Small-x QCD studies with CMS at the LHC

David d’Enterria for the CMS collaboration
CERN, PH-EP, CH-1211 Geneva 23

Abstract. The capabilities of the CMS experiment to study the low-x parton structure and QCD evolution in the proton and the nucleus at LHC energies are presented through four different measurements, to be carried out in Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV: (i) the charged hadron rapidity density $dN_{ch}/d\eta$ and (ii) the ultraperipheral (photo)production of $\Upsilon$; and in p-p at $\sqrt{s} = 14$ TeV: (iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by $\Delta\eta \geq 8$).

Introduction

At high energies, the cross-sections of all hadronic objects (protons, nuclei, or even photons “fluctuating” into $q\bar{q}$ vector states) are dominated by scatterings involving gluons. Gluons clearly outnumber quarks in the small momentum fraction (low-x) range of the parton distribution functions (PDFs) as a consequence of the QCD parton splitting probabilities described by the DGLAP [1] and BFKL [2] evolution equations. The fast growth of the gluon densities $xG(x,Q^2)$ for decreasing $x$ conspicuously observed in DIS $ep$ at HERA [3], cannot however continue indefinitely since this would violate unitarity even for scatterings with $Q^2 \gg \Lambda_{QCD}^2$. For small enough $x$ values, gluons must start to recombine in a process known as gluon saturation [4]. This phenomenon occurs when the size occupied by the partons becomes similar to the size of the hadron $\pi R^2$, or in terms of the saturation momentum $Q_s$ when: $Q^2 \lesssim Q_s^2(x) \approx \alpha_s x G(x,Q^2^2)/\pi R^2$. $Q_s$ grows with the number $A$ of nucleons in the “target”, the collision energy $\sqrt{s}$, and the rapidity of the gluon $y = \ln(1/x)$, according to: $Q_s^2 \sim A^{1/3} x^{-0.3} \sim A^{1/3} (\sqrt{s})^{0.3} \sim A^{1/3} e^{0.3y}$. The $A$ dependence implies that, at equal energies, saturation effects will be enhanced by factors as large as $A^{1/3} \approx 6$ in a heavy nucleus ($A = 208$ for Pb) compared to protons. Theoretically, the regime of low-x QCD can be effectively described in the “Color Glass Condensate” (CGC) framework, where all gluon fusions and multiple scatterings are “resummed” into classical high-density gluon wavefunctions [5]. The corresponding evolution is given in this case by the BK/JIMWLK [6] non-linear equations.

Experimentally, the most direct way to access the low-x PDFs in hadronic collisions is by measuring perturbative probes (heavy-$Q$, jets, high-$p_T$ hadrons, prompt $\gamma$, ...) at large $\sqrt{s}$ and forward rapidities [7]. For a $2 \rightarrow 2$ parton scattering, the minimum $x$ probed in a process with a particle of momentum $p_T$ produced at pseudo-rapidity $\eta$, is $x_2^{min} = x_T e^{-\eta}/(2 - x_T e^{\eta})$ where $x_T = 2p_T / \sqrt{s}$. Thus, $x_2^{min}$ decreases by a factor of $\sim 10$ every 2 units of rapidity. The experimental capabilities of the CMS experiment are extremely well adapted for the study of
low-x phenomena with proton and ion beams. The acceptance of the CMS/TOTEM system is the largest ever available in a collider, and the detector is designed to measure different particles with excellent momentum resolution [8]: jets ($|\eta| < 6.6$), $\gamma$ and $e^{\pm}$ ($|\eta| < 3$), muons ($|\eta| < 2.5$), hadrons ($|\eta| < 6.6$), plus neutrals in the Zero-Degree Calorimeters (ZDCs, $|\eta| > 8.3$). We present a selection of four observables measurable in CMS which are sensitive to parton saturation effects in the proton and nucleus wave-functions at LHC energies. Other relevant measurements (e.g. forward Drell-Yan in p-p at 14 TeV) are discussed in [9].

1. Measurements in PbPb collisions at $\sqrt{s_{NN}} = 5.5$ TeV

1) Charged hadron PbPb rapidity density: $dN_{ch}/d\eta$

In high-energy heavy-ion collisions, the hadron rapidity density $dN/d\eta$ is directly related to the number of initially released partons at a given $\eta$. CGC approaches which effectively take into account a reduced initial parton flux in the nuclear PDFs, reproduce successfully the absolute hadron yields (as well as their centrality and $\sqrt{s_{NN}}$ dependences) at SPS – RHIC energies [10, 11]. At LHC, the expected PbPb multiplicities are $dN/d\eta|_{\eta=0} \approx 2000$ (Fig. 1 left). CMS simulation studies from hit counting in the innermost Si pixel layer ($|\eta| < 2.5$) indicate that the occupancy remains less than 2% and that, on an event-by-event basis, the reconstructed $dN_{ch}/d\eta$ is within $\sim 2\%$ of the true primary multiplicity (Fig. 1 right) [12].

(2) $\Upsilon$ photoproduction in ultra-peripheral PbPb ($\rightarrow \gamma Pb \rightarrow \Upsilon + Pb^* Pb^{(*)}$) collisions

Ultraperipheral collisions (UPCs) of heavy ions generate strong electromagnetic fields (equivalent to a flux of quasi-real photons) which can be used to study $xG(x, Q^2)$ via $Q\bar{Q}$ photoproduction [14]. Lead beams at 2.75 TeV have Lorentz factors $\gamma = 2930$ leading to maximum photon energies $\omega_{\text{max}} \approx \gamma/R \sim 100$ GeV (for a nuclear radius $R = 6.5$ fm) and c.m.
energies $W_{\gamma \gamma}^{\text{max}} \approx 160$ GeV and $W_{\gamma A}^{\text{max}} \approx 1$ TeV. The $x$ values probed in $\gamma \text{Pb} \rightarrow \Upsilon \text{Pb}$ processes at $y = 2.5$ can be as low as $x \sim 10^{-4}$. Full simulation-reconstruction [12] of input distributions from the starlight MC [15] show that CMS can measure $\Upsilon \rightarrow e^+e^-$, $\mu^+\mu^-$ within $|\eta| < 2.5$, in UPCs tagged with neutrons detected in the ZDCs. Fig. 2 shows the reconstructed $dN/dm_{l^+l^-}$ around the $\Upsilon$ mass for $0.5 \text{ nb}^{-1}$ integrated PbPb luminosity. With a total yield of $\sim 400 \Upsilon$, detailed $p_T, \eta$ studies can be carried out, to constrain the low-$x$ gluon density in the Pb nucleus.

**Figure 2.** Expected $e^+e^-$ (left), $\mu^+\mu^-$ (right) invariant mass distributions from $\gamma \text{Pb} \rightarrow \Upsilon \text{Pb}$ ($\Upsilon \rightarrow l^+l^-$, signal) and $\gamma \gamma \rightarrow l^+l^-$ (background) in UPC PbPb at $\sqrt{s_{NN}} = 5.5$ TeV in CMS.

2. Measurements in pp collisions at $\sqrt{s} = 14$ TeV

(3) Inclusive forward jet production: $pp \rightarrow \text{jet}+X$, with $3 < |\eta_{\text{jet}}| < 5$

Jet measurements at Tevatron have provided valuable information on the proton PDFs. At 14 TeV, the production of jets with $E_T \approx 20–100$ GeV in the CMS forward calorimeters (HF and CASTOR) probes the PDFs down to $x_2 \approx 10^{-6}$ [7]. Figure 3-left shows the single inclusive jet spectrum in both HFs ($3 < |\eta| < 5$) expected for a short first run with just $1 \text{ pb}^{-1}$ integrated luminosity. The spectrum has been obtained from a preliminary study using PYTHIA 6.403 with jet reconstruction at the particle-level (i.e. no detector effects are included apart from the HF tower $\eta - \phi$ granularity) [9]. Although at such low $E_T$’s systematic uncertainties can be as large as $\sim 30\%$, the available statistics for this study is very high.

(4) Mueller-Navelet dijets: $pp \rightarrow \text{jet}_1+\text{jet}_2$, with large $\Delta \eta = \eta_2 - \eta_1$

Inclusive dijet production at large pseudorapidity intervals – Müller-Navelet (MN) jets – has been considered an excellent testing ground for BFKL [17] and non-linear QCD [18] evolutions. The large rapidity separation between partons enhances the available longitudinal momentum phase space for BFKL radiation. Gluon saturation effects are expected to reduce the (pure BFKL) MN cross section by a factor of $\sim 2$ for jets separated by $\Delta \eta \approx 9$ [18]. In order
to estimate the expected statistics for a short run without pile-up (1 pb\(^{-1}\)), we have selected the 
\textsc{pythia} events which pass the MN kinematics cuts: \(|\eta_{1} - \eta_{2}| < 0.25, \Delta \eta = 6 \rightarrow 10 [9]. \) Figure 3-right shows the results for \(\Delta \eta = 8 \sim 9\). The expected dijet yields for this \(\eta\) separation indicate that these studies are clearly statistically feasible at the LHC.

\textbf{Acknowledgments.} Supported by 6th EU Framework Programme MEIF-CT-2005-025073.

\textbf{References}


