Contents

Symbols

xxiii

CHAPTER 1

Introduction

<table>
<thead>
<tr>
<th>1.1</th>
<th>What and How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Physical Origins and Rate Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conduction 3</td>
</tr>
<tr>
<td>6</td>
<td>Convection 6</td>
</tr>
<tr>
<td>9</td>
<td>Radiation 9</td>
</tr>
<tr>
<td>12</td>
<td>Relationship to Thermodynamics 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>The Conservation of Energy Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Conservation of Energy for a Control Volume 13</td>
</tr>
<tr>
<td>25</td>
<td>The Surface Energy Balance 25</td>
</tr>
<tr>
<td>28</td>
<td>Application of the Conservation Laws: Methodology 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Analysis of Heat Transfer Problems: Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Contents

5.10 Finite-Difference Methods 302
 5.10.1 Discretization of the Heat Equation: The Explicit Method 302
 5.10.2 Discretization of the Heat Equation: The Implicit Method 310

5.11 Summary 317
 References 319
 Problems 319

5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere W-8

5S.2 Analytical Solution of Multidimensional Effects W-13
 References W-18
 Problems W-18

CHAPTER 6

Introduction to Convection 347

6.1 The Convection Boundary Layers 348
 6.1.1 The Velocity Boundary Layer 348
 6.1.2 The Thermal Boundary Layer 349
 6.1.3 The Concentration Boundary Layer 350
 6.1.4 Significance of the Boundary Layers 352

6.2 Local and Average Convection Coefficients 352
 6.2.1 Heat Transfer 352
 6.2.2 Mass Transfer 353
 6.2.3 The Problem of Convection 355

6.3 Laminar and Turbulent Flow 359
 6.3.1 Laminar and Turbulent Velocity Boundary Layers 359
 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 361

6.4 The Boundary Layer Equations 364
 6.4.1 Boundary Layer Equations for Laminar Flow 365

6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 367
 6.5.1 Boundary Layer Similarity Parameters 368
 6.5.2 Functional Form of the Solutions 368

6.6 Physical Significance of the Dimensionless Parameters 374

6.7 Boundary Layer Analogies 377
 6.7.1 The Heat and Mass Transfer Analogy 377
 6.7.2 Evaporative Cooling 381
 6.7.3 The Reynolds Analogy 384

6.8 The Convection Coefficients 385

6.9 Summary 385
 References 386
 Problems 387

6S.1 Derivation of the Convection Transfer Equations W-21
 6S.1.1 Conservation of Mass W-21
 6S.1.2 Newton's Second Law of Motion W-22
 6S.1.3 Conservation of Energy W-26
 6S.1.4 Conservation of Species W-28

References W-33

Problems W-33
Contents

8.8 Microscale Internal Flow 524
8.8.1 Flow Conditions in Microscale Internal Flow 524
8.8.2 Thermal Considerations in Microscale Internal Flow 525
8.9 Convection Mass Transfer 528
8.10 Summary 531
References 533
Problems 534

CHAPTER 9
Free Convection 559

9.1 Physical Considerations 560
9.2 The Governing Equations 563
9.3 Similarity Considerations 564
9.4 Laminar Free Convection on a Vertical Surface 566
9.5 The Effects of Turbulence 568
9.6 Empirical Correlations: External Free Convection Flows 571
9.6.1 The Vertical Plate 571
9.6.2 Inclined and Horizontal Plates 574
9.6.3 The Long Horizontal Cylinder 579
9.6.4 Spheres 583
9.7 Free Convection within Parallel Plate Channels 584
9.7.1 Vertical Channels 585
9.7.2 Inclined Channels 587
9.8 Empirical Correlations: Enclosures 587
9.8.1 Rectangular Cavities 587
9.8.2 Concentric Cylinders 590
9.8.3 Concentric Spheres 591
9.9 Combined Free and Forced Convection 593
9.10 Convection Mass Transfer 594
9.11 Summary 595
References 596
Problems 597

CHAPTER 10
Boiling and Condensation 619

10.1 Dimensionless Parameters in Boiling and Condensation 620
10.2 Boiling Modes 621
10.3 Pool Boiling 622
10.3.1 The Boiling Curve 622
10.3.2 Modes of Pool Boiling 624
10.4 Pool Boiling Correlations 627
10.4.1 Nucleate Pool Boiling 627
10.4.2 Critical Heat Flux for Nucleate Pool Boiling 629
10.4.3 Minimum Heat Flux 629
10.4.4 Film Pool Boiling 630
10.4.5 Parametric Effects on Pool Boiling 631
Contents

10.5 Forced Convection Boiling
10.5.1 External Forced Convection Boiling 637
10.5.2 Two-Phase Flow 637
10.5.3 Two-Phase Flow in Microchannels 640
10.6 Condensation: Physical Mechanisms
10.7 Laminar Film Condensation on a Vertical Plate
10.8 Turbulent Film Condensation
10.9 Film Condensation on Radial Systems
10.10 Film Condensation in Horizontal Tubes
10.11 Dropwise Condensation
10.12 Summary
References
Problems

CHAPTER 11
Heat Exchangers

11.1 Heat Exchanger Types
11.2 The Overall Heat Transfer Coefficient
11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
11.3.1 The Parallel-Flow Heat Exchanger 676
11.3.2 The Counterflow Heat Exchanger 679
11.3.3 Special Operating Conditions 679
11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method
11.4.1 Definitions 686
11.4.2 Effectiveness–NTU Relations 688
11.5 Heat Exchanger Design and Performance Calculations:
Using the Effectiveness–NTU Method 694
11.6 Compact Heat Exchangers
11.7 Summary
References
Problems

11S.1 Log Mean Temperature Difference Method for Multipass
and Cross-Flow Heat Exchangers
References
Problems

CHAPTER 12
Radiation: Processes and Properties

12.1 Fundamental Concepts
12.2 Radiation Intensity
12.2.1 Mathematical Definitions 727
12.2.2 Radiation Intensity and Its Relation to Emission 728
12.2.3 Relation to Irradiation 733
12.2.4 Relation to Radiosity 735
12.3 Blackbody Radiation
12.3.1 The Planck Distribution 737
12.3.2 Wien’s Displacement Law 737
CHAPTER 13
Radiation Exchange Between Surfaces

13.1 The View Factor
- 13.1.1 The View Factor Integral
- 13.1.2 View Factor Relations
13.2 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
- 13.2.1 Net Radiation Exchange at a Surface
- 13.2.2 Radiation Exchange Between Surfaces
- 13.2.3 Blackbody Radiation Exchange
- 13.2.4 The Two-Surface Enclosure
- 13.2.5 Radiation Shields
- 13.2.6 The Reradiating Surface
13.3 Multimode Heat Transfer
13.4 Radiation Exchange with Participating Media
- 13.4.1 Volumetric Absorption
- 13.4.2 Gaseous Emission and Absorption
13.5 Summary
References
Problems

CHAPTER 14
Diffusion Mass Transfer

14.1 Physical Origins and Rate Equations
- 14.1.1 Physical Origins
- 14.1.2 Mixture Composition
- 14.1.3 Fick's Law of Diffusion
- 14.1.4 Mass Diffusivity
14.2 Mass Transfer in Nonstationary Media
- 14.2.1 Absolute and Diffusive Species Fluxes
- 14.2.2 Evaporation in a Column
14.3 The Stationary Medium Approximation
References
Problems