Di-Boson production at ATLAS

Mohamed Aharrouche
for the ATLAS collaboration

M. Aharrouche (Uni. Mainz)
Outline

• Introduction
 – Di-boson production at LHC
 – ATLAS detector
• W/Zγ Analysis
 – Event selection
 – Signal yield
 – Results
• WW Analysis
 – Event selection
 – Signal yield
 – Results
• Summary
Di-Boson Production

- Standard Model diagrams for di-boson production includes
 - t-channels: qqbar annihilation
 - s-channels: Triple Gauge Boson couplings
 * Due to non-abelian nature of SU(2)L x U(1)Y, SM predicts vector-boson self coupling
 * SM only allows WWγ and WWZ couplings in the s-channel
 - Neutral TGC forbidden in SM

\[
L_{g_{WWV}} = i g_S^V (W_{\mu V}^* W_{\mu V} - W_{\mu V}^* W_{\mu V}^*) + i \kappa_V^V W_{\mu V}^* W_{\mu V}^* + \frac{\lambda_V}{M_W^2} W_{\mu \mu}^* W_{\mu V}^* W_{\mu V}^*
\]

where \(V = Z, \gamma \).
In the Standard Model: \(g_1^V = \kappa_V = 1 \) and \(\lambda_V = 0 \).

Wγ

WZ

WW

Zγ

ZZ

M. Aharrouche (Uni. Mainz)
ATLAS detector

- Multi-purpose detector
 - coverage up to $|\eta| = 5$;
 - design to operate at $L = 10^{34} \text{cm}^{-2}\text{s}^{-1}$
- Inner Detector (tracker)
 - Si pixel & strip detectors + TRT;
 - 2 T magnetic field;
 - coverage up to $|\eta| < 2.5$.
- Calorimetry
 - highly granular LAr EM calorimeter ($|\eta| < 3.2$);
 - hadron calorimeter – scintillator til
 - LAr for endcap & forward ($|\eta| < 4.9$).
- Muon Spectrometer
 - air-core toroid system ($|\eta| < 2.7$)
W/Zγ production
Signal definition

• Signature
 – $W\gamma$
 * One isolated lepton + photon and missing ET.
 – $Z\gamma$
 * Two isolated leptons + photon

• Signal contributions
 – Initial State Radiation (ISR)
 – $WW\gamma$ Triple Gauge Coupling (TGC)
 – Final state photon radiation from $W(Z)$ inclusive production.
 – Photons from fragmentation of jets produced in association with a W or a Z boson.
 * consider only part of fragmentation photon that satistify
 – particle level truth isolation:
 \[\sum E_T^{had} < 0.5 \cdot E_T^{\gamma} \]
Event Selection

- **W selection**
 - One lepton with ET > 20 GeV
 - $|\eta| < 2.47$ (e) $|\eta| < 2.4$ (µ)
 - MET > 25 GeV
 - $m_T(W) > 40$ GeV
 - Veto on a second lepton

- **Z selection**
 - Two leptons with ET > 20 GeV
 - $|\eta| < 2.47$ (e) $|\eta| < 2.4$ (µ)
 - $M_{ll} > 40$ GeV

- **Photon selection**
 - One photon with ET > 15 GeV and $|\eta| < 2.37$
 - $\Delta R(l, \gamma) > 0.7$
 - Isolation energy $E_t(\text{iso}) < 5$GeV

- **Number of Candidates in 35/pb**
 - $W\gamma$: 192
 - 95 (e$\nu\gamma$) + 97(µ $\nu\gamma$)
 - $Z\gamma$: 48
 - 25 (eeγ) + 23(µµγ)

Mohamed
Kinematic Distributions of the W/Zγ candidates

- Wγ candidates

- Zγ candidates

Mohamed
Cross section calculation

• Fiducial cross section
 – Performed within phase space defined by kinematic cuts of event selection in analysis.

 \[
 \sigma_{pp \rightarrow l\nu\gamma(l^+l^-)}^{fid} = \frac{N_{W\gamma(Z\gamma)}^{sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)}}
 \]

 – \(N_{\text{sig}} \) is the number of the extracted signal events
 – \(C_{W\gamma(Z\gamma)} \) summarizes the reconstruction and identification efficiency for signal events

• Total cross section
 – extraploting from fiducial phase space to full W/Z decay space.

 \[
 \sigma_{pp \rightarrow l\nu\gamma(pp \rightarrow l^+l^-\gamma)}^{total} = \frac{\sigma_{pp \rightarrow l\nu\gamma(pp \rightarrow l^+l^-\gamma)}^{fid}}{A_{W\gamma(Z\gamma)}}
 \]

 – \(A_{W\gamma(Z\gamma)} \) is the acceptance of total phase space with respect to the fiducial one.
Signal yield

- Background for $W\gamma$: $W \rightarrow \tau\nu$, $t\bar{t}$, and $Z \rightarrow l^+l^-$ and $W+$jets.
- Background for $Z\gamma$: $t\bar{t}$ and $Z+$jets.
- $W+$jet background: data driven estimation
 - 2D sideband method is applied. The two dimensions are defined by the isolation energy on one axis, and the photon identification “quality” of the photon candidate on the other axis.
- $Z+$jets background contribution, as well as the non $W+$jets background, is estimated from Monte Carlo.

Table

<table>
<thead>
<tr>
<th>Process</th>
<th>Observed events</th>
<th>non $W+$jets background</th>
<th>$W+$jet background</th>
<th>Extracted Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow e\nu\gamma$</td>
<td>95</td>
<td>$10.1\pm0.8\pm1.2$</td>
<td>$16.9\pm6.4\pm7.3$</td>
<td>$67.9\pm9.5\pm7.3$</td>
</tr>
<tr>
<td>$pp \rightarrow \mu\nu\gamma$</td>
<td>97</td>
<td>$12.4\pm0.9\pm1.4$</td>
<td>$16.8\pm4.7\pm7.3$</td>
<td>$67.8\pm9.3\pm7.4$</td>
</tr>
<tr>
<td>$pp \rightarrow e^+e^-\gamma$</td>
<td>25</td>
<td>3.8 ± 3.8</td>
<td></td>
<td>$21.2\pm5.8\pm5.8$</td>
</tr>
<tr>
<td>$pp \rightarrow \mu^+\mu^-\gamma$</td>
<td>23</td>
<td>3.4 ± 3.4</td>
<td></td>
<td>$19.6\pm4.8\pm3.4$</td>
</tr>
</tbody>
</table>
Results

- Fiducial cross section

<table>
<thead>
<tr>
<th>reaction</th>
<th>experimental measurement</th>
<th>SM model prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma^{\text{fid}}[pb]$ (measured)</td>
<td>$\sigma^{\text{fid}}[pb]$ (predicted)</td>
</tr>
<tr>
<td>$pp \to e^+e^-\gamma$</td>
<td>$5.1 \pm 0.7(\text{stat}) \pm 0.9(\text{syst}) \pm 0.6(\text{lumi})$</td>
<td>$4.6 \pm 0.3(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to \mu^+\mu^-\gamma$</td>
<td>$4.2 \pm 0.6(\text{stat}) \pm 0.7(\text{syst}) \pm 0.5(\text{lumi})$</td>
<td>$4.9 \pm 0.3(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to e^+e^-\gamma$</td>
<td>$2.0 \pm 0.6(\text{stat}) \pm 0.5(\text{syst}) \pm 0.2(\text{lumi})$</td>
<td>$1.7 \pm 0.1(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to \mu^+\mu^-\gamma$</td>
<td>$1.3 \pm 0.3(\text{stat}) \pm 0.3(\text{syst}) \pm 0.1(\text{lumi})$</td>
<td>$1.7 \pm 0.1(\text{syst})$</td>
</tr>
</tbody>
</table>

- Total cross section

<table>
<thead>
<tr>
<th>reaction</th>
<th>$\sigma^{\text{total}}[pb]$ (measured)</th>
<th>$\sigma^{\text{total}}[pb]$ (predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \to e^+e^-\gamma$</td>
<td>$73.9 \pm 10.5(\text{stat}) \pm 14.6(\text{syst}) \pm 8.1(\text{lumi})$</td>
<td>$69.0 \pm 4.6(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to \mu^+\mu^-\gamma$</td>
<td>$58.6 \pm 8.2(\text{stat}) \pm 11.3(\text{syst}) \pm 6.4(\text{lumi})$</td>
<td>$69.0 \pm 4.6(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to e^+e^-\gamma$</td>
<td>$16.4 \pm 4.5(\text{stat}) \pm 4.3(\text{syst}) \pm 1.8(\text{lumi})$</td>
<td>$13.8 \pm 0.9(\text{syst})$</td>
</tr>
<tr>
<td>$pp \to \mu^+\mu^-\gamma$</td>
<td>$10.6 \pm 2.6(\text{stat}) \pm 2.5(\text{syst}) \pm 1.2(\text{lumi})$</td>
<td>$13.8 \pm 0.9(\text{syst})$</td>
</tr>
</tbody>
</table>

- All cross section measurements are consistent within their uncertainties with the Standard Model expectations

Mohamed
WW leptonic decay channels
WW signature

- **WW signal**
 - Two opposite-sign isolated high Pt leptons. Accordingly signal events are split into 3 channels:
 - ee, $\mu\mu$, $e\mu$
 - Large missing E_T and less jet activity

- **WW Background**
 - W+jets, Drell-Yan, Top and Di-boson ($WZ, ZZ, W/Z\gamma$)

Mohamed
Event selection

• Exactly two opposite-sign good leptons \((e, \mu)\)
 – To select di-lepton events
 – To suppress W+jets and di-boson events
• \(M_{ll}>15\text{GeV} \&\& |M_{ll}-M_Z|>10\text{GeV}\) for ee and \(\mu\mu\) channels
 – Mainly to remove Drell-Yan events
• \(E_T^{\text{miss}} > 40\text{GeV}\) in ee and \(\mu\mu\) channels, and >20GeV in em channel
 – To further remove Drell-Yan and di-boson events
• Jet veto : No jets (\(P_T>20\text{GeV}, |\eta|<3\)) present
 – To remove top events

• Number of Candidates in 35/pb
 – 8 (ee, \(\mu\mu, e\mu\) combined)
Kinematic Distributions of the W+W- candidates

\[\int \text{d}t = 35 \text{ pb}^{-1} \]

- Data
- WW
- Drell-Yan
- Diboson
- W+jets
- top
- \(\sigma_{\text{stat+syst}} \)

\[P_T(\text{second lepton}) \ [\text{GeV}] \]

\[\Delta \phi(l^+l^-) \]

\[\int \text{d}t = 35 \text{ pb}^{-1} \]

- Data
- WW
- Drell-Yan
- Diboson
- W+jets
- top
- \(\sigma_{\text{stat+syst}} \)

\[P_T(l^+l^-) \ [\text{GeV}] \]

\[M_T(l^+l^-E_T^{\text{miss}}) \ [\text{GeV}] \]

Mohamed
Signal yield

- **Background estimation:**
 - W+jet: Data driven estimation
 * Using W+Jet control sample and di-jet sample in data
 - Drell-Yan
 * Central values are estimated using MC. Systematic uncertainties are estimated using a data driven method on Z control sample
 - Top background estimated using MC and crosschecked using data driven methods.
 - Di-boson (WZ, ZZ, W/Z+\gamma) backgrounds estimated using MC.

<table>
<thead>
<tr>
<th>Final State</th>
<th>(e^+e^-E_T^{\text{miss}})</th>
<th>(\mu^+\mu^-E_T^{\text{miss}})</th>
<th>(e^+\mu^-E_T^{\text{miss}})</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Events</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>MC WW Signal</td>
<td>0.85±0.02±0.13</td>
<td>1.74±0.04±0.24</td>
<td>4.81±0.06±0.68</td>
<td>7.40±0.07±1.05</td>
</tr>
<tr>
<td>Total Background</td>
<td>0.17±0.11±0.09</td>
<td>0.26±0.31±0.15</td>
<td>1.29±0.17±0.32</td>
<td>1.72±0.37±0.45</td>
</tr>
<tr>
<td>Signal / Background</td>
<td>5.0</td>
<td>6.7</td>
<td>3.7</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Cross section

- The combined W+W- production cross-section is determined using the maximum likelihood method. The likelihood function based on Poisson statistics is constructed as

\[
F = \prod_{i=1}^{3} \frac{e^{-\left(N_{E}^{i}+N_{b}^{i}\right)}}{N_{obs}^{i}!} \left(N_{S}^{i} + N_{b}^{i}\right)^{N_{obs}^{i}}, \quad \text{where} \quad N_{S}^{i} = \sigma_{WW} \times Br^{i} \times L \times A^{i}
\]

\[
\sigma_{WW} = 40^{+20}_{-16} \text{(stat)} \pm 7 \text{(syst)} \text{ pb}
\]

- which is in good agreement with the SM NLO prediction of 46±3pb.
Conclusion

• First measurement of W/Zγ and WW production cross sections at 7 TeV performed by ATLAS using 35/pb of integrated luminosity

• The cross section measurements are in good agreement with SM NLO expectations

• The measurements are limited by statistics. The future analysis with larger dataset will be important for precision test of the SM and new physics searches.