Searches for effects of TeV-scale gravity in the 2010 ATLAS data

Michiru Kaneda (CERN)

* on behalf of the ATLAS Collaboration
* Physics at LHC 2011
* PERUGIA, Italy, June 6-11th, 2011, Congress Center GIO

Extra Dimensions and TeV-Scale Gravity

- One of problems in the Standard Model is hierarchy problem that there is large difference between the Planck scale ($M_P \sim 10^{16}$GeV) and electroweak scale ($M_W \sim 100$GeV).
- Theories of extra dimensions introduce “TeV-Scale Fundamental Planck Scale”, M_0, as a solution of the problem.
- Only the gravitational field can propagate into all dimensions. Hence, the gravitational field measured in four space-time dimension is reduced in strength from fundamental gravitational field and M_0 could be as small as the electroweak scale.
- The ADD model, proposed by Arkani-Hamed, Dimopoulos, and Dvali, is an extra dimensions model with large flat extra dimensions. Lower limits on M_0 are set as ~1 TeV by collider experiments.

Black Hole Search

- Black holes are produced when half of the impact parameter of the two collision partons is less than horizon radius of black hole with mass, M_{BH}, equal to center of mass energy of proton-proton collision.
- The mass of black hole has a continuous distribution from M_{TH} (> MD) to center of mass energy of proton-proton collision.
- Events with third jet with $p_T > 15$GeV are vetoed.
- $\Delta \phi$ of them < 1.3
- Add graviton doesn't interact with the detector
 - Missing energy in association with a jet is main signal.
 - Event selection:
 - Leading jet: $p_T > 200$GeV, $|\eta| < 2.4$, isolated
 - Second leading jet: $p_T > 100$GeV, $|\eta| < 2.4$, same charge with leading μ
 - Number of tracks ≥ 10
 - Main backgrounds are $\mu +$ fake (di(boson+jets)), ttbar, bbbar
 - $\mu +$ fake: Track faking muon rate is estimated in $W+$tracks sample in data
 - ttbar and bbbar are estimated with MC (A normalization factor for bbbar is estimated from bbbar enriched control region)
 - Background events: 332 ± 30
 - Observed events: 297 ± 40.1

Multijet Final State

- The Standard Model background rate is low for same sign dimuon events.
- Event selection:
 - Leading μ: $p_T > 20$GeV, $|\eta| < 2.4$, isolated
 - Second leading μ: $p_T > 10$GeV, $|\eta| < 2.4$
 - Number of tracks ≥ 10
 - Main backgrounds are $\mu +$ fake (di(boson+jets)), ttbar, bbbar
 - $\mu +$ fake: Track faking muon rate is estimated in $W+$tracks sample in data
 - ttbar and bbbar are estimated with MC (A normalization factor for bbbar is estimated from bbbar enriched control region)
- Background events: 7
- Observed events: 5

Same-Sign Dimuon Final State

- Decays from particle to black holes are dominated by gluons and quarks because of their large number of degrees of freedom for color.
- Multijet final state is main signal of black hole events.
- Selection high p_T, $p_T > 500$GeV, $|\eta| < 2.8$
- Number of Jets (N_J): 5
- Scalar sum of jets in events (Σp_T): > 2TeV
- Main background is QCD multijet. Shapes of Σp_T distributions of QCD show little dependences on N_J
 - The distribution for $N_J \geq 5$ can be assumed to have same distribution of $N_J < 5$
- Under a background-only hypothesis
 - Background events: 332
 - Observed events: 297

Quantum Black Hole in Dijet

- Quantum black holes is a scenario in which black holes decay into two-body final state.
- Event selection:
 - Leading jet: $p_T > 150$GeV, $|\eta| < 2.5$, Second leading jet: $p_T > 30$GeV, $|\eta| < 2.5$
 - $\Delta \eta$ of them < 1.3
 - Events with third jet with $p_T > 15$GeV are vetoed
- Add graviton doesn't interact with the detector
 - Missing energy in association with a jet is main signal.
 - Event selection:
 - Leading jet: $p_T > 250$GeV, $|\eta| < 2.0$
 - Second leading jet: $p_T < 60$GeV and $|\eta| < 4.5$
 - Missing $E_T > 220$GeV
 - $\Delta \phi$ (second jet, missing E_T): > 0.5
 - Background events: 40.1 ± 2.9(stat) ± 4.5(syst)
 - Observed events: 39

ADD Graviton in Monojet

- Quantum black holes is a scenario in which black holes decay into two-body final state.
- Event selection:
 - Leading jet: $p_T > 250$GeV, $|\eta| < 2.0$
 - Second leading jet: $p_T < 60$GeV and $|\eta| < 4.5$
 - Missing $E_T > 220$GeV
 - $\Delta \phi$ (second jet, missing E_T): > 0.5
 - Background events: 40.1 ± 2.9(stat) ± 4.5(syst)
 - Observed events: 39

Ref: The ATLAS Collaboration, Search for Microscopic Black Holes in Multi-Jet Final States with the ATLAS Detector at $\sqrt{s} = 7$ TeV, ATLAS-CONF-2011-068

Ref: The ATLAS Collaboration, Search for strong gravity effects in same-sign dimuon final states, ATLAS-CONF-2011-065

Ref: arXiv:hep-ex/0410004

Missing E_T distribution

Leading jet p_T distribution

Limits on black hole production for rotating black hole

Dijet invariant mass distribution

Limits on the cross section × acceptance for ADD graviton

Table

<table>
<thead>
<tr>
<th>N_J</th>
<th>QCD and signal MC are shown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Σp_T distributions for $N_J \geq 5$</td>
</tr>
<tr>
<td></td>
<td>Σp_T distribution for $N_J \geq 5$ and estimated distribution from $N_J < 5$</td>
</tr>
</tbody>
</table>

Ref: The ATLAS Collaboration, Search for microscopic black holes in multi-jet final states with the ATLAS detector at $\sqrt{s} = 7$ TeV, ATLAS-CONF-2011-068