Michal Kurzynski

THE THERMODYNAMIC MACHINERY OF LIFE

With 193 Figures and 8 Tables

Springer
1 Biophysics: An Experimental Tool of Biology
or the Physics of Animate Matter? 1

2 Statistical Description of Matter 7
 2.1 Molecular Structure of Matter 7
 2.2 The Principle of Mechanical Determinism 9
 2.3 Irreversibility of Macroscopic Processes 12
 2.4 Instability of Motion as the Origin of Irreversibility 16
 2.5 Statistical Ensembles.
 Mixing and the Trend Toward Equilibrium 18
 2.6 Probability and Entropy.
 The Mechanism of Entropy Increase 22
 2.7 The Law of Large Numbers.
 Physical Realizations of Statistical Samples 26
 2.8 The Relativity of Thermodynamic Equilibrium 32

3 Thermodynamic State 35
 3.1 Global and Structural Thermodynamic Variables 35
 3.2 The Clausius Entropy 39
 3.3 Temperature and Thermodynamic Forces.
 Equations of State 42
 3.4 Energy Transformations:
 Work, Heat and Dissipation 48
 3.5 Free Energy and Bound Energy 52
 3.6 Open Thermodynamic Systems:
 Steady State versus Dissipative Structures 57
 3.7 Rate of Nonequilibrium Thermodynamic Processes ... 62

4 Origins and Evolution of Life 65
 4.1 History in Physics 65
 4.2 Initiation 67
 4.3 Origins of the Prokaryotic Cell Machinery 70
XII Contents

4.4 The Photosynthetic Revolution 76
4.5 Origins and Structure of the Eukaryotic Cell.
 Further Stages of Evolution 80
4.6 The Main Metabolic Pathways. Enzymes 85

5 Molecular Biology of the Eukaryotic Cell 91
 5.1 The Eukaryotic Cell as a System of Compartments 91
 5.2 Membrane Channels and Pumps 94
 5.3 Substrate, Oxidative, and Photo Phosphorylation 100
 5.4 Cytoskeleton and Cell Motility: Microfilaments 111
 5.5 Cytoskeleton and Cell Motility: Microtubules 120
 5.6 Regulation of Enzyme Activity 123
 5.7 Receptors .. 127
 5.8 The Cell Cycle 137

6 Chemical Reactions ... 141
 6.1 Single Unimolecular Reactions.
 The Chemical Equation of State 141
 6.2 Transport Across Membranes 148
 6.3 Bimolecular Reactions 152
 6.4 Protolysis Reactions 155
 6.5 Redox Reactions 158
 6.6 Fuel Cells and Photocells.
 Biological Processes of Electron and Proton Transport .. 162
 6.7 Two Successive Reactions.
 The Steady State Approximation 166
 6.8 Phenomenological Theory of Reaction Rates 169

7 Enzymatic Catalysis .. 173
 7.1 Chemical Mechanisms of Enzymatic Catalysis 173
 7.2 Steady-State Kinetics of Enzymatic Reactions
 with One Intermediate 177
 7.3 Competitive and Noncompetitive Inhibition 183
 7.4 Two-Substrate Enzyme 186
 7.5 Allosteric Control of Enzymatic Activity 188
 7.6 Oscillations in Enzymatic Reactions 192

8 Biological Free Energy Transduction 197
 8.1 Isothermal Machines 197
 8.2 Chemochemical Machines.
 The Necessity of Enzyme Intermediacy 201
8.3 Universality of the Enzymatic Mechanism of Free Energy Transduction 204
8.4 Molecular Pumps and Motors 209
8.5 Flux–Force Dependence 212
8.6 Biological Signal Transduction 219

9 Lack of Partial Thermodynamic Equilibrium 225
 9.1 Two Classes of Experiments 225
 9.2 Intramolecular Dynamics of Biomolecules 230
 9.3 Enzyme in a Multitude of Conformational States 236
 9.4 Two Coupled Enzymatic Processes:
 Case of the Actomyosin Motor 240
 9.5 Flux–Force Dependence for the Actomyosin Motor 249
 9.6 Biological Molecular Machines
 as Biased Maxwell Demons 259

A Thermodynamic Supplement 263
 A.1 Thermodynamics of Ideal Gases 263
 A.2 Legendre Transformations 268
 A.3 Capacities and Susceptibilities.
 Thermodynamic Stability 273
 A.4 Canonical and Generalized Canonical Probability
 Distributions 276
 A.5 Statistical Interpretation of Thermodynamics 281

B Stochastic Processes 285
 B.1 From Liouville's Equation to the Diffusion Equation .. 285
 B.2 Markov Processes 289
 B.3 Stochastic Theory of Reaction Rates 296
 B.4 Reaction Rate and the First-Passage Time Problem 302
 B.5 One-Dimensional Diffusion in the Presence of a Sink ... 306
 B.6 Diffusion in a Parabolic Potential 310

C Structure of Biomolecules 315
 C.1 Elementary Building Blocks 315
 C.2 Generalized Ester Bonds 319
 C.3 Directionality of Chemical Bonds 323
 C.4 Hydrogen Bond. Amphiphilic Molecules
 in Water Environments 332
 C.5 Protein Structures 336
 C.6 Nucleic Acid Structures 343
XIV Contents

D Dynamics of Biomolecules .. 349
D.1 Vibrations Versus Conformational Transitions 349
D.2 Conformational Transitions
 Within the Protein Native State 353
D.3 Protein-Glass Model 359
D.4 Protein-Machine Model 367
D.5 Calculation of Mean First-Passage Time 370
D.6 Nonadiabatic Processes of Charge and Energy Transfer 375

References .. 389

Index .. 413