W</td>
</tr>
<tr>
<td>P_{av}</td>
<td>Available power</td>
<td>W</td>
</tr>
<tr>
<td>P_{diss}</td>
<td>Rate of dissipation of energy</td>
<td>W</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal (unit of pressure)</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Specific enthalpy of fusion</td>
<td>$J \cdot kg^{-1}$</td>
</tr>
</tbody>
</table>
TABLE S.1: Symbols using latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_n)</td>
<td>Molar enthalpy of fusion</td>
<td>J · mole(^{-1})</td>
</tr>
<tr>
<td>(Q)</td>
<td>Electrical charge</td>
<td>C</td>
</tr>
<tr>
<td>(Q)</td>
<td>Substancelike quantity</td>
<td>(\text{m})</td>
</tr>
<tr>
<td>(q)</td>
<td>Specific quantity</td>
<td>(\text{m})</td>
</tr>
<tr>
<td>(r)</td>
<td>Radial variable</td>
<td>(\text{m})</td>
</tr>
<tr>
<td>(r)</td>
<td>Specific enthalpy of vaporization</td>
<td>J · kg(^{-1})</td>
</tr>
<tr>
<td>(r)</td>
<td>Specific rate of absorption of energy</td>
<td>W · kg(^{-1})</td>
</tr>
<tr>
<td>(R)</td>
<td>Universal gas constant, (8.31 \text{ J/(K · mole)})</td>
<td>J · K(^{-1}) · mole(^{-1})</td>
</tr>
<tr>
<td>(R)</td>
<td>Electrical resistance</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(R)</td>
<td>Radius</td>
<td>(\text{m})</td>
</tr>
<tr>
<td>(Re)</td>
<td>Reynolds number</td>
<td>]</td>
</tr>
<tr>
<td>(R_E)</td>
<td>Thermal resistance with respect to energy</td>
<td>K · W(^{-1})</td>
</tr>
<tr>
<td>(R_S)</td>
<td>Thermal resistance with respect to entropy</td>
<td>W(^{-1}) · K(^2)</td>
</tr>
<tr>
<td>(R_m)</td>
<td>Specific gas constant</td>
<td>J · K(^{-1}) · kg(^{-1})</td>
</tr>
<tr>
<td>(R_V)</td>
<td>Hydraulic resistance</td>
<td>Pa · s · m(^{-3})</td>
</tr>
<tr>
<td>(s)</td>
<td>Second (unit of time)</td>
<td>(\text{s})</td>
</tr>
<tr>
<td>(s)</td>
<td>Entropy per mass (specific entropy)</td>
<td>J · K(^{-1}) · kg(^{-1})</td>
</tr>
<tr>
<td>(\bar{s})</td>
<td>Molar entropy</td>
<td>J · K(^{-1}) · mole(^{-1})</td>
</tr>
<tr>
<td>(S)</td>
<td>Entropy; entropy content of a body</td>
<td>J · K(^{-1})</td>
</tr>
<tr>
<td>(S_e)</td>
<td>Entropy exchanged in a process</td>
<td>J · K(^{-1})</td>
</tr>
<tr>
<td>(S_{gen})</td>
<td>Amount of entropy produced in a system</td>
<td>J · K(^{-1})</td>
</tr>
<tr>
<td>(t)</td>
<td>Time</td>
<td>(\text{s})</td>
</tr>
<tr>
<td>(T)</td>
<td>Ideal gas temperature, absolute temperature</td>
<td>K</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Conductive part of momentum current density tensor (stress tensor)</td>
<td>N · m(^{-2})</td>
</tr>
<tr>
<td>(u)</td>
<td>Specific internal energy</td>
<td>J · kg(^{-1})</td>
</tr>
<tr>
<td>(U)</td>
<td>Voltage</td>
<td>V</td>
</tr>
<tr>
<td>(U)</td>
<td>Internal energy</td>
<td>J</td>
</tr>
<tr>
<td>(U)</td>
<td>Overall heat transfer coefficient</td>
<td>W · K(^{-1}) · m(^{-2})</td>
</tr>
<tr>
<td>(U_{mag})</td>
<td>Magnetic tension</td>
<td>V</td>
</tr>
<tr>
<td>(u)</td>
<td>Specific energy, internal energy per mass</td>
<td>J · kg(^{-1})</td>
</tr>
<tr>
<td>(v)</td>
<td>Velocity</td>
<td>m · s(^{-1})</td>
</tr>
<tr>
<td>(V)</td>
<td>Volume of a body</td>
<td>m(^3)</td>
</tr>
<tr>
<td>(w)</td>
<td>Amount of precipitable water</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 2. LIST OF SYMBOLS

TABLE S.1: Symbols using Latin letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Position variable</td>
<td>m</td>
</tr>
<tr>
<td>x</td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>Mole fraction</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>Vertical distance</td>
<td>m</td>
</tr>
<tr>
<td>z</td>
<td>Ionization number of atom</td>
<td></td>
</tr>
</tbody>
</table>

TABLE S.2: Symbols using Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Absorptivity (absorptance)</td>
<td>m²s⁻¹</td>
</tr>
<tr>
<td>α</td>
<td>Peltier coefficient</td>
<td>J · K⁻¹ C⁻¹</td>
</tr>
<tr>
<td>α</td>
<td>Thermal diffusivity</td>
<td></td>
</tr>
<tr>
<td>α_l</td>
<td>Linear temperature coefficient of expansion</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>α_R</td>
<td>Linear temperature coefficient of electrical resistance</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>α_V</td>
<td>Temperature coefficient of expansion of volume</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>α_μ</td>
<td>Temperature coefficient of chemical potential</td>
<td>mole · K⁻¹</td>
</tr>
<tr>
<td>β</td>
<td>Temperature coefficient of pressure</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>β_E</td>
<td>Scattering coefficient</td>
<td>m⁻¹</td>
</tr>
<tr>
<td>β_μ</td>
<td>Pressure coefficient of chemical potential</td>
<td>mole · Pa⁻¹</td>
</tr>
<tr>
<td>γ</td>
<td>Adiabatic exponent, ratio of entropy capacities</td>
<td></td>
</tr>
<tr>
<td>γ'</td>
<td>Polytropic exponent</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Volume coefficient of thermal expansion</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>δ</td>
<td>Kronecker symbol</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>Heat exchanger effectiveness</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>Seebeck coefficient</td>
<td>V · K⁻¹</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>η_c</td>
<td>Carnot efficiency</td>
<td></td>
</tr>
<tr>
<td>η_I</td>
<td>Thermal efficiency, first law efficiency</td>
<td></td>
</tr>
<tr>
<td>η_II</td>
<td>Second law efficiency</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>Celsius temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>
TABLE S.2: Symbols using Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>Specific entropy capacitance</td>
<td>J · K−2kg−1</td>
</tr>
<tr>
<td>Κ</td>
<td>Molar entropy capacitance</td>
<td>J · K−2mole−1</td>
</tr>
<tr>
<td>κ</td>
<td>Bulk viscosity</td>
<td>Pa · s</td>
</tr>
<tr>
<td>κE</td>
<td>Absorption coefficient</td>
<td>m−1</td>
</tr>
<tr>
<td>κS</td>
<td>Adiabatic compressibility</td>
<td>Pa−1</td>
</tr>
<tr>
<td>κT</td>
<td>Isothermal compressibility</td>
<td>Pa−1</td>
</tr>
<tr>
<td>K</td>
<td>Entropy capacitance</td>
<td>J · K−2</td>
</tr>
<tr>
<td>K_V</td>
<td>Entropy capacitance at constant volume</td>
<td>J · K−2</td>
</tr>
<tr>
<td>K_P</td>
<td>Entropy capacitance at constant pressure</td>
<td>J · K−2</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
<td>m</td>
</tr>
<tr>
<td>λ_X</td>
<td>Lagrange multiplier for quantity X</td>
<td></td>
</tr>
<tr>
<td>Λ_V</td>
<td>Latent entropy with respect to volume</td>
<td>J · K−1m−3</td>
</tr>
<tr>
<td>Λ_P</td>
<td>Latent entropy with respect to pressure</td>
<td>J · K−1Pa−3</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
<td>Pa · s</td>
</tr>
<tr>
<td>μp</td>
<td>Chemical potential G = J · mole−1</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>Attenuation coefficient</td>
<td>m−1</td>
</tr>
<tr>
<td>μ_o</td>
<td>Permeability constant</td>
<td>H · m−1</td>
</tr>
<tr>
<td>ν</td>
<td>Frequency</td>
<td>s−1</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
<td>m²s−1</td>
</tr>
<tr>
<td>ν</td>
<td>Stoichiometric coefficient</td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>Volume density of rate of production</td>
<td></td>
</tr>
<tr>
<td>π_s</td>
<td>Volume density of rate of production of entropy</td>
<td>W · K−1m−3</td>
</tr>
<tr>
<td>Π</td>
<td>Rate of production</td>
<td></td>
</tr>
<tr>
<td>Π_n</td>
<td>Rate of production of amount of substance</td>
<td>mole · s−1</td>
</tr>
<tr>
<td>Π_s</td>
<td>Rate of production of entropy</td>
<td>W · K−1</td>
</tr>
<tr>
<td>ρ</td>
<td>Density (general)</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Mass density of a body</td>
<td>kg · m−3</td>
</tr>
<tr>
<td>ρ_e</td>
<td>Reflectivity (reflectance)</td>
<td></td>
</tr>
<tr>
<td>ρ_E</td>
<td>Energy density</td>
<td>J · m−3</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Density of entropy of body</td>
<td>J · K−1m−3</td>
</tr>
<tr>
<td>σ</td>
<td>Steffan-Boltzmann constant</td>
<td>W · m²K−4</td>
</tr>
<tr>
<td>σ</td>
<td>Volume density of source rate</td>
<td></td>
</tr>
<tr>
<td>σ_E</td>
<td>Volume density of source rate of energy</td>
<td>W · m−3</td>
</tr>
<tr>
<td>σ_s</td>
<td>Volume density of source rate of entropy</td>
<td>W · K−1m−3</td>
</tr>
<tr>
<td>Σ</td>
<td>Source rate</td>
<td></td>
</tr>
<tr>
<td>Σ_E</td>
<td>Source rate of energy</td>
<td>W</td>
</tr>
</tbody>
</table>
TABLE S.2: Symbols using Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>SI-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ_S</td>
<td>Source rate of entropy</td>
<td>W·K$^{-1}$</td>
</tr>
<tr>
<td>τ</td>
<td>Time constant</td>
<td>s</td>
</tr>
<tr>
<td>τ</td>
<td>Transmittance</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>Quantum of amount of substance</td>
<td>mole</td>
</tr>
<tr>
<td>τ</td>
<td>Relaxation time</td>
<td>s</td>
</tr>
<tr>
<td>$(\tau\alpha)$</td>
<td>Transmission-absorption product</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Specific volume (inverse density)</td>
<td>m3kg$^{-1}$</td>
</tr>
<tr>
<td>$\overline{\nu}$</td>
<td>Molar volume</td>
<td>m3mole$^{-1}$</td>
</tr>
<tr>
<td>ϕ</td>
<td>Potential</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>Relative humidity</td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm (unit of electrical resistance)</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>ω</td>
<td>Humidity ratio</td>
<td></td>
</tr>
</tbody>
</table>

TABLE S.3: Subscripts and superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Air</td>
</tr>
<tr>
<td>a</td>
<td>Ambient</td>
</tr>
<tr>
<td>a</td>
<td>average</td>
</tr>
<tr>
<td>ad</td>
<td>Adiabatic</td>
</tr>
<tr>
<td>av</td>
<td>Available</td>
</tr>
<tr>
<td>b</td>
<td>Body</td>
</tr>
<tr>
<td>b</td>
<td>Beam</td>
</tr>
<tr>
<td>b</td>
<td>Blackbody</td>
</tr>
<tr>
<td>c</td>
<td>Carnot</td>
</tr>
<tr>
<td>C</td>
<td>Capacitive</td>
</tr>
<tr>
<td>(c)</td>
<td>Conductive (part of a) flux</td>
</tr>
<tr>
<td>$chem$</td>
<td>Chemical</td>
</tr>
<tr>
<td>$cond$</td>
<td>Conductive</td>
</tr>
<tr>
<td>$conv$</td>
<td>Convective</td>
</tr>
</tbody>
</table>
TABLE S.3: Subscripts and superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>d, $diff$</td>
<td>Diffuse</td>
</tr>
<tr>
<td>e</td>
<td>Exchanged</td>
</tr>
<tr>
<td>el</td>
<td>Electrical</td>
</tr>
<tr>
<td>eq</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>E</td>
<td>Energy, with respect to energy</td>
</tr>
<tr>
<td>E</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>EC</td>
<td>Electro-chemical</td>
</tr>
<tr>
<td>f</td>
<td>Final</td>
</tr>
<tr>
<td>f</td>
<td>Fluid, solvent</td>
</tr>
<tr>
<td>f</td>
<td>Fusion</td>
</tr>
<tr>
<td>f</td>
<td>Formation</td>
</tr>
<tr>
<td>g</td>
<td>Gas, gaseous, vapor</td>
</tr>
<tr>
<td>gen</td>
<td>Generated</td>
</tr>
<tr>
<td>$grav$</td>
<td>Gravitation</td>
</tr>
<tr>
<td>GC</td>
<td>Gravito-chemical</td>
</tr>
<tr>
<td>h</td>
<td>Horizontal</td>
</tr>
<tr>
<td>H</td>
<td>High (high temperature, temperature of furnace...)</td>
</tr>
<tr>
<td>hp</td>
<td>Heat pump</td>
</tr>
<tr>
<td>$hydro$</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>i</td>
<td>Initial</td>
</tr>
<tr>
<td>in</td>
<td>In, flowing inward</td>
</tr>
<tr>
<td>kin</td>
<td>Kinetic</td>
</tr>
<tr>
<td>l</td>
<td>Liquid</td>
</tr>
<tr>
<td>l</td>
<td>Linear</td>
</tr>
<tr>
<td>L</td>
<td>Angular momentum</td>
</tr>
<tr>
<td>L</td>
<td>Inductive</td>
</tr>
<tr>
<td>L</td>
<td>Low (low temperature, temperature of cooler...)</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>m</td>
<td>Mean</td>
</tr>
<tr>
<td>mag</td>
<td>Magnetic</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>$mech$</td>
<td>Mechanical</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>net</td>
<td>Sum, total (net current)</td>
</tr>
<tr>
<td>o, 0</td>
<td>Reference point</td>
</tr>
<tr>
<td>o, out</td>
<td>Out, flowing outward</td>
</tr>
</tbody>
</table>
TABLE S.3: Subscripts and superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Momentum, with respect to momentum</td>
</tr>
<tr>
<td>p</td>
<td>Absorber plate</td>
</tr>
<tr>
<td>P</td>
<td>Pressure, with respect to pressure, at constant pressure</td>
</tr>
<tr>
<td>Q</td>
<td>Charge</td>
</tr>
<tr>
<td>Q</td>
<td>With respect to quantity Q</td>
</tr>
<tr>
<td>r</td>
<td>Radiation</td>
</tr>
<tr>
<td>rad</td>
<td>Radiative</td>
</tr>
<tr>
<td>$refr$</td>
<td>Refrigerator</td>
</tr>
<tr>
<td>R</td>
<td>Resistive, electrical resistance</td>
</tr>
<tr>
<td>S</td>
<td>Entropy, with respect to entropy</td>
</tr>
<tr>
<td>s</td>
<td>Surface</td>
</tr>
<tr>
<td>s</td>
<td>Sun, solar</td>
</tr>
<tr>
<td>s</td>
<td>Solid</td>
</tr>
<tr>
<td>s</td>
<td>Solute</td>
</tr>
<tr>
<td>s</td>
<td>Storage, store</td>
</tr>
<tr>
<td>t</td>
<td>Top</td>
</tr>
<tr>
<td>th</td>
<td>Thermal</td>
</tr>
<tr>
<td>TE</td>
<td>Thermo-electric</td>
</tr>
<tr>
<td>v</td>
<td>Vaporization, vapor</td>
</tr>
<tr>
<td>V</td>
<td>Volume, hydraulic, with respect to volume, at constant volume</td>
</tr>
<tr>
<td>wb</td>
<td>Wet bulb</td>
</tr>
<tr>
<td>x,y,z</td>
<td>Spatial coordinates, with respect to spatial coordinate</td>
</tr>
<tr>
<td>λ</td>
<td>With respect to wavelength</td>
</tr>
<tr>
<td>ν</td>
<td>With respect to frequency</td>
</tr>
</tbody>
</table>
APPENDIX 3

GLOSSARY

The following short glossary is provided because the generalized version of thermodynamics presented in this book requires a generalization of and sometimes a change from usual terminology. Only the most important terms are included. Expressions in italics can be found elsewhere in the glossary.

Amount of substance Formal measure of an amount of substance as used in the sense of chemistry (the “number of moles”, the “number of particles”).

Availability The amount of energy that can be released (see release of energy) in the fall of entropy from points of high to points of low temperature. Quite generally, the amount of energy that can be released in the fall of a fluidlike quantity through a potential difference.

Balance of energy Application of the general law of balance to energy.

Balance of entropy Application of the general law of balance to entropy.

Binding energy Binding energy to the current of a fluidlike quantity which thereby is lifted from a lower to a higher potential. Same as using energy. Opposite of releasing energy.

Caloric Used as an alternative term for heat. The caloric theory of heat can be rendered formal and correct in a modern sense if it is accepted that caloric is not conserved (that it can be produced). In this case it turns out to be equivalent to the entropy of a body.

Chemical driving force The difference of the chemical potential.

Chemical potential The potential associated with processes which have to do with the change or the flow of amount of substance.

Continuous processes Processes which are spatially continuous, i.e. processes in which the variables change from point to point inside a body or a system.

Constitutive relations The laws which are not generic but differentiate between bodies and circumstances. (Generic laws see laws of balance)

Current Informal term for the phenomenon of the transport of a fluidlike quantity. Also used colloquially for the formal measure which is called flux.

Current density Formal measure of the local condition of a current. The flux is the surface integral of the current density. For a scalar fluidlike quantity, the current density is a vector.

Density Spatial density of a fluidlike quantity. The integral of the density of such a quantity over the volume of a system delivers the amount of the fluidlike quantity.
stored in the system.

Dissipation rate Rate at which energy is bound (see binding of energy) as the result of the production of entropy.

Dissipative process A process during which entropy has been produced, i.e. an irreversible process.

Driving force Informal term for the difference of a potential. The thermal driving force is the difference of the thermal potentials at two points in space, i.e. the difference of temperatures.

Dynamics A theory of dynamics requires the formulation of the laws of balance and the constitutive relations appropriate for a particular case. Models of dynamical processes rely upon the clear distinction between laws of balance and the constitutive relations.

Energy Quantity that accompanies all physical processes and takes the same role in all of them. Used to quantify the coupling of processes (releasing energy). Flows together with fluidlike quantities in conductive processes (energy carrier).

Energy carrier Fluidlike quantity (in conductive processes).

Energy current The amount of energy crossing the surface of a system in unit time as the result of a transport process. It must be distinguished from power.

Entropy Formal for a quantity of heat or caloric. Entropy is the fluidlike quantity of thermal processes and thus obeys a law of balance. It can be stored (see heat function), it can flow (entropy current), and it can be created (see production).

Entropy current Measure of the transfer of entropy across the surface of a system.

Entropy production The process of the production of entropy as the result of an irreversible process.

Entropy production rate The rate at which entropy is produced in an irreversible process.

Exchanged quantity The amount of a fluidlike quantity which has crossed the surface of a system together with a current in a certain interval of time. Formally equal to the integral of the flux over time.

Extensive quantities Quantities which scale with the size of a system are said to be extensive. The fluidlike quantities are a subset of the extensive quantities. An example of a non-fluidlike extensive quantity is provided by the volume.

First law of thermodynamics The law of balance of energy. It includes only rates of change of the energy content, energy currents, and energy source rates.

Fluidlike quantities Physical quantities which possess a density and a current density (and possibly source densities and production densities) are called fluidlike. Laws of balance can be written for them. They form a subset of the extensive quantities. The classical fluidlike quantities are momentum, angular momentum, entropy, charge, amount of substance, and (gravitational) mass.

Flux Formal measure of the amount of a fluidlike quantity crossing the surface of a system in unit time (informally, the same quantity is called a current). The flux is counted as positive for a current flowing out of the system.

Flux density The surface density of a flux. The surface integral of a flux density delivers the flux. Equivalent to current density.
Heat Informal term for entropy. Equivalent to caloric. (Commonly the energy exchanged in heating is called heat; this usage is not followed in this text.)

Heating The process of the transfer of heat (entropy) across the surface of a body excluding convective transports. The opposite process is cooling.

Heat capacity Used in the sense of entropy capacitance, i.e. as the derivative of the entropy function with respect to temperature. The usual “heat capacities” are called the temperature coefficients of energy and of enthalpy.

Heat function The formal expression of the assumption that a body contains a certain amount of heat, where the heat stored is a function of the independent variables describing the properties of the body. This heat function turns out to be equivalent to the entropy of the body.

Hotness The hotness manifold is the primitive concept for describing the ordering of bodies according to the sensation of how hot they are. The numerical measure of the hotness is the temperature.

Intensive quantities The quantities which remain the same if a body is divided into parts. A subset of the intensive quantities are the potentials.

Irreversible process A process which leads to the production of entropy.

Irreversibility Opposite of reversibility. The condition of irreversibility means that entropy is produced during a process.

Law of balance The formal relation which holds for the rate of change of the fluid-like quantity of a body and its currents (and possibly its source rates and production rates).

Level Informal term for potential. Levels are the conjugate quantities (conjugate with respect to energy) of the fluidlike quantities.

Minimization of entropy production Minimizing irreversibility is achieved by minimizing the rate of production of entropy.

Potential Formal term for the quantities which take the role of physical levels, otherwise known as the intensive quantities. There is a potential associated with each of the fluidlike quantities. The classical potentials are velocity (for momentum), angular velocity (for angular momentum), temperature (for entropy), the electrical potential (for charge), the chemical potential (for amount of substance), and the gravitational potential (for gravitational mass).

Potential difference Difference of potential at two points in space.

Power The rate of release of energy or the rate of binding of energy. Power is associated with an internal process as opposed to an external process (i.e. a transport process which is quantified by energy currents).

Power of heat Colloquial for the power associated with the fall of entropy from points of higher to points of lower temperature. This is Carnot’s puissance du feu. Integrating the power of heat over time delivers the availability.

Production Informal term for the phenomenon of production of a fluidlike quantity. A quantity which is produced can accumulate inside a system even without being transported into the system. Production (or destruction) is associated with nonconservation of a quantity.

Production rate Formal measure of the production of a fluidlike quantity. It describes
the amount of the quantity produced inside a system per unit time. A negative production rate means the quantity is destroyed.

Production (rate) density The spacial density of the production rate. Its volume integral delivers the production rate.

Releasing energy Release of energy when the current of a fluidlike quantity goes from higher to lower potential. Opposite of binding of energy.

Reversibility The condition of reversibility means that there is no entropy production during a process.

Second law of thermodynamics The law of balance of entropy. (Historically, it is not clear what to call the Second law of thermodynamics; in traditional thermodynamics, we find countless forms of the Second law. Here, the simplest and—for us—most useful choice has been made.)

Source Informal for processes as by which a fluidlike quantity is transferred into a system without having to cross the surface of the systems. This happens as the result of the interaction of bodies and fields.

Source rate Formal measure of a source of a fluidlike quantity. It determines the amount of the quantity delivered to the system per unit time.

Source (rate) density The spatial density of the source rate. Its volume integral delivers the source rate.

Superconducting process A transport process of a fluidlike quantity which does not require a driving force.

Temperature Measure of the hotness of a body. Temperature is like the coordinate on the hotness manifold. Temperature serves the role of the thermal potential.

Temperature coefficient of energy The derivative of the energy with respect to temperature at constant volume. Normally called heat capacity at constant volume.

Temperature coefficient of enthalpy The derivative of the enthalpy with respect to temperature at constant pressure. Normally called heat capacity at constant pressure.

Thermostatics Theories of thermostatics try to derive the conditions pertaining only to static thermal situations. Usually, these conditions are derived by maximizing or minimizing functions such as the entropy or the energy of a system.

Uniform processes Spatially uniform processes, i.e. processes in which variables of a system have the same value at every point at a given moment.

Using energy Same as binding of energy.
APPENDIX 4

ANSWERS TO QUESTIONS

CHAPTER 4

Note: If the term heat is used, it is used in the sense of entropy.

1. Different size bodies.
2. T measures how warm an object is.
3. Thermal capacitance of the body of water f must be higher than that of the piece of copper.
4. Temperature difference is driving force for flow, flow is in direction of decreasing T.
5. No, heat can also melt a body. No, we can compress air.
6. T changes independently of changes of heat.
7. Heat can be produced or taken from the environment. For the body, it does not matter where heat comes from.
8. Energy for pumping heat (like pumping water). More energy is needed to pump additional heat.
9. Looks analogous to electricity ($P = UIQ = U^2/R$). We assume that the heat flow is proportional to ΔT.
11. All processes except for the production of heat can be reversed.
12. No heat flow. Heat inside air has been compressed into smaller space.
13. Could change by more because of production of entropy.
14. The rate at which energy is needed to pumped the entropy (not equal to the rate at which energy is made available).
15. Thermal power is the same.
16. Thermal power: 1.0 W. Used inside the battery.
17. For an element of the bar, the thermal power is ΔT multiplied by the local entropy current.
18. 24 kg.
19. Ohm’s law and capacitive relation.
20. Hot water in the environment has a cooling curve analogous to the one found in discharging of a capacitor.
21. It freezes and boils. Its density has a maximum at 4°C.
22. Pressure of the ideal gas. Pressure is absolute, electric, gravitational potentials, and speed are not. (See also Question 9.)
23. In a voluntary process, energy is released. There is no other process than dissipation.
24. No.
25. Yes (example: expansion of air).
26. Upward to the right.
27. The gas has to be heated to keep its temperature.
28. Horizontal to the left. Entropy of system decreases. Entropy is communicated to environment.
29. Thermal energy currents are added.
30. Engine gets more efficient.
31. See Question 9.
33. 5000 W/K.
34. 0.5. 0.3/0.5 = 0.6.
35. Difference of thermal energy currents equals thermal power.
36. Since $P_{diss} = T\Pi_S$, the relevant temperature difference is $T - 0$.
37. 1.0 W/K. 1.0 W/K and 400 W.
38. 20 W/K.
39. They are equal.
40. It is defined as the useful (= thermal)
power divided by the energy current from the heater (rather than the useful power divided by the thermal power).

41. 10.

42. Loss of power is always positive, and it is proportional to the entropy production rate.

43. Otherwise, entropy production rates would be undetermined.

44. Entropy added to a material can also lead to changes of volume. Temperature can also change as a result of expansion or compression.

45. Linear measure TS relation. Yes.

46. 7.7 J/(K·kg).

47. Zero.

48. 1400 J/K, 420 kJ.

49. Since $k = c/T$ with $c =$ const. Or it leads to Equ.(4.40) with $c =$ const.

50. Increases. Decreases.

51. It varies as the inverse of temperature. Take the derivative of Equ.(4.42) with respect to temperature.

52. Heating and cooling of simple bodies in an environment of constant temperature (T behaves like U of a capacitor).

53. Energy is released in the fall of entropy from high to low T; if there is no other obvious process, the energy is dissipated.

54. It increases by 100%.

55. A junction is not considered a storage element for entropy, so the steady-state balance applies.

56. The actual temperatures matter.

57. Because of entropy production.

58. Entropy would not flow (could neither enter nor leave the engine).

59. The fall of entropy through a part of the total temperature difference is assumed to be reversible. The model can be quite useful for real engines.

60. Entropy is absorbed and emitted at constant temperatures.

61. The transport of entropy with charge is assumed to be non-dissipative.

62. Entropy flows conductively from hot to cold, reducing the effect of pumping.

CHAPTER 5

1. Entropy of steam and water together decreases, entropy of environment increases.

2. Wax melts, absorbing entropy from the water without changing its temperature.

3. Only if the substance is not flowing into or out of the control volume.

4. Yes, phase change by itself is reversible.

5. The energy added is part of the change of the energy of the system; another part is related to the change of volume.

6. Roughly 550 J/(K·kg).

7. More entropy can be stored in a given volume. Phase change temperature should be in the range of temperatures required for hot water.

8. Because T is constant (see Equ.(5.4)).

9. Both temperature and volume can change.

10. The entropy that leads to a volume change at constant T, per unit volume.

11. The entropy that leads to a change of temperature at constant V, per unit temperature.

12. Constant pressure heating.

13. It takes less entropy to change the temperature of air at constant volume.

14. Constant p curve is less steep.

15. The entropy in the gas is compressed into a smaller volume. For a formal answer, see Equ.(5.39).

17. Isothermal compression give larger change of V (entropy is emitted by the air).

18. The compression is close to adiabatic which makes the air hot. This in turn makes the pump hot: non-adiabatic phase of cooling of air.

19. When $dW/dt = 0$, we have $dT/dt = 0$. With $I_2 \neq 0$, the condition no longer holds.

20. Latent entropy with respect to volume is positive ($T > 4^\circ C$) or negative ($0^\circ C < T < 4^\circ C$). Adiabats have a minimum (Fig. 5.13).

21. The difference of the entropy capaci-
APPENDIX 4. ANSWERS TO QUESTIONS

22. Take values for O$_2$ and N$_2$: $c_V = 2.5R$, $c_P = 3.5R$. Adiabatic exponent: 1.4.
24. Entropy is exchanged between the dry part and the water vapor component.
25. Processes undergone by the materials modeled here are reversible.
26. $0 = TdS/dt – PdV/dt$.
27. $c_P/c_V = (T_κP)/(T_κV)$.
28. $ΔE = C_V(T_2 – T_1)$, $A_V = P/T$, and Equ.(5.66). Alternatively: C_V is the temperature coefficient of energy, and the energy of the ideal gas only depends upon temperature.
29. Part of it is emitted to the environment as a consequence of expansion. Energy stored = energy absorbed – $PΔV$.
30. – 10 kJ.
31. Entropy is absorbed at temperatures lower than the highest one, and emitted at temperatures higher than the lowest one.

CHAPTER 6

1. Smaller amount of substance means smaller pressure.
2. More than twice as much H$_2$ than O$_2$, H$_2$ will be left over.
3. See Fig. 6.1 and interpretation given there.
4. Compare to two communicating containers containing fluids of different densities.
5. Energy is released by chemical reactions, used to pump electric charge. Batteries do not get fresh fuel.
6. First reaction emits entropy, second reaction takes entropy from its environment.
7. Chemical potentials of water and (saturated) vapor are equal.
8. Temperature of boiling point rises.
9. 18 g.
10. 0.091
11. 500 moles of H$_2$, 250 moles of O$_2$ gas, 500 moles of water.
12. 0.0060 mole/min, 0.46 g/min, – 0.184 g/min, 0.28 g/min.
13. 1.0·10$^{-6}$ mole/s.
14. Higher chemical potential in air (it will flow into water, since there is 4 times more toluene in water in equilibrium).
15. Changes of all chemical potentials have to be considered to find the chemical potential difference at higher T.
16. Driving force is negative potential difference. Compare to voltage in electricity.
17. The chemical potential difference of a transformation has to be equal to zero in equilibrium.
18. Boiling point is lowered. Chemical potential of air decreases.
19. Energy is released; energy is used. Charging a battery.
20. Chemical power in reactions would not be definite if potential were not absolute.
21. Substances A and B are destroyed and make energy available (according to their amounts); this energy is used by C (according to its amount).
22. Power equals difference of all energy currents going in and all energy currents going out.
23. Voltage across terminals drops. OC voltage is not affected (no reactions).
24. Entropy is emitted, entropy is absorbed.
25. Yes, entropy of products must be smaller than entropy of reactants.
26. Entropy of products must be smaller than entropy of reactants.
27. Substance and charge must be directly coupled.
28. Gravitochemical potential is constant.
29. Logarithmic dependence.
30. Chemical potential of CO$_2$ is smaller in water (having no CO$_2$). Use chemical equilibrium.
31. Depends upon its molar fraction.
32. Diffusion.
33. Pressure and chemical potential of the liquid are lowered.
34. Salt dissociates into two ions.
35. The chemical potential of the liquid is lowered; at the original boiling point,
APPENDIX 4. ANSWERS TO QUESTIONS

vapor condenses. Effect of change of μ is larger for salt.
36. For given driving force ($\Delta \mu$), the current depends upon how much substance there is to be transported.
37. Smaller than 1?
38. The net flux becomes zero.
39. μ of water is proportional to its pressure.
40. There is always solute in the cells. The difference of water pressure (osmotic pressure) does not go to zero.
41. Both phenomena are caused by the respective chemical potential difference which takes the same form. Equ.(6.75) and Equ.(6.88).
42. Third order (quadratic in the concentration of hydrogen, linear in the concentration of oxygen).
43. Exponential decaying to zero.
44. Concentration of B remains (almost) constant.
45. The chemical driving force is logarithmic but the concentrations are exponentials as functions of time.
46. Product concentration is small. Product concentration is large. Concentrations of products and reactants are comparable. Transfer of a substance between identical environment.
47. – 1415 J/mole.

CHAPTER 7

1. Temperature difference. Pressure difference.
2. No. Specific entropy of water remaining in tank stays constant.
3. Current of entropy: distributed over a surface; entropy source rate: distributed over a volume.
4. In the former case, entropy is not produced, it is only transported.
5. Yes, and yes.
6. 25 W/K.
7. Because of entropy production.
8. For the second material: slower reaction to changes.
9. No.
10. Convective mixing.
11. Different temperatures, different (thickness of) boundary layer.
12. It increases in thickness. Temperature decreasing toward the plate.
13. With 10 cm thickness, neglecting convection would lead to an error of about 20%.
14. Transfer resistances from water to metal and through metal are very small.
15. The expression for conduction contains the thickness of the layer, the expression for convection does not.
16. Radiation flows in different directions at a point in space. Emission and absorption are volumetric processes.
17. Radiation is more like convection (depends upon storage density of entropy). Yes.
18. The current of entropy away from the body is larger than the source (sink) rate in the body (by a factor 4/3).
19. 20
20. 19 of 20 units of what flows away are produced.
21. Yes, the temperature is still the same (see Equ.(7.33) and Equ.(7.34)).
22. In parallel.
23. Not for a gray surface. Yes, for a selective surface.
24. Yes (Table 7.3).

CHAPTER 8

1. Specific entropy does not change. Specific entropy is reduced.
2. Its speed.
3. Pressure (and possibly speed and gravitational potential) also factors in.
5. They are equal if the volume of the substance cannot change.
6. First, T_1 will decrease, T_2 will stay constant. Later, T_1 will stay constant and T_2 will increase.
7. Different phenomena (pushing fluid versus compressing it).
8. The effect mentioned here does not
necessarily lead to motion of the center of mass.
9. Specific quantities refer to a part of the fluid—we move with the fluid.
10. Pressure does not change.
11. They can be changed if the temperature changes with pressure.
12. Use the temperature coefficient of the chemical potential at standard conditions, and add the entropy related to the temperature change.
13. Entropy transfer is reversible too (the fluid receives entropy at the proper temperature everywhere). In our model, dissipation is due to the fact that we treat the fluid as uniform.
14. Equ.(8.70): fluid flowing in is at the same pressure as fluid already present.
15. Relaxation of pressure: energy is released and dissipated. Second term in Equ.(8.74).
16. Liquid flows in through a throttle.
17. The fluid in the tank gets hotter every day: collector losses increase.
18. With stratified water, cooler water returns to collector, making the collector more efficient. Mixing leads to higher losses in the collector.

Chapter 9

1. Entropy that is produced has to be emitted to the environment and takes energy with it.
2. Only if there is a single constant temperature of the environment that receives the rejected entropy.
3. In fuel cells, the reactions run without entropy production (theoretically).
4. Yes. They use entropy that is already available in the environment.
5. Higher losses means more entropy production.
6. The cyclic operation of the fluid in the engine works reversibly. The fluid undergoes heating and cooling at constant temperatures.
7. Entropy needs temperature differences to flow into and out of the engine.
8. \(\eta_{CA} = 29\% \).
9. Flow speed increases which makes the heat transfer from absorber to fluid more efficient.
10. Yes.

Chapter 13

1. (a) Entropy density; (b) entropy current density; (c) entropy production density.
2. Introduce a negative sign in the surface integral (Equ.(13.5)).
3. Because of entropy production.
4. Sources: entropy flows from somewhere else.
5. Three. For (a) entropy density, (b) entropy current density, (c) entropy production rate density.
6. Entropy flows in the direction of decreasing temperature.
7. Yes; introduce Fourier’s law.
8. \(k_E \) has to be constant.
9. Equilibrium relations: no flows as independent variables (only \(T, P \) ...).
10. Example: energy released in a flow of entropy through a temperature difference is used to drive a flow (dissipation) and to change the flow (inertia).
11. So that the entropy production rate will certainly be positive or zero.
12. Use Peltier element between two bodies of water at equal temperatures. Measure rates of change of \(T \) in terms of \(I_Q \).
13. Charged particles flow through different materials.
14. A combination of electro-chemical potential with temperature (Equ.(13.70)).
15. Non-dissipative transport of charge and entropy; dissipative conduction.
16. Transport of entropy with charge in one direction; conduction in the other direction. Coupled transport has to be stronger than conduction.
17. Two sources of irreversibility: conduction of entropy and of charge.
18. \(j_Q dT/dx \) can be positive or negative, so these terms must represent non-dissipative processes. Dissipation means entropy production.
CHAPTER 14

1. Divide Eq.(14.1) by T_s.
2. Equations for developed flow.
3. Two pressure terms (including longitudinal friction), two shear friction terms.
4. For given geometry, flow behavior depends on the dimensionless groups only.
5. Difference between incoming and outgoing radiative fluxes. See Answer to Question 17., Chapter 7.
6. Steady-state and no loss from fluid to environment.
7. Yes.
8. The collector’s capacitance is much smaller than that of the storage element.
9. Eq.(14.26) includes $T_{f,in}$ which is the temperature of the water in the tank. In Eq.(14.26), the spatial temperature variation is treated properly.
10. Entropy transfer through ΔT. Ideal: no entropy loss to the environment.
11. Increase NTU.
12. Average ΔT is smaller.
13. Two counteracting effects are needed.

CHAPTER 15

1. All of entropy, not all of the energy.
2. They are equal.
3. Along horizontal (constant T) lines in the liquid-vapor area.
4. Eq.(15.15).
5. Smaller (μ because of $\phi < 1$, equal h).
6. Molar mass of moist air is lower (M_0 of water is low). Moist air rises.
7. Equal temperatures, ideal gas model.
8. The stream of air has to remain in the adiabatic saturator long enough.
9. Evaporation as diffusive (conductive) transport of vapor through air: see conduction of charge or entropy.
11. Transform the argument of the logarithm in Eq.(15.43).
14. No dissipation between plant and environment. This is violated noticeably in the condenser.
15. From the values pertaining to saturated liquid and saturated vapor.
16. It separates mixtures if liquid and vapor from liquid or vapor.
17. It remains constant.
18. Specific entropy s is constant, so μ increases with pressure, see Eq.(15.53).
19. The volume is independent of temperature (Equations (15.55) and (15.56)).
20. Saturated vapor will partly condense.
21. Entropy is produced in the valve.

CHAPTER 16

1. Radiant power: solar constant multiplied by surface of sphere surrounding Sun having radius equal to Sun-Earth distance. Temperature from black-body radiation law.
2. Surface temperature from Fig. 16.1, use black-body radiation law.
3. Above the Earth’s atmosphere.
4. Distance of air crossed by Sun’s rays if the Sun is vertically above us.
5. Constant attenuation coefficient.
6. Treat radiation as a thermal system and use basic thermodynamic relations (Part III).
7. Temperature gives us the incoming entropy and energy, allows calculation of dissipation.
9. Temperature will be higher than that of the environment.
10. This effect does not have anything to do with reflectance and emittance. Losses and dissipation are temperature dependent.
11. T of imperfect emitter is higher, entropy production rate is lower.
CHAPTER 1

1. \(\frac{dV}{dt} = -0.010 \text{ m}^3/\text{s} \). (a) \(V_3 = 0.0125 \text{ m}^3/\text{s} - 10^{-4} \text{ m}^3/\text{s}^2 \cdot t \). (b) 0.10 m3.
2.
3.
4. \(CV = A/(2 \cdot \rho \cdot g) \)
5. (a) \(IV = 4.81 \cdot 10^{-6} \text{ m}^3/\text{s} \). (b) \(PA = 1.0 \) bar, \(PB = 1.0078 \) bar, \(PC = 1.027 \) bar, \(PD = 1.0 \) bar. (c) Exponential functions approaching \(h = 0.20 \) m with a time constant of 208 s.
6.
7. (a) Two tanks connected by pipe, additional pipe for outflow, valves for each pipe. (c) \(dV_1(t)/dt = -IV_1 \), INIT \(V_1 = \frac{C_1 \cdot p_{1, init}}{C_1 + C_2} \), \(dV_2(t)/dt = IV_1 - IV_2 \), INIT \(V_2 = \frac{C_2 \cdot p_{2, init}}{C_1 + C_2} \), \(IV_1 = \frac{\Delta p_R_1}{R_1} \), \(IV_2 = IF \) (TIME > 50) THEN \(\Delta p_{R, 1}/R_1, \Delta p_{R, 2} = IF \) (TIME > 50) ELSE 0. (d) \(UC_2 \) mirrors the \(UC_1 \), time constant of 6.0 s. (e) 1.5 \cdot 10^{-4} \text{ F} . (f) 100 \text{ k}\Omega . (g) \(IV_1 = 0 \text{ A}, IV_2 = 2.0 \cdot 10^{-5} \text{ A}, dUC_1/dt = 0 \text{ V/s}, dUC_2/dt = -0.133 \text{ V/s}. \)
8.
9. (b) \(dM/dt = P - V, dP/dt = \text{Diff}/L \), Diff = E – M; First equation: Law of balance. Second equation: analogous to law of induction. Diff: analogous to pressure difference. Unit (dimension) of L: time squared. (e) Undamped Oscillation, Period = \(2\pi \sqrt{L} \).
10. (a) \(IL \) starts at 0, \(IC \) becomes negative.

CHAPTER 2

1. \(P_{\text{Pump}} = 3.02 \text{ kW} \).
2. (b) \(Vf^2/(2CV) \). Energy is stored in the system.
3.
4.
5. (a) \(UF = U_1 i/(C_1 i + C_2) \), \(Q1f = U_1 i/C_1^2/(C_1 i + C_2) \), \(Q2f = U_1 i/(C_1 i + C_2) \). (b) No. (c) Two communicating tanks, energy loss because of friction when water flows.
6. (a) \(IQ(t) = -[U_B/R \cdot \exp(-t/\tau)] \). (b) \(PB = -0.86 \) W, \(PR = 0.44 \) W, \(PC = 0.42 \) W. (d) \(I_{E_{BC}} = 0.86 \) W, \(I_{E_{CR}} = 0.44 \) W. (e) 0.42 W. (f) Depends upon emission of heat.
7.
8. (a) 1.25 \cdot 10^{14} \text{ J} . (b) 8.75 \cdot 10^{14} \text{ J} . (c) 40 MW, 30 MW. (d) 8.75 \cdot 10^{14} \text{ J} . (e) 4 \cdot 10^{15} \text{ J} \) (in Switzerland).
9.
10. (a) 62.5 \cdot 10^{9} \text{ J} . (b) 0.20 m/s.
11. (a) 1.25 \cdot 10^{14} \text{ J} . (b) 0.13 \text{ J} . (c) 0.13 \text{ J} . (d) \(E_{\text{diss}} = 0.050 \text{ J} \). (e) 1.34 s \leq t \leq 1.45 s, 0.065 J.
12.

CHAPTER 3

1.
2.
4. \(djp/dx = \rho \cdot g \cdot jp(x) = \rho \cdot g \cdot (-L + x) \).
5.
6. (a) Larger change of speed belongs to smaller glider. (b) 3.1 \cdot 10^{-3} \text{ } . (c) 0.419 \text{ N} . (d) Radiative (source rate).
7.

APPENDIX 5. SOME SOLUTIONS OF END OF CHAPTER PROBLEMS
8. (a) 10^6 N/m. (b) 0.314 s. (c) Shortening of spring damping force points in the direction of force of spring. Stretching of spring: damping force points opposite to force of spring. This explains the jump of the acceleration of the car at about 1.04 s. 10^5 N.

9. (a) 0.944 N, – 3.78 N. (b) 77.7 N, – 17.66 N.

10. – 4.21 N.

11. (a) $\frac{\Delta r \cdot \tau}{2 \pi r^3 l \omega}$.

12. $L_p = \frac{1}{D}$ (D: spring constant). Omega $= \sqrt{C_p L_p} = \sqrt{\frac{D}{m}}$.

13. (a) Mass is changing. (b) 18 9 m/s2, 54.2 m/s2. (c) 1280 m/s.

14. $\frac{1}{2} D \cdot \text{stretching}^2$.

15. (a) Absorbed: 2250 J/K, emitted: 3000 J/K. (b) – 750 J/K. (c) – 750 J/K.

16. (a) – 70 W/K + 5.0 W/(K s). (b) – 1000 W/K. (c) – 400 J/K.

17. (b) Entropy is produced, so more entropy and energy are emitted to the environment.

18. (a) 2.04 W/K. (b) 2.27 W/K.

19. (a) $\frac{dS}{dt} = IS_{in}$. (b) $\frac{dS}{dt} = \Pi_{S}$.

20. 0.055 W/K.

21. 1.4·10$^{-8}$ W/K.

22. (b) 3.33·10$^{-6}$ W/K. (c) 5.56·10$^{-6}$ W/K. (d) 2.22·10$^{-6}$ W/K. (e) 7.78·10$^{-6}$ W/K.

23. (b) 444 W/K. (c) 267 kW. (d) 444 W/K, 133 kW. (e) 300 kW. (f) 556 W/K.

24. (a) 1.02 W/K. (b) 281 W. (c) 0.38.

25. (a) 0.625 W/K. (b) 147 W. (c) Entropy is produced because of entropy transfer in the insulation of the freezer, and in the heat exchangers of the heat pump. (d) 0.171 W/K.

26. 0.055 W/K.

27. B is better by a factor of 4.

28. (a) 0.135 W/K. (b) 103 J/K.

29. 940 J/K and 345 kJ.

30. 1/2·K·(Tf2 – Ti2).

31. 60.7 MJ.

32. 1190 J/(K·kg), 0.175 W/(K·m). Entropy related values: 4.0 J/(K2·kg), 5.8·10$^{-4}$ W/(K2·m).

33. (a) 36 kJ/K2 and 10.8 MJ/K. (b) 10.1 W/K. (c) 101 W. (d) 371 W.

34. (a) 1200 W/(K·m2). (b) – 100 kJ and 100 kJ. (c) 1.0·10$^{-3}$ W/K2.

35. 5.8·10$^{-4}$ W/(K2·m).

36. (a) 371 W. (b) Yes, because of entropy transfer. (c) 2.0 W/K. (d) $dT_1/dt = -0.0286 K/s$, $dT_2/dt = 0.0429 K/s$, $dT_3/dt = -0.0143 K/s$. (f) Final temperature: 50 °C, time constants of the order of 1000 s.

37. (b) roc$_P$ = T_diff/tA. (d) $dP/dt + (TH-TC)/tA$.

38. (a) 1200 W/(K·m2). (b) 1.0·10$^{-3}$ W/K2.

39. (a) 10^6 N/m. (b) 0.314 s. (c) Shortening of spring damping force points in the direction of force of spring. Stretching of spring: damping force points opposite to force of spring. This explains the jump of the acceleration of the car at about 1.04 s. 10^5 N.

40. (a) $\frac{dS}{dt} = IS_{in}$. (b) $\frac{dS}{dt} = \Pi_{S}$.

41. (a) $\frac{dS}{dt} = IS_{in}$. (b) $\frac{dS}{dt} = IS_{out}$. (c) $\frac{dS}{dt} = IS_{prod} - SE_{out}$.

42. $\frac{dS}{dt} = \Pi_{S}$. (f) $\frac{dS}{dt} = -IS_{1}$. (g) $\frac{dS}{dt} = IS_{cont}/dt = +IS_{2} - IS_{3}$, $IS_{2} > IS_{1}$. (h) $\frac{dS}{dt} = IS_{out}$.

43. $IS_{net} = 100 W/K$. $\frac{dS}{dt} = 100 W/K$.

44. (b) $r_0 = T_{diff}/tA$. (d) $dP/dt + (TH-TC)/tA$. (e) 1.25 s. (f) Like charging of a capacitor, final
APPENDIX 5. SOME SOLUTIONS OF END OF CHAPTER PROBLEMS

APPENDIX

CHAPTER 5

1. (a) \(\frac{IE_{th}}{dn/dt} / T \) (b) 1230 J/(K·kg).
2.
3. (a) 7.0 g/s. (b) 3 g/s.
4. (a) 0.822 W/K. (b) – 1.15 · 10^-4 kg/s.
 (c) – 0.108 W/K. (d) 6210 J/(K·kg).
5. 946 m^3.
6. 0.0405 m.
7. (a) – 1.73 kJ. (b) \(S_e = -5.77 J/K \).
8. \(f = 2 \pi \cdot \text{SQRT} \left(\gamma \cdot \text{P} \cdot \text{A}^2 / (m \cdot \text{V}) \right) \).
9. (a, b) 0.90 – CV/T. Entropy is injected into the gaseous component when the temperature decreases.
10. \(\rho = b \cdot T^n (n = 1/(\gamma - 1)); P = B \cdot \rho^n (1+1/n) \).
11. \(E_{comp} = CV \cdot (T_f - T_i) \).
12.
13. (b) \(\gamma = (P_i - P_0) / (P_f - P_0) \). (c) Energy of the gas is the same if the temperature is the same.
14. (a) Change of volume; – 50 kJ. (b) Heating; + 50 kJ. (c) Only energy exchanged in heating can be shown.
15. \(\Delta E = \text{T} \cdot \Delta S - P \cdot (V_{gas} - V_{liquid}); 2.09 \) kJ. (See also Table 15.1.)
16. 2°C: \(dE/dt < 0 \). 20°C: \(IE_{mech} < 0 \); \(IE_{th} > 0 \); cannot be decided on the basis of what we know at this point.
17. (a) 4.92 MJ. (b) 10^6 Pa. (c) \(IE_{mech} = -nRT / (V_1 + nV/dV/dt) \cdot dV/dt, dV/dt = -1.93 m^3/s, V_1 = 21.4 m^3 \).
18. 154.3 J/(K·mole).
19. 20.
20. 8°C.
21. 22.
22. No heating, no friction. \(dS/dt = 0 \). \(dE/dt = IE_{comp} = -P \cdot dV/dt. \) Energy decreases.
23.
24.
25.
26. Function shifts to the left.
27. All the entropy stays in the body; \(\Delta E / E_{th} = 1/\gamma \).
28.
29. (a) 39.7 mole; 1.15 kg. (b) 3.47 · 10^-4 W/K. (c) 2.87 J/K^2; 4.01 J/K^2. (d) 8.65 · 10^-5 K/s.
30. (a) – 2.14 kJ. (b) 5.36 J.
31. (a) 2.9 mm. (b) 37.5 mJ.
32.
33. P = 5 · 10^14 Pa, T = 2 · 10^7 K, \(\rho = 4 \cdot 10^13 \) Pa = 0.08 P.
34. (a) Entropy of universe turns out to be constant. (b) \(l = 10^4 \). (c) \((P(t)/R_0) = \rho_{rad,0}/\rho_{matter,0} \cdot \rho_{matter}/\rho_{rad} \). \(\rho_{rad,0}/\rho_{matter,0} \) could be comparable at a size \(10^4 \) times smaller than today.
35. (a) \(V \cdot T^3 = V_0 \cdot T_0^3, \gamma = 4/3 \). (b) \(E_{th, isothermal} = 4/3 \cdot a \cdot T^4 \cdot \Delta V, \) \(E_{mech, isothermal} = -1/3 \cdot a \cdot T^4 \cdot \Delta V; \) \(\Delta E = a \cdot T^4 \cdot \Delta V \).
36. (b) P = 2/3 · \rho_E. (c) CV = 3/2 · n · R.
37. Statics: computation of equilibrium states. Dynamics: requires “equations of motion,” i.e., combinations of the balance of entropy in dynamical form and constitutive relations.

CHAPTER 6

1. – 1.3 mole/min (consumption).
2.
3. – 394.4 kG.
4.
6.
7. (a) 1.7. (b) – 1320 G.
8. (a) CH4 + 2O2 \(\rightarrow \) Co2 + 2H2O. (b) \(2744.5 J/(K·mole) \). (c) – 242.64 J/(K·mole). (d) – 2987 J/(K·mole) (emit-
APPENDIX 5

THE DYNAMICS OF HEAT

706

CHAPTER 7

1. (a) 1.0 W/K. (b) dS/dt ≥ 1.0 W/K. (c) – 1.0 W/K; no (conductive) fluxes.
2. (a) – 400 K/m. (b) jS = 800 W/(K·m^2); jE = 3.2·10^5 W/m^2, kE = 800 W/(K·m). (c) – 0.80 W/K.
3. 203 W. The energy current decreases when a mineral deposit builds up.
4.
5. (a) 18.1 kW. (b) 9.6 m.
6. (a) 463 K. (b) 334 K.
7.
8. T_Sirius = 9100 K.
9. (a) 4.1·10^4 W/K. (b) 2.8·10^4 W/K. (c) 3.8·10^4 W/K. (d) 5.17·10^4 W/K.
10. (a) 120 W. (b) C_dT/dt = alpha·G_Sun – A·h(T – Ta) – A·σ(T^4 – Ta^4) – ef-
ficiency·G_Sun. (c) 0.56 K/s. (d) 331.4 K. (e) P_el_final = 78 W.
11.
12. h(300 K) = 5 W/(K·m^2), h(500 K) = 11 W/(K·m^2), h(800 K) = 32 W/(K·m^2).
13. 105 min.
14. 1.3 days.
15. (a) 4.85·10^4 s. (b) 2.09 W/K. (c) 0.78·10^5 W/K. (d) 22.7 MJ.
16. (a) 250 W/K. (b) 9.7·10^7 J/K. (c) 30 kW.
17.

CHAPTER 8

1. (a) 121 kW. (b) 73.5 kW. (c) 23.4 kNm.
2.
3. 2800 K.
4.
5. (a) Viscosity changes with tempera-
ture, and there is a current of substance due to evaporation. (b) dm/dt = – Im,pipe – Im,evaporation.
6.
7.
8. (a) 300 K, 6425 W/K. (b) 344.4 K, 6760 W/K. (c) 300 K, 9310 W/K.
10.

CHAPTER 9

1. Minimum entropy production rate at a radius of 0.040 m.
2. Loss of energy from the pipe and pumping power do not add up to the loss of available power.
3. (a) 2.0×10^4 W/K. (b) 815 MW. (c) 1.776×10^6 W/K. 5.33 $\times 10^8$ W; yes.
4. Add the additional heat exchanger surface at the cold end.
5. (a) $\pi = IE/TH – hA \cdot (2 – TL/TH – TH/TL)$. (b) 482 K. (c) 514 K; two sinks for entropy at different temperatures.
6. Balance of losses due to friction and to heat loss. (b) $Dt_{opt}^2 = 1/T \cdot RV \cdot V/\rho \cdot \beta / (T – Ta)^2$.
7. (a) $\gamma = 1 + aV^2 \cdot c^2 / \kappa P$; (b) $\beta = 1/p \cdot \alpha V^2 / \kappa P + 1/c^2$; (c) $\Lambda V = \rho \cdot \alpha V c^2 / (\kappa P + \alpha V^2 c^2)$; where $\alpha V = – 1/p \cdot \partial p / \partial T$ is the temperature coefficient of expansion.
8. (a) 7.68×10^4 W/m2. (b) 603 W. (c) 110 W/(K m3) and 206 W/(K m3). (d) 0.59 W/K.
9.
10.

CHAPTER 10

1. (a) 2.0×10^4 W/(m2-sr). (b) 5770 K; temperature of sunlight at the distance of the Earth is equal to the surface temperature of the Sun. (c) $i_{Eb} = 3/4 \cdot T \cdot i_{Sb}$; $i_{Sb} = 4.6 \times 10^3$ W/(K m2-sr); 0.32 W/(K m2).
2. (b) Sun: 6.3×10^7 W/m2; oven: 6.4×10^3 W/m2.
3. $F_{21} = A_1/A_2 \cdot F_{12}$.
4. $IE = \sigma / R_{total} \cdot (T_1^4 – T_2^4)$; $R_{total} = 958$ 1/m2.
5. (a) $\kappa E = – 1/\Delta x \cdot \Delta iE / iE$. (b) $\Delta iE/dx = – \mu E$, where $\mu = \kappa E + \beta E$. (c) 3.5 $\times 10^4$ /m.
6. $l_{mean} = 0.06$ m; $\kappa \rho = 0.01$ m2/kg.
7. (a) $y = 1/x^5 \cdot 1/(\exp(1/x) – 1)$. (b) 501 nm.
8. (a) 2330 K. (b) The new entropy of radiation is 2.7 times the old entropy.
9.
10.

CHAPTER 11

1. Both processes lead to source rate densities. In the case of production, the quantity appearing in a system is not coming from a different system.
2. (a) $\partial p / \partial t – k \cdot \partial^2 p / \partial x^2 = 0$. (b) $\partial^2 p / \partial x^2 = 0$, $\rho(x) = a + b \cdot x$, two boundary conditions are needed.
3. (a) $\partial p f / \partial t = pf f(t, x)$, $pf = net production – destruction rate, \rho f = density of food$.
4. No; convection is implicitly in the form using the material derivative.
5. Coordinate independent form for a scalar function f: $Df/Dt = df/dx + v \cdot grad(f)$; v and grad(f) are vectors, the product is the scalar product.
6. (a) $\gamma = 1 + \alpha V^2 \cdot c^2 / \kappa P$; (b) $\beta = 1/\rho \cdot \alpha V^2 / \kappa P + 1/c^2$; (c) $\Lambda V = \rho \cdot \alpha V c^2 / (\kappa P + \alpha V^2 c^2)$; where $\alpha V = – 1/\rho \cdot \partial \rho / \partial T$ is the temperature coefficient of expansion.
7. (a) $\gamma = 1/x^5 \cdot 1/(\exp(1/x) – 1)$. (b) 501 nm.
8. (a) 2330 K. (b) The new entropy of radiation is 2.7 times the old entropy.
9.
10.

CHAPTER 12

1. (a) 2.0×10^3 W/(m2-sr). (b) 6377 K; temperature of sunlight at the distance of the Earth is equal to the surface temperature of the Sun. (c) $i_{Eb} = 3/4 \cdot T \cdot i_{Sb}$; $i_{Sb} = 4.6 \times 10^3$ W/(K m2-sr); 0.32 W/(K m2).
2. (b) Sun: 6.3×10^7 W/m2; oven: 6.4×10^3 W/m2.
3. $F_{21} = A_1/A_2 \cdot F_{12}$.
4. $IE = \sigma / R_{total} \cdot (T_1^4 – T_2^4)$; $R_{total} = 958$ 1/m2.
5. (a) $\kappa E = – 1/\Delta x \cdot \Delta iE / iE$. (b) $\Delta iE/dx = – \mu E$, where $\mu = \kappa E + \beta E$. (c) 3.5 $\times 10^4$ /m.
6. $l_{mean} = 0.06$ m; $\kappa \rho = 0.01$ m2/kg.
7. (a) $y = 1/x^5 \cdot 1/(\exp(1/x) – 1)$. (b) 501 nm.
8. (a) 2330 K. (b) The new entropy of radiation is 2.7 times the old entropy.
9.
10.

CHAPTER 13

1. (a) 7.68×10^4 W/m2. (b) 603 W. (c) 110 W/(K m3) and 206 W/(K m3). (d) 0.59 W/K.
APPENDIX 5. SOME SOLUTIONS OF END OF CHAPTER PROBLEMS

2. (a) Steeper at the colder end.
3. (a) 0.19 W/m^3. (b) 6.2·10^–4 W/(K·m^3).
4. (b) \(\frac{dT}{dx} \) = \(- \frac{sE}{kE} \cdot L \) – \(\frac{1}{kE} \) · \(jE(0) \). (c) – 0.025 K/m.
5. (b) \(\frac{dT}{dx} \) (L) = \(- \frac{sE}{kE} \cdot L \) – \(\frac{1}{kE} \) · \(jE(0) \). (c) – 0.025 K/m.
6. According to Equ.(13.54), the term in parentheses in Equ.(13.61) equals \(jS/kS \).
7. (b) First two terms arise in thermal conduction alone; third term is due to dissipation in electric process.
8. \(\frac{dT}{dx} \) (cold) = 0; \(T(\text{hot}) = \text{const.} \)
9. (a) \(GE = \text{const.} \) (c) \(\text{Power} = a \cdot IQ \cdot (Th – Tc) – R \cdot IQ^2; \) efficiency = \(\text{Power / IE,th,h.} \)

CHAPTER 14

1. 2. 3.
4. Uniform model: includes entropy production due to mixing of incoming fluid stream with fluid present in the collector. This term does not occur in continuous models.
5. 6. 7. 8. 9.
10. Counter-flow: 0.833; parallel flow: 0.500.
11. Strongly unbalanced: \(e_{\text{unbalanced}} > e_{\text{balanced}} \); nearly balanced: \(e_{\text{unbalanced}} \approx e_{\text{balanced}} \).
12. 13. 14. 15. Power = 4.4·10^12 W, efficiency \approx 0.3.
16. Excess of gradient: 6.4·10^–8 K/m, compared to actual gradient of 1.1·10^–2 K/m.

CHAPTER 15

1. Moist air has smaller molar mass than dry air.
2. 3.
5. \(j_{\text{net}} = – \frac{D}{R} \cdot (P – P_v) \cdot \frac{dP_v}{dz}. \) (Remember: \(x = P_v/P \).)
6. See Fig. 15.21 for a dynamical model that represents a similar situation.
7. (a) 1470 J/(K·kg) vs. 1550 J/(K·kg). (b) 2.24 MJ/kg; 1.8·10^9 W.
8. 9. \(1 – \frac{T_{\text{out}}}{T_{\text{in av}}}. \)
10. Efficiency increases if (1) boiler pressure is increased, (2) if condenser pressure is decreased. A condenser allows the pressure at the cold end to be decreased below atmospheric pressure.
11. \(1 – 313/573 = 0.45 > 0.37 \) for the Rankine efficiency. Ideal Rankine cycle does not produce entropy, so the difference is not due to dissipation.
12. 13. (a) 0.15. (b) 19 m^2.
14. 15. (a) 6500 J/(K·kg), 3000 kJ/kg. (b) 190°C, 10 bar. (c) 1.0 bar, 0.9.
16. (a) – 53.26 kJ/K. (b) – 25.0 MJ. (c) 3.05 MJ.

CHAPTER 16

1. 1.79·10^9 W/(m^2·m).
2. 5800 K, 0.32 W/(K·m^2).
3.
4. See Problem 12 in Chapter 7, add a convective term \(A_1 \cdot h_{12} \cdot (T_1 – T_2) \) to the expression for \(IE \) from absorber to glass cover.
5. 6. 7. \(\Pi_{\text{S_loss}} = 0.20 \) W/K, \(\Pi_{\text{S_abs}} = 2.3 \) W/K for 1.0 m^2 of collector area.
APPENDIX 6.

REFERENCES

Ivory J. (1827): Investigation of the heat extricated from air when it undergoes a given condensation. Phil. Mag. (n.s.) 1, 89–94.

Job G. (2010): Tabelle chemischer Potentiale. http://job-stiftung.de/index.php?id=11,0,0,1,0

mit zahlreichen Experimenten, Vieweg+Teubner, Wiesbaden. (Some English chapters can
be found at http://job-stiftung.de/index.php?id=36,99,0,0,1,0)

Jou D., and J. Casas-Vázquez (1988): Extended irreversible thermodynamics of heat conduc-

New York.

Press, Oxford UK.

(with a new Afterword, 2003).

(1999): *Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western

Mach E. (1923): *Die Prinzipien der Wärmelehre, historisch-kritisch entwickelt.* 4. Auflage,
Barth, Leipzig.

Magalotti L. (1666): *Saggi di naturali esperienze fatte nell’Accademia del Cimento sotto la pro-
tecione del serenissimo principe Leopoldo di Toscana e descritte dal segretario di essa Ac-

electric and Biomagnetic Fields.* Oxford University Press, New York.

Englewood Cliffs.

22. Technikum Winterthur.

Wiley and Sons, New York.

Reid G., et al. (2001): A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging. Journal of Neuroscience Methods 111, 1–8.

INDEX

A
absorption refrigeration 642
Accademia del Cimento 6
accounting, see laws of balance
adiabatic demagnetization 234
adiabatic flame temperature 420–422
adiabatic process 127
adiabatic mixing 418–420
differential equation 208
fluid flow 416–422
ideal gas 207–210
irreversible 130
adiabatic saturation 618–619
see also mixtures, moist air
adiabatic temperature gradient, see atmosphere
air
mass fractions 295
molar mass 295
temperature coefficient of enthalpy 398
temperature coefficients of energy and enthalpy 296
theoretical amount 422
air mass, see solar radiation
air thermometer 100
Kelvin scale 100
amount of substance
and pressure of dilute gases 250
balance, see balance of amount of substance
chemical reactions 260–261
concept 259–265
currents 265
measuring amounts of stuff 27
production rate 190, 265
unit 250, 260
amount, measure of 27
analogical reasoning 3, 5, 14, 21, 25, 55, 65
analogies
blood flow and electric circuit 23
Carnot, waterfall and heat engine 7, 106
diffusion 573
electrical and chemical pumps 277
entropy and momentum 573
momentum and charge 84
rotation and electricity 65–69
angular momentum 67
capacitance 67
current 67
transfer 67
angular speed, as rotational level 67
atmosphere
adiabatic temperature gradient 218, 598, 601
carbon dioxide 320–326
cloud formation 620
winds, model of 450–453
attenuation, see radiation
availability 154, 432, 650
available power 145
loss of available power 139, 145, 427
maximum of 430
of a body of water 154
Avogadro’s number 262

B
balance of amount of substance 29, 257, 264–265, 388, 466, 471, 488, 624
phase change 190
balance of angular momentum 66
balance of charge 24, 25, 29, 30, 552–553
Kirchhoff’s First law 30
thermoelectricity 560
balance of energy 62–65
conduction 542
conservation 54
continuous processes 495–496
flywheels 68
heat exchangers 591
ideal fluid 200
in entropy transfer 338
including sources 544
including thermal processes 131
material form 495
restriction, constitutive theory 202
simple material 147
thermal energy equation in fluid flow 505
thermoelectricity 170, 172, 561
balance of entropy 9, 118, 126, 337
body and field 336
chemical reactions 314
conduction 332, 535–540
convection 334
differential form 537, 540
exothermic/endothermic reaction 281
heat exchangers 593
ideal fluid 199
including sources 337, 515
introduced 125
local form 489
phase change 190, 604
radiation 335–337
reaction of H2 and O2 286
Second Law 141, 465
simple material 147
solar collectors 580
supply and conduction 538–545
thermoelectricity 171, 560
time dependent conduction 539–556
transport processes 331–337
balance of heat, see balance of entropy
balance of locusts, continuous form 478
balance of mass
constant mass 86
continuous processes 488
equation of continuity 489
water rocket 79
balance of momentum 74
as restriction upon processes 460
for control volume 88
introduced 81
local form 490
Newton's law 42, 81
uniform fluid 460
balance of volume 21, 29, 30, 39
ideal fluid 200
lentils, soaking 306
open systems 390
battery 36, 285
and fuel cell 254
characteristic 36
in RC circuit 38
lead storage battery, voltage 285
process diagram 254
voltage 31
Bernoulli's law 397
black body, see radiation
blood
cells, permeability 308
circulatory system 22
flow 22
storage in aorta 23
body force, see force
body, distinct from control volume 334
Boltzmann’s constant 528
boundary layer 567–569
approximations 572
introduced 351
thermal boundary layer 351, 568
two dimensional flow 569
velocity boundary layer 351, 568
Boyle and Mariotte, law of 203
C
caloric and heat 113
caloric equation of state
paramagnetic substance 235
caloric theory 2
capacitance 20
electric 35
hydraulic 34
momentum 75
thermal, see entropy capacitance
capacitance flow rate, see heat exchangers
capacitance–pressure function 35
capacitive pressure difference 34
capacitive time constant 40
capacitive voltage 35
capacitor 18
as storage element 27
carbon dioxide
in atmosphere 320–326
solubility in water 326
cardiovascular system 22
Carnot cycle, see cycles
Carnot efficiency, introduced 136
Carnot engine, see heat engines
Carnot, Sadi 2, 6
causation, and power 5
change 28
integral of rate of change 28
of entropy, from capacitance 149
of state 239–240
of volume, from capacitance 35
characteristic
batteries 36
capacitive 34, 35, 37
capacitive, electric 35
diode 33
entropy-temperature 146
laminar flow 32
ohmic 33
pumps 36
resistive 32
turbulent flow 32
charge
 and momentum 84–85
 change of charge 30
 conduction and induction 553
 current 28
 diffusion 552
 electrolysis 261
 exchanged 30
 transporting heat 105
 wave equation 553
charging and discharging 38
chemical driving force 251, 267–273
 and energy 276
 chemical potential difference 251
 defined 269
 equilibrium 270
chemical equilibrium 251
 and chemical driving force 267, 270
 equilibrium concentration 258
 phase change 256, 607–609
chemical potential 251, 267–273
 battery 20
 component of a mixture 290
 concentration dependence 273, 293
 dependence upon temperature and
 pressure 272, 293–294, 470
 difference, as driving force 251
 flow systems 394, 397
 gradient 302
 ideal gas 287, 290, 293, 317, 401
 incompressible fluid 287
 isotopes 271
 mixtures 290
 moist air 616–617
 Navier-Stokes-Fourier fluids 505
 Nernst potential 301
 of formation 279
 phase change 256, 272, 607
 pressure coefficient 273
 molar volume 294
 pure fluids 468
 solute and solvent 292–293
 temperature coefficient 272
 molar entropy 294
 uniform fluids 400
 values 278–281
 vapor and liquid 609
 water 271
 zero point 279
chemical processes
 electrochemical 277
 energy 275–277
 energy transfer 275
 power 275
chemical pumps 277–278
chemical reactions
 amount of substance 260–261
 battery 285
 dynamical models 309–318
 entropy production 281, 313
 entropy transfer 313
 equilibrium 316–318
 equilibrium constant 311
 exothermic and endothermic 281
 kinetics 309–313
 laws of balance 309
 phase change 190, 607
 radioactive decay 316
 reaction rate 310
 spontaneous and driven 268
 uniform mixtures of fluids 471–473
 waterfall image 268
circuit
 electric 31
 pulmonary (blood flow) 22
 systemic (blood flow) 22
Clapeyon’s law, see phase change
Clausius, Rudolf 2
 coefficient of performance, see heat pumps
cognitive science 4
 collectors, see solar collectors
 combined potentials 282–284
combustion
 heating values 281
 methane, different amounts of air 422
 compressed liquid 603
 compression, energy transfer 62
 compressors, isothermal 398
 concentration 262–264, 292
 and chemical potential 267, 273, 282
 diffusion 302
 equilibrium 305
 gradient 302
conductance
 electric 33
 hydraulic 33
 thermal (energy) 157
 thermal (entropy) 156
conduction
 balance of energy 542
 balance of entropy 332, 536–538
 chains of RC elements 40
 charge 84, 552
 conductance 345
 entropy 132, 157, 485, 541
 entropy production 173, 344, 542–543
 entropy transfer 332–333
 field equation for temperature 543
 including supply (sources) 538–539
 infinite speed 555–556
influence of induction 556
locusts 477
Maxwell-Cattaneo equation 556
momentum 33, 82–85, 486
resistance 345
substances 264, 301
time dependent 549–552
conductivity
diffusion of radiation 519
electric 34, 85
entropy 341, 343
momentum conductivity 85
thermal, with respect to energy 343, 541
conservation
caloric 3
charge 29
energy 54
momentum 81
of elements 265
constitutive laws 9
and laws of balance 10
electric 24, 32–38
heat and thermal processes 116
hydraulic 21, 32–38
locusts 479
metaphoric roots 9
thermoelectricity 171, 561
constitutive theories
black body radiation 231–232
energy as restriction 202
ideal gas 206
NSF fluid 498
viscous gas 457
continuity, see balance of mass
continuous processes
conduction 541–552
laws of balance 488–496
Navier-Stokes-Fourier fluid 497–505
thermoelectricity 559
transport of electricity 552
control volume 88, 334
convection 301, 331
adiabatic, moist air 215
amount of substance 264
balance of entropy 334
boundary layer 351
boundary layer equations 567
convective current density 485
convective stability 596
energy current density 494
entropy 125, 485
entropy transfer 333–334
forced convection 334
free convection 334, 596
heat transfer coefficient 352
in Earth’s mantle 600
locusts 480
momentum 87
transport processes 384–390
convective currents
dissolved substances 384
energy 388
entropy 387
momentum 386
convective heat transfer coefficient, see
heat transfer coefficient
cooling towers 627–629
cooling, see heating
critical point 606
Curie constant 234
current
amount of substance 257
angular momentum 67
charge 28
energy 60, 132
entropy 118, 125
introduced 27
momentum 75, 81, 386, 486
rate of change 42
volume 28
current density
amount of substance 302
energy 493
entropy 343, 485, 536
general 484–485
mass 485
momentum 81, 486
cycles
Carnot cycle 138, 206
heat pump 640–642
Otto cycle 224
efficiency of 228
Rankine cycle 639
refrigeration 640–643
Stirling cycle 223–224
strange Carnot cycles 210
superheating, power cycle 639
vapor power 638–640
D
daisy world 665
Debye temperature 153
density 34, 37
energy 493
entropy 482
general 481–483
in equation of state of ideal gas 204
momentum 482
production rate 478, 483, 537
source rate density 483
dew point, see mixtures, moist air
diastolic pressure 22

difference, as driving force 19

differential equations, for initial value problems in thermodynamics 4

diffusion 40, 48, 302–303, 573

- blood cells 253
 - charge 40, 361, 394, 403, 552
 - diffusion equation 553
 - entropy 126, 332, 361, 394, 403
 - entropy production 125
 - infinite speed of propagation 46
 - model of chained tanks 40
 - momentum 40, 84, 394
 - no wave-like transports 46
 - radiation 519
 - vapor in air 624

- diffusion equation 553

- diffusion, see also conduction

- diffusivity 302
 - entropy 573
 - momentum 573
 - thermal 573

- dimensionless groups 573

- Nusselt number 574
- Prandtl number 574
- Reynolds number 574

displacement law, see radiation, Wien's displacement law

dissipation
 - as internal process 180
 - entropy production 134
 - loss of power 145

dissipation rate, introduced 135

dissolved gases
 - CO2 in sea water 323
 - oxygen in water 299

distribution function, see radiation

divergence theorem 486–488

- Doppler effect, see radiation

- driving force 26
 - chemical 251, 267–273
 - electric 19, 84
 - for convection 333
 - for the flow of heat 102
 - gravitational 38
 - hydraulic 18
 - thermal 100, 109, 124
 - thermal (in conduction) 332

dynamical models
 - see system dynamics model(s)

E

- Earth
 - as a selective absorber 667
 - conduction through mantle 350

- conduction with sources 548
- convection in mantle 600
- surface temperature 376
- winds in atmosphere 450–452

- effectiveness of heat exchangers, see heat exchangers

- efficiency 57
 - Carnot 136
 - first law 136
 - second law 136
 - thermal 136

- elastance 34, 35
- electric charge, see charge
- electric potential, see potential

- electricity
 - balance of charge 30, 552
 - capacitance 35
 - charge 27
 - conductance and resistance 33
 - conduction 553
 - current of charge 28
 - diffusion equation 553
 - induction 41, 553
 - LCR circuits 43
 - potential 31
 - potential difference 31
 - RC models 38
 - voltage 31
 - wave equation 553

- electrochemical potential 282
- electrochemical processes 277
- electrolysis 261

- emissive power, see radiation
- emissivity, see radiation

- endoreversible engine, see heat engines

- endothermic reactions 255, 281

- energy
 - adiabatic expansion 227
 - balance of, see balance of energy
 - carriers of 60–62, 134, 561
 - chemical processes 275–277
 - conservation, see balance of energy
 - coupling of processes 51–55
 - equivalence to mass 89
 - ideal gas 221
 - intrinsic part of (molar) energy 396
 - isothermal compression 205
 - measure of accomplishment 52
 - mixtures 290
 - paramagnetism 236
 - properties of 54
 - rate of release, see power released 52, 496
 - as integral of power 59
 - in conduction of entropy 543

- simple materials 149
source rate density in radiation 515
sources 338, 494
storage 53, 62–65
 capacitors 65
 flywheel 68
 gravitational field 63
 inductors 65
 moving body 89
 pressure vessels 64
 with entropy 147
storage and balance 62–65
thermal processes 131–141
thermoelectricity 170, 172
transfer 53, 60–62, 92
 and carriers 60–62
 ideal gas 227
 in compression 62
 in heating and cooling 133
 through radiation field 509–513
 translational motion 88
using (binding) 52
energy current
 chemical 275
 compression of fluid 91
 convective 388
 due to flowing pressurized fluid 388
 electric 61
 magnetic processes 69
 mechanical 89
 thermal 132, 134, 157, 181, 464, 504
 total, due to flow 389
energy current density 493–494
energy density 493
energy principle 9, 460, 499
 in continuum physics 493–496
energy transfer, see energy
energy, see also power
engines, see heat engines
enthalpy 222
 flow systems 389, 400, 405
 ideal gas 219
 of fusion 191, 193
 of vaporization 192, 193
 phase change 605
 temperature coefficient of 210
 uniform fluids 400
entropy 1, 3, 111, 124–126
 as energy carrier in heating 134
 balance of, see balance of entropy
 black body radiation 232
 caloric 3, 8
 capacitance, see entropy capacitance
 change 125
 conductivity 341, 499, 541
 content, see entropy, storage
 current, see entropy current
 density 482
 diffusivity 573
 endothermal reaction 255
 exchanged 125, 201–202, 225, 286
 in phase change 190
 Lagrange multiplier 464, 503
 latent, see latent entropy
 loss of 119, 382, 409, 442
 materials with constant c 151
 maximum entropy postulate 241–244
 mixtures 290
 moist air 617
 nonequilibrium 558
 paramagnetism 235
 production, see entropy production
 properties 124
 radiation, see radiation
 relation with temperature and energy
 132–135
 reservoir 118, 427
 solids 152
 sources 337, 515, 538–539
 specific 148
 storage 118, 124, 158, 161, 167, 445
 ideal gas 217
 Peltier element 170
 see balance of entropy
 time-dependent condution 539
 thermal charge 113
 transfer, see entropy transfer
 transport and production 9
 transported, see entropy, exchanged
 units 115
entropy capacitance 119, 148–151
 at constant magnetization 235
 at constant pressure 205
 at constant volume 202
 black body radiation 231
 ideal gas 210
 ratio of entropy capacitances 209
 table of 151
 water 152
entropy current 125
 Carnot engine, ideal 141
 conduction 340–344
 continuity at ideal wall 181
 convective 387
 density 343, 485, 489, 536, 677
 flow across surfaces 333
 Fourier's law 340–344, 541
 thermoelectric device 171
entropy production
 chemical reactions 281–282, 313, 472
 combustion 424
 conduction 344, 542–543
diffusion 126, 129, 291
dissipation 134, 432–437
engine, maximum power 433–434
entropy produced, as integral of production rate 126
extended theory of conduction 558
flow heater 405, 444
flow systems 403–411
free expansion of gas 242
from constitutive theory 430
heat exchangers 593–594, 595
heat transfer 138, 160–173, 331–337
irreversibility 124
minimal in equilibrium 503
minimization 427–453
atmosphere and winds 446–453
endoreversible engine 432
flow heater with loss 444
for heating purposes 428
heat storage system 445
solar air heater 439
solar thermal engine 430, 437
mixing 291, 405
Navier-Stokes-Fourier fluids 504
processes 126
radiation 364–366
scattering 662
solar collectors 580
thermoelectric device 171, 562
vapor power plant 640, 646–648
entropy transfer 331–337
chemical reactions 313
conductance 156
composite interfaces 162
conduction 332–333, 541–552
convection 333–334
entropy transported, see entropy, exchanged
in heating and cooling 156–163
overall transfer 156
radiation 335–337
thermal resistor 158
through radiation field 509–513
entropy transfer coefficient 157
convective 352
equation of state
black body radiation 231
gas with radiation 233
ideal gas 203–204
paramagnetic substance 234
thermal 203
equilibration 17
chemical potential 267
electric potentials 19
pressures 18
temperatures 100
uniform bodies in thermal contact 348
thermoelectric generator 106
transport of toluene 250
vaporization of water 104
water rocket train 78
wet bulb thermometer 256
extended irreversible thermodynamics 557
extensive quantities 27, 70
amount of substance 27
charge 27
entropy 117
heat 109
magnetic 70
momentum 89
see fluidlike quantities
extinction, see radiation

F
Faraday’s constant 261
field equation for density of locusts 480
field equation for temperature 543, 550
field equation, general 498
fields, interaction with bodies 76, 85–87, 336
finite-time thermodynamics 435
first law efficiency 136
First Law of thermodynamics 140
flow heater 403–405
entropy production 405
steady-state balances 403
flow systems
analysis 392–397, 403–411
chemical potential 394, 397
energy currents 393, 396
entropy production 403–411
excluding mechanical effects 392
Gibbs fundamental relation 394, 395, 396, 397
ideal 392–397
laws of balance 393, 395
mechanical effects 395–397
open systems 79, 383
flow, see current
flow, see flow systems
flow, see transport processes
fluid flow
adiabatic 416–422
Bernoulli’s law 397
boundary layer flow 567
combustion 420–422
mixing length approximation 598
Newton’s law for viscous fluids 84
similarity parameters, see dimensionless groups
thermal energy equation 505
throttling process 418
turbulence 575
fluidlike quantities 9, 10, 17, 26
see also extensive quantities
transport modes 91
fluids
compression 90
ideal, see ideal fluid 198
incompressible 400, 635
chemical potential 287
energy equation 505
Navier-Stokes equations 570
Navier-Stokes-Fourier 459
constitutive laws 498, 499
GFF 505
laws of balance 497
Newtonian 84
properties 400–402
property data 632–638
saturated 632–633
uniform viscous 457–465
with phase transition 466–471
flux 27
density 27, 484
electric and magnetic 27
synonym for current 27
flywheel
electric breaking 68
energy storage 68
process diagram 69
force
body force 86
momentum current 81
surface force 81, 487
synonym for power 4–8
force dynamic gestalt 4
and analogy 8
Fourier’s law 340–344, 459, 499, 541, 555
for energy current 343
freezing point
effect of pressure 274
effect of salt 298
equility of chemical potentials 256
fuel
heating values 281
oxydizer 421
theoretical amount of air 422
fuel cells 278, 428
G
gas constant 203
Gauss’s theorem, see divergence theorem
Gay-Lussac, law of 123, 203
GFF (Gibbs Fundamental Form) see Gibbs fundamental relation
Gibbs fundamental relation
and chemical potential 469
black body radiation 231
extended theory of conduction 558
flow systems 394, 395, 396, 397
for specific or molar quantities 394
ideal fluids 221
moving body 89
Navier-Stokes-Fourier fluids 505
paramagnetism 236
similarity in different cases 555
simple material 147
uniform reactive fluid 472
uniform viscous fluid 465
Gibbs' paradox 292
gradient
chemical potential 302
temperature 343, 498, 541
velocity 498
gravitation
gravitational potential 38
source of momentum 85
gravito-chemical potential 284
gray surface, see radiation
greenhouse effect 448–450
Grüneisen ratio 474

H
Hagen-Poiseuille relation 33, 84
heat 109–117
and entropy 111
and hotness 109–110
balance of 115
dynamical models 10
extensive thermal quantity 112
falling from higher to lower levels 106
fluidlike quantity 112
generation 107
non-conservation 113
not equal to energy 110
not equal to temperature 101
power of 115
production 113
storage 112, 189, 378, 445, 584, 599
thermal charge 113
heat content
heat as extensive quantity 109
heat as fluidlike quantity 115
see entropy, storage
heat engines
and heat exchangers 168
and heat transfer 167–174
and waterfalls 7
atmosphere 450
Carnot cycle 138, 206, 224, 450
Carnot engines 138, 168, 206
Curzon-Ahlborn 169, 432–435
dissipative 138
endoreversible 168, 433–435
ideal Carnot engine 432
maximum power 432–435
optimization 168
Otto engine 223
process diagrams 135
solar thermal 437–439
Stirling engine 223
vapor power 638–640
heat exchangers 588–594
and engines 168
balance of energy 591
balance of entropy 593
balanced 590
capacitance flow rate 590
counter-flow 588, 592
effectiveness 590–593
entropy production 593
mean temperature difference 589
number of transfer units 590
parallel-flow 589
principle of operation 588
product of surface area and transfer coefficient 589
heat pumps
Carnot cycle 641
dissipative 145
Peltier cooler 104, 170
process diagrams 135
vapor cycles 640
heat transfer
and thermodynamics 3, 506
at solid-fluid boundary 351–354
entropy production, see entropy production, heat transfer
in heat engines 432
overall transfer 156
see also entropy transfer
see conduction
see convection
see radiation
heat transfer coefficient
for laminar flow over flat plate 575
for loss from solar collectors 370
introduced 157, 352–353
local 352
overall 354
radiative 371, 377
heating
absorption and emission of radiation 362–363
at constant temperature 128, 200–202
at constant volume 127, 202–203
energy transfer in 133
entropy transfer 156–163
ideal fluid 203
ideal gas 200–205
INDEX

ideal gas, energy transfer 222
ideal gas, P and T as independent variables 204
of simple fluids 127
room at constant pressure 426
uniform, model of 146
viscous fluids 465
with a heat pump 153
heating values of fuels 281
Henry’s law 300
Hertzsprung-Russell diagram, see stars
hotness
 absolute zero 109
 and heat 109–110
 and temperature 108
 concept 108
humidification of air 629
hydraulic circuit, pressure differences 31
hydraulic power plants, data 56
hydraulics
 capacitance 34
 current of volume 28, 29
 current of water 17
 fluxes of volume 29
 induction 41
 LCR circuits 43
 pressure 28
 pressure difference 30
 rate of change of volume flux 42
 RC models 38
 volume 27
hydrostatic pressure 37

I
ice, formation on surface of a lake 356
ideal fluid
 balance of energy 200
 balance of entropy 199
 balance of volume 200
 energy transfer 200
 entropy capacitance 202, 205, 210, 465
 Gibbs fundamental relation (GFF) 221
 heating 200–203
 latent entropy 201, 205, 207, 232, 465
 laws of balance 199
ideal gas
 adiabatic process 207–210
 chemical potential 287
 constitutive laws 206–211
 density 204
 determination of thermal potential 464
 energy 220–222
 enthalpy 219, 220–222
 entropy capacitances 210
 entropy content 217
 free expansion 242
 gas constant 203, 288
 heating 200–205
 isentropic flow 417
 isochoric heating 202
 latent entropy 221
 mixtures 288–292
 partial pressure 289
 properties 401
 reactions, equilibrium concentrations 317
 relations between latent entropy and entropy capacitance 205
 thermal equation of state 203–204
 ideal walls 180–182, 459, 462, 503
 continuity of entropy current 181
 continuity of temperature 181
incompressible, see fluids
inductance
 air, per length 217
 blood in aorta 46
 electrical 43, 554
 hydraulic 43
 mechanical 93
 thermal 556
induction
 electric 43
 hydraulic 42
 power 58
 thermal 94, 556
 waves 48, 94, 553
inductive pressure difference 42
inductive voltage 47
inertia
 fluid 42, 45
 in economic model 50
 inductive effects 42
 mass 75, 89
 thermal 556
integral transformation
 divergence theorem 486
intensity 7
 chemical 249, 271
 electrical 19
 of heat 182
 quality 4
 see also intensive quantities
intensity, see radiation
intensive quantities 17, 26
 and extensive quantities 27
 electric 19
 electric potential 27, 31
 pressure 27
 see also potential
 thermal 109
 velocity 75, 88
irreversibility 107, 114
 and time 225
 entropy production 124
 generation of heat 107
 see entropy production
isentropic
 compression or expansion 639
 flow 417
isochoric heating, ideal fluid 202
isothermal process 128
 compression, energy exchanged 205
 heating, ideal fluid 200
 heating, water (0°C to 4°C) 201
isotopes, chemical potential 271
J
 junction rule (Kirchhoff’s First Law) 30
K
 Kelvin scale, see temperature
 kinetics, see chemical reactions
 Kirchhoff’s law, see radiation
 Kirchhoff’s Second Law
 electric 31
 hydraulic 31
L
 Lagrange multipliers 461
 for entropy 464, 503
 Navier-Stokes-Fourier fluids 500, 502
 thermodynamics with 460
 uniform fluids with phase change 467
 uniform viscous fluids 462
 laminar flow 33
latent entropy 129, 201
 black body radiation 231
 ideal fluids 201
 ideal gas 202, 207
 phase change 189–192, 604
 sign of 201
 water (0°C to 4°C) 201
 with respect to magnetization 235
 with respect to pressure 205
 with respect to volume 201
latent heat 201
 storage 189, 193–196
latent heat, see latent entropy
laws of balance 9, 20
 accounting 29
 continuous form 478
 continuous processes 488–492
 differential form 479
 flow systems 393, 395
 instantaneous form 29
 integrated form 29, 488
 local form 479, 488
 open systems 390
 laws of balance, also see balance of...
 LCR circuits 43
 LCR models 43
 level diagram
 electric potential 31
 pressure 30
 temperature 157
 level quantity 28
 and energy transfer 61
 angular speed 67
 difference and conductive transport 92
 difference and power 55
 difference and releasing energy 52
 electric 26
 gravitational potential 57
 hydraulic 26
 mechanical 75
 see also potential
 speed 75
 thermal 100
 level, see level quantity
 liquids, compressed 605
 liquids, subcooled 633–635
 local thermodynamic equilibrium 505
locusts
 balance of 478
 births and deaths 477
 conductive transports 477
 constitutive laws 479
 densities of process quantities 476
 migration 475–481
 population dynamics 475
 radiation and convection 480
log mean temperature difference, see heat
 exchangers
 loop rule 31
 and power 60
 Kirchhoff’s Second Law 31
loss of power 139, 145, 168
 entropy production 139, 144, 427, 432
 in thermal conduction 160
luminosity, see stars
M
 magnetic current 69
 magnetic tension 69
 magnetism and heat 234–238
 magnetocaloric coupling 235
mass 27
 as momentum capacitance 75
 equivalence to energy 89
 inertial 75
mass fraction 263
mass-volume fraction 263
material derivative 334, 492, 569
mean free path, see radiation
melting point
 ice, calculated 274
 ice, effect of salt 298
 see phase change
mixing
 entropy production 291, 405
 fresh and salt water 385
 hot and cold water 408
 non-reacting gases 418–420
mixing length approximation 598
mixtures
 entropy production 291
 moist air 616–617, 637
 adiabatic saturation 619
 dew point 617–618
 humidity ratio 616
 relative humidity 616
 wet bulb temperature 618–619
 partial pressure 289
 quality 635
 see ideal gas
 TS diagram for superheated water vapor 637
 two phase fluids 615–619
models, see system dynamics model(s)
moisture, see mixtures, moist air
molality 263
molar (or mole) fraction 263, 288
molar concentration 263
molar energy 290
molar entropy 263, 290
molar mass 27
 air 295
 defined 250, 260
 equation of state of ideal gas 204
 matter inside stars 233
molar quantities 262
molar volume 263
molarity 263
molinity 263
moment of inertia 67
momentum
 capacitive relation 75
 density 482
 diffusivity 573
 sources 85
momentum current 75, 81
 convective 79, 386
 force 81
momentum current tensor 487
momentum transport
 comparison with charge 84
 conductive 33, 82–85, 486
 convective 79, 87, 386, 486
 current density 81
flow pattern 82
friction 77
gravitational 77
light 90
radiative 85
stress 82–85
through magnetic field 76
wave equation 93

N
Navier-Stokes equations, see fluids
Nernst potential 301
Newton's law of motion
 convective momentum currents 88
 see balance of momentum
NSF fluid, see fluids, Navier-Stokes-Fourier
NTU (number of transfer units), see heat exchangers
nuclear reactions 270
Nusselt number 574

O
Ohm's law 84
ohmic transport 33, 43, 552, 553
opacity, see radiation
open systems, see flow systems
optimization
 and minimization of entropy production 430
 atmosphere and winds 450
 Curzon-Ahlborn engine 432
 heat storage 445
 solar air heater 439
 solar hot water heater 430
 solar thermal engine 437
oscillations 41–46
 electromagnetic 43
 hydraulic 43
 LCR circuit 43
osmosis 292
 blood cells 253, 308
 dried lentils 305
 potato cores 252
 water pressure 306
osmotic pressure 292

P
paramegnetic substance 234
partial pressure, see pressure, partial
Peltier coefficient, see thermoelectricity
Peltier device
 cooler (heat pump) 104
 dynamical model 170–172
 generator 106
permeability, red blood cells 308
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH value 324</td>
</tr>
<tr>
<td>phase change 189–196, 603–607</td>
</tr>
<tr>
<td>amounts of substance 190</td>
</tr>
<tr>
<td>as chemical reaction 607</td>
</tr>
<tr>
<td>balance of energy 604</td>
</tr>
<tr>
<td>balance of entropy 604</td>
</tr>
<tr>
<td>change of enthalpy 605</td>
</tr>
<tr>
<td>chemical equilibrium 607–613</td>
</tr>
<tr>
<td>chemical potential 272, 607</td>
</tr>
<tr>
<td>Clapeyron’s law 471, 608, 612–613</td>
</tr>
<tr>
<td>cooling liquid wax 195</td>
</tr>
<tr>
<td>critical point 606</td>
</tr>
<tr>
<td>energy and change of volume 193</td>
</tr>
<tr>
<td>enthalpy 193</td>
</tr>
<tr>
<td>entropy 190</td>
</tr>
<tr>
<td>heat is needed 104</td>
</tr>
<tr>
<td>latent enthalpy of fusion 191</td>
</tr>
<tr>
<td>latent enthalpy of vaporization 192</td>
</tr>
<tr>
<td>latent entropy 191, 604</td>
</tr>
<tr>
<td>latent entropy of fusion 191</td>
</tr>
<tr>
<td>latent entropy of vaporization 192</td>
</tr>
<tr>
<td>melting point</td>
</tr>
<tr>
<td>pressure dependence 608</td>
</tr>
<tr>
<td>moist air 616</td>
</tr>
<tr>
<td>pressure-temperature relation 606–607</td>
</tr>
<tr>
<td>refrigerant R123 634</td>
</tr>
<tr>
<td>saturation line 605, 606, 632–634, 636</td>
</tr>
<tr>
<td>sublimation 607</td>
</tr>
<tr>
<td>temperature dependence of vapor pressure 611</td>
</tr>
<tr>
<td>TS diagram 129, 190</td>
</tr>
<tr>
<td>TS phase diagram 606</td>
</tr>
<tr>
<td>vapor pressure 609–612</td>
</tr>
<tr>
<td>vaporization at different pressures 605</td>
</tr>
<tr>
<td>phase change material (PCM) 194</td>
</tr>
<tr>
<td>phase diagrams 607</td>
</tr>
<tr>
<td>photon gas 230</td>
</tr>
<tr>
<td>Planck’s formula, see radiation</td>
</tr>
<tr>
<td>Planck’s constant 528</td>
</tr>
<tr>
<td>planet</td>
</tr>
<tr>
<td>greenhouse and wind engine 452</td>
</tr>
<tr>
<td>greenhouse effect 448</td>
</tr>
<tr>
<td>temperature, without atmosphere 447</td>
</tr>
<tr>
<td>Poiseuille relation 33, 84</td>
</tr>
<tr>
<td>Poisson and Laplace, law of 209</td>
</tr>
<tr>
<td>polarization 529–530</td>
</tr>
<tr>
<td>degree of polarization 530</td>
</tr>
<tr>
<td>energy intensity 530</td>
</tr>
<tr>
<td>entropy intensity 530</td>
</tr>
<tr>
<td>plane polarized 529</td>
</tr>
<tr>
<td>principal values 529</td>
</tr>
<tr>
<td>solar radiation 661</td>
</tr>
<tr>
<td>polytropic exponent 216</td>
</tr>
<tr>
<td>polytropic process 215–216</td>
</tr>
<tr>
<td>compression of ideal gas 219</td>
</tr>
<tr>
<td>population dynamics 475</td>
</tr>
<tr>
<td>potential</td>
</tr>
<tr>
<td>and energy current 60</td>
</tr>
<tr>
<td>and energy transfer 53</td>
</tr>
<tr>
<td>and fluidlike quantity 52</td>
</tr>
<tr>
<td>and stored quantity 34</td>
</tr>
<tr>
<td>and transport mode 91</td>
</tr>
<tr>
<td>chemical, see chemical potential</td>
</tr>
<tr>
<td>combined 282–284</td>
</tr>
<tr>
<td>electric 27</td>
</tr>
<tr>
<td>electrochemical 282</td>
</tr>
<tr>
<td>gradient of 62</td>
</tr>
<tr>
<td>gravitational 38, 57</td>
</tr>
<tr>
<td>gravito-chemical 284</td>
</tr>
<tr>
<td>momentum transfer 84</td>
</tr>
<tr>
<td>synonym for level quantity 28</td>
</tr>
<tr>
<td>thermal 109, 134, 139, 465</td>
</tr>
<tr>
<td>thermo-electric 563</td>
</tr>
<tr>
<td>potential difference</td>
</tr>
<tr>
<td>across conductor 33</td>
</tr>
<tr>
<td>analogies 65</td>
</tr>
<tr>
<td>as driving force 21, 26</td>
</tr>
<tr>
<td>caused by process 30</td>
</tr>
<tr>
<td>causing process 30</td>
</tr>
<tr>
<td>electric 19</td>
</tr>
<tr>
<td>electric, and voltage 31</td>
</tr>
<tr>
<td>inductive 43, 58</td>
</tr>
<tr>
<td>loop rule 24</td>
</tr>
<tr>
<td>power 55, 59</td>
</tr>
<tr>
<td>pressure difference 26</td>
</tr>
<tr>
<td>pumping through 26</td>
</tr>
<tr>
<td>releasing energy 52, 60</td>
</tr>
<tr>
<td>thermal 135</td>
</tr>
<tr>
<td>voltage 19, 26</td>
</tr>
<tr>
<td>voluntary and involuntary processes 26</td>
</tr>
<tr>
<td>potential energy 55</td>
</tr>
<tr>
<td>power 59</td>
</tr>
<tr>
<td>available power, see availability</td>
</tr>
<tr>
<td>balance of, in circuits 60</td>
</tr>
<tr>
<td>chemical 275</td>
</tr>
<tr>
<td>electric process 55</td>
</tr>
<tr>
<td>exergetic power 139</td>
</tr>
<tr>
<td>gravitational process 56</td>
</tr>
<tr>
<td>hydraulic process 58</td>
</tr>
<tr>
<td>inductive process 58</td>
</tr>
<tr>
<td>loss 139, 168</td>
</tr>
<tr>
<td>loss of available power 145</td>
</tr>
<tr>
<td>rate at which energy is released 55</td>
</tr>
<tr>
<td>rotational process 69</td>
</tr>
<tr>
<td>synonym for force 5</td>
</tr>
<tr>
<td>thermal 133</td>
</tr>
<tr>
<td>translational motion 88</td>
</tr>
<tr>
<td>waterfall 57</td>
</tr>
<tr>
<td>power of heat 4, 7, 115, 132, 428, 439</td>
</tr>
<tr>
<td>Prandtl number 574</td>
</tr>
<tr>
<td>pressure 17</td>
</tr>
<tr>
<td>ambient 23</td>
</tr>
</tbody>
</table>
equilibration 18
in mmHg 22
osmotic 292
partial 289–290
air and vapor 616, 620, 623
compartment of a mixture 289
dilute solution 292
vapor 609–612
pressure and storage 34
pressure coefficient of chemical potential,
see chemical potential
pressure difference 18, 30–31
capacitive 34
driving force 18
hydraulic circuit 31
inductive 42
resistive 32
pressure vessel
filling with hot air 406
pressure–volume characteristic 34
primitive quantities 9, 27
process
chains of processes 53
examples of coupling 52
voluntary and involuntary 26
process diagrams 26
adding energy to system 61
battery 254
bodies in thermal contact 162
chains of processes 53
chemical processes 275
coupling of processes 27
electric breaking of flywheel 69
electric heater 105
electric water pump 51
electrochemical processes 278
electrolytic cell 278
entropy production in heat transfer 161
fluid undergoing heating and compression 199
heat engine 105, 135
heat engine and heat exchangers 168
heat engine, dissipative 139
heat pumps 135
hydroelectric power plant 57
Pelletier cooler 104
Pelletier heat pump 174
pumps 36, 54
solar collector 577
thermolectric generator 173
viscous flow 52
waterfall image 26
production rate
amount of substance 265
density 478, 483, 537
entropy 118, 126

entropy, see also entropy production
locusts 477
volume 62, 200
property data 632–638
pulmonary circuit 22
pump characteristic 36, 250
pumping
energy required 72
of charge 36
of entropy 141
of fluidlike quantity 52
of heat 104
through potential difference 26
uphill, and energy used 52
pumps 36
as power supply 24
characteristic diagram 36
pressure difference 30, 36

Q
quality, see mixtures
quantity
as measure of amount or size 4
fluidlike 9
of electricity 18
of fluid 18
of heat 2
of motion 73

R
radiation
absorption 362–363, 514–516
absorption coefficient 516
attenuation 656
balance of energy 231, 515, 524, 664
balance of entropy 231, 335–337, 515, 669
black body radiation 229–233, 360–362, 520
energy 230
density 230, 232
entropy 232
entropy capacitance 231
Gibbs fundamental relation 525
intensity 511
Kirchhoff's law 522
latent entropy 231
pressure 230
spectral distribution 520, 527–528
thermodynamics of 525
configuration factor, see radiation, shape factor
diffusion of radiation 519
distribution functions 510
Doppler effect 523
INDEX

emission 362–363, 514–516
 spontaneous 518
 stimulated 518
emission coefficient 516
emissivity 367
entropy 525–527
 density 525
 intensity of solar radiation 654
entropy production 364–366
entropy transfer 335–337
extended parallel plates 369
extinction 531, 656
extinction coefficient 674
flux density 511
from opaque surfaces 360–369
from the surface of stars 653
gray surfaces 366–368, 520
heat transfer coefficient 377
hemispherical emissive power 361
hemispherical flux density 512–513
inside stars 233
intensity 510
 black body radiation 511
interaction of bodies and fields 336–337
interaction with matter 514
Kirchhoff's law 366, 517–519, 522
mean free path 519
monochromatic radiation 520, 527
networks 530
opacity 531
Planck's formula 527
polarization, see polarization
radiosity 369
reflectivity 366
selective absorbers and emitters 371–372, 664–666
shape factor 513–514
Snell's law 675
solar, see solar radiation
source rate 516
sources 337, 515–516
spectral
density 521
 distribution 520–529
distribution functions 520
entropy density 526, 528
temperature 660
spectral intensity 520
 transformation from frequency to wavelength 521
Stefan-Boltzmann constant 361, 512
temperature 230, 231, 525–527, 528
thermal 229–230
view factor, see radiation, shape factor
 wavelength 521
Wien's displacement law 520, 523–525
radiation shape factor, see radiation
radiative transfer 360–363, 509–514, 519–520
radioactive decay 258, 270, 316
radiosity, see radiation
Rankine cycle, see cycles
rate of change 28
 charge 30
 entropy 119, 125
 in law of balance 29
 mass 86
 momentum 76, 88
 of current 44
 of momentum flux 93
 volume 28
 volume flux 42
RC models 38
reaction rate, see chemical reactions
reflectivity, see radiation
refrigerant R123 634
refrigeration 631–643
 absorption cycle 642
carnot cycle 641
 see cycles
regenerator, Stirling engine 224
resistance 20
electric 33
 hydraulic 33
 thermal 160, 347, 350, 356, 556
 resistive fluid flow 32
resistive pressure difference 32
resistive voltage 24, 32
resistor 19, 32, 69, 101
 thermal 158, 160, 162, 433
Reynolds number 574
rotation 65–69
 angular momentum 66
 angular speed 67
 moment of inertia 67
S
saturated liquid 604
saturated vapor 604, 606
scattering
 entropy production 662
 Mie scattering 658
 Rayleigh scattering 658
 see also solar radiation
sea water, chemistry 323–326
Second Law 117, 137, 140
second law efficiency 136
heat pump 137
ideal and real engine 136
second sound 94, 557
Seebeck coefficient, see thermoelectricity
INDEX

selective absorbers, see radiation
similarity groups, see dimensionless groups
sink, see source
sky temperature 371
Snell’s law 675
solar collectors
 air heater 439–444
 balance of energy 576–578
 balance of entropy 442, 443, 580
duct geometries 578
dynamical model 580
efficiency 581
efficiency factor 578
entropy production 444, 576
flat plate 575–581
heat loss coefficient 370–371
heat removal factor 579
temperature distribution 578–579
thermosyphon collector 583
top loss coefficient 577
transmission-absorption 576, 672–675
solar constant, see solar radiation
solar hot water system 409–411
solar power plant, parabolic trough 415
solar radiation 651–675
 absorption 655–657
 air mass 655
 at surface of the Sun 653
 attenuation coefficient 656
 cloudless atmosphere 655
 concentration 668–671
diffuse radiation 659
entropy 659
entropy intensity 654
extraterrestrial spectrum 654
global radiation 659
maximum power of heat engine 437–439
monochromatic temperature 654
 origin 651–653
 polarization 661
 scattering 658
 solar constant 375, 655, 668
temperature 659–661
temperature of diffuse light 661
temperature of direct beam 661
transmittance through atmosphere 656
transmittance-absorptance of collector
 diffuse radiation 675
direct radiation 673
solid angle 437, 510, 513
 of the Sun 660
solubility
 effect of temperature 326
 Henry’s law 300
solutions
 chemical potential 292–293
 concentration, dilute 292
 dilute 292–293
 Henry’s law 300
 mole fractions 293
 partial pressure 292
 reactions, equilibrium concentrations 317
 solute 292
 solvent 292
sound
 propagation in air 214
 speed of sound in ideal gas 217
source rate 480
 energy 362
 entropy 337, 362, 363, 373
 momentum 85, 88
source rate density 483, 515
sources 483
 energy 494, 544
 entropy 544
 field equation with sources 545
 locusts 480
 momentum 85
specific entropy, introduced 148
specific heat 149
specific heat at constant pressure, see tempera-
ture coefficient of enthalpy
specific heat constant volume, see temperature
 coefficient of energy
specific momentum 386
specific source rate 483
 momentum 495
spectral density of radiation 521
spectral intensity of radiation 520
speed of sound 94, 217
spin, see angular momentum
stars
 composition 652
 convection 652
 evolution 653
 Hertzsprung-Russell diagram 653
 hydrogen burning 652
 luminosity 653
 main sequence 651–653
 mass 652
molar mass 233
stellar mass 233
radiation in the interior 233
structure 652–653
steam engine, see heat engine
steam power plant 638–639
Stefan and Boltzmann law 232
stiffness, of container walls 34
Stirling engine 223–224
stoichiometric coefficient 317, 421
INDEX

storage 34
 charge 27
 energy 62–65
 entropy 118, 124, 158, 161, 167, 170, 445, 539
 heat 112
 hot water tank 414
 latent heat 189, 193–196
 seasonal ground heat storage 584–588
 volume 27
storage and pressure 23, 34
stress 82
 pure tension or compression 80
 shear stress 83
stress power 496
stress tensor, see momentum current tensor
subcooled liquid 603
sublimation 607
substances
 amount of substance 259–261
 and electric charge 261, 277, 282, 283
 basic building blocks 259–260
 current 302, 384
 transport 301–307
 different environments 303–305
 dynamical models 301
 equilibrium constant 304
 laws of balance 301
 osmosis 305–307
 transport across membranes 301
 transport as chemical transformation 267–270
substantial derivative, see material derivative
Sun
 central temperature 531
 composition 652
 interior 652
 mass 652
 opacity 531
 photosphere 654
 radius 652
 spectral type 651
 surface temperature 375, 653
superconductivity
 electrical 85
 mechanical 85
 thermal 12
superheated vapor 605
superheating in power cycle 639
supply, see sources
surface force 81, 487
surface integral 484
system
 closed 334, 381, 398, 471
 control volume 334
material derivative 492
 open 334, 381
 uniform 3
system dynamics model
 blood flow, inductive 45
 bodies in thermal contact 162
 citric acid and baking soda 314–316
 CO2 in atmosphere and oceans 322, 325
 communicating capacitors 21
 communicating tanks 20
 conduction in copper bar 346
 cooling hot water in cold thick-walled container 359
 cooling liquid wax 195
 cooling of water 118
 diffusion 40, 303
 dynamics of incandescent bulb 373
 electric breaking of flywheel 68
 electric windkessel 24
 entropy and temperature 151
 evaporation of cold water 627
 gliders with magnets 74
 heating of cold water in can 158
 mixing of hot and cold water 408
 mixing salt and water, flow system 385
 mutarotation of glucose 311
 oscillation, hydraulic 44
 Peltier device 170–172
 propagation of sound in air 214
 radioactive decay 259
 RC chain 40
 rotational collision of flywheels 66
 Rüchardt’s experiment 212
 soaking dried lentils 307
 solar hot water system 410
 steel ball falling in oil 77
 toluene in water and air 257
 water rocket train 78
 wave propagation 47
 windkessel 24, 45
system dynamics models
 LCR 43–48
 RC 38–41
structure 20–21
thermal capacitors and resistors 161
transport of substances 301
systolic pressure 22
T
 telegrapher’s equation 94
temperature
 absolute scale 124
 absorbers on Earth 667
 as thermal level 100
 as thermal potential 134

APPENDIX 731
Celsius scale 120
coefficient of pressure 123
continuity at ideal wall 181
field equation 543, 550
final temperature reached in thermal contact 241
ideal gas temperature 122
Kelvin scale 124
measure of hotness 108
monochromatic, of solar radiation 654
of radiation 528
of sky 371
phase change 104
radiation 525–527
reaching low temperatures 237
scales 108
spectral, of radiation 660
thermometry 120–124
universe 248
wet bulb 618, 621
temperature coefficient
of chemical potential, see chemical potential
of expansion 121, 122
of pressure 123
of resistance 122
temperature coefficient of energy 149, 211
magnetization 236
mixtures 294
solids 150
specific heat 149, 211
table of 151
values for gases 211
temperature coefficient of enthalpy 211
for air 226
mixtures 294
relation to temperature coefficient of energy 219
specific heat 211
temperature difference
thermal driving force 102, 109
temperature gradient 541
adiabatic 218, 601
in atmosphere 218
in conduction 343
temperature, not equal to heat 101
temperature-entropy diagram, see TS diagram
theory of heat
caloric 2
mechanical 2
thermal capacitors 161
thermal charge 113
thermal conductivity 499
thermal contact 160
thermal driving force, see driving force
thermal efficiency 136, 224, 228, 416, 428, 581
thermal expansion 121
thermal inertia 556
thermal interface 157
thermal potential 139, 465
thermal power 116, 133
in conduction 160
in dissipation 135
pumping entropy 137
thermal resistor 158, 161, 433
thermal transfer layer 157
convective-radiative 158
thermocouple 175
thermodynamics
and heat transfer 3, 506
dynamical models 11
extended irreversible 3, 557–558
finite-time 435
heat-conducting fluids 497–505
rational 3
speed of processes 6
theory of statics of heat 238–241
viscous fluids 457–465
thermoelectric device
entropy current 171
entropy production 171
generator 106, 169
heat pump 104, 169
Peltier cooler 175
Peltier device 104, 169–176
process diagram 173, 174
Second Law efficiency 174
voltage 171
thermoelectric potential 563
thermoelectric power 106, 562
thermoelectric processes 169–171
energy principle 172
thermoelectricity
balance of energy 561
balance of entropy and charge 560
constitutive laws 171, 561
coupled transport 170
entropy production 562
equality of Peltier and Seebeck coefficients 173
Peltier coefficient 170, 560
Sebeck coefficients, table of 175
Seebeck coefficient 169, 559
thermoelectric voltage 169
thermometer
dynamical response 163
gas thermometer 123
resistive 122
wet bulb 256
thermostatics 238–241
maximum entropy postulate 241
Third Law of thermodynamics 150
throttling process 418
temperature reduction 422
tides 86
time and irreversibility 225, 457, 465
time constant 39, 40
capacitive 40
inductive 43
thermal, capacitive 160
transmittance, see solar radiation
transport processes
conductive 92
convective 87, 92, 384–390
diffusive transport 573
energy 92
fields and bodies 86
heat transfer 111
radiation 92
radiative, 85, 360, 480, 493, 509–514
thermal, see entropy transfer
thermal, speed of 555
TS diagram
adiabatic process 127, 208
entropy-temperature characteristic 146
heating at constant volume 128
introduced 127
isothermal process 128
J.W.Gibbs 117
liquid-vapor mixture of water 636
Otto cycle 225
paraffin 197
phase change 129
subcooled water 634
superheated water vapor 637
vaporization of water 605
tungsten
electric resistivity 122
emissivity 367
turbulence, see fluid flow
turbulent flow 33
TV diagram
adiabatic process of ideal gas 208
Carnot cycle 206
heating at constant temperature 201
in history of thermodynamics 201
isochoric heating 202
Otto cycle 225
Stirling cycle 224
strange Carnot cycles 210
uniform dynamical models 10
uniform heating 146
uniform processes 11, 100, 160, 189, 199
dynamical models 158, 161, 321
dynamics 12
equilibrium 12
irreversibility 221, 464
nonuniform conditions 346
radiation 229
reacting systems 310
reversible 238
temperature 100, 180
thermal superconductors 12, 13
thermodynamics 457–473
uniform systems 3
V
vapor 604
saturated 604, 606
superheated 605, 636–637
vapor power processes 631–643
vapor pressure 609–612
velocity gradient tensor 569
viscosity 82
bulk viscosity 499
dynamic viscosity 572
kinematic viscosity 572
momentum conductivity 85
Newton’s law for viscous fluids 84
viscous pressure 458
voltage 19, 30–31
electric circuit 31
lead storage battery 285
volume 27
change of volume 28
exchanged 29
law of balance of volume 29
molar 402
partial molar volume 297
production rate 62, 200
W
walls, see ideal walls
warming factor 148
water
anomaly 121, 210
chemical potential 271
chemistry of sea water 323–326
compressed liquid 603
density 121
liquid-vapor mixture 604, 636
saturated liquid 604, 611
subcooled (TS diagram) 634
subcooled liquid 603
superheated vapor (TS diagram) 637
vapor pressure 610
vaporization 603–606
 TS diagram 605
vaporization at different pressures 605
waterfall
 archetype of physical process 55
 chemical process, image of 268
 waterfall diagram of heat engine 133
wave equation 93–94
 charge 553
 for heat conduction 556
wave guide 94
wave propagation 47
 in chains of LCR elements 46

speed 48
 speed of electric pulses 554
 speed of mechanical pulses 94
wet bulb thermometer 256, 619
Wien’s displacement law, see radiation
windkessel 23, 24, 45
 model of systemic circuit 23

Y
 Young’s modulus 182