Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy

The CMS Collaboration

Abstract

A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at \(\sqrt{s} = 7 \) TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1.14 fb\(^{-1}\). In this search, a kinematic variable, \(\alpha_T \), is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% CL. Gluino masses below 1.1 TeV are also ruled out at 95% CL for values of the universal scalar mass parameter below 500 GeV.

Submitted to Physical Review Letters

See Appendix A for the list of collaboration members
The standard model (SM) of particle physics is generally considered to be valid only at low energy scales and is expected to be superseded by a more complete theory at higher scales. Supersymmetric (SUSY) extensions to the SM [1-8] introduce a large number of new particles with the same quantum numbers as their SM partners, but differing by half a unit of spin. If R-parity conservation [9] is assumed, supersymmetric particles, such as squarks and gluinos, are produced in pairs and decay to the lightest, stable supersymmetric particle (LSP). If the LSP is neutral and weakly interacting, a typical signature is a final state of multi-jets accompanied by significant missing transverse energy, E_T. Experiments at the Tevatron [10-13], SppS [14, 15], HERA [16, 17], and LEP [18] colliders have performed extensive searches for signs of SUSY. In 2010, the Large Hadron Collider (LHC) at CERN delivered an integrated luminosity of almost 50 pb$^{-1}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV, leading to several new searches from both ATLAS [19-22] and CMS [23-27].

This Letter presents a search for SUSY based on a data sample corresponding to an integrated luminosity of 1.14 \pm 0.05 fb$^{-1}$. The search strategy follows Ref. [23] and is designed to be sensitive to E_T signatures in events with two or more energetic jets. The search is not optimized for any particular model of SUSY and is applicable to other new physics scenarios with an E_T signature. In this Letter, nevertheless, the results are interpreted in the constrained minimal supersymmetric extension of the standard model (CMSSM) [28-30]. The CMSSM is described by the following five parameters: the universal scalar and gaugino mass parameters, m_0 and $m_{1/2}$; the universal trilinear soft SUSY-breaking parameter, A_0; the ratio of the vacuum expectation values of the two Higgs doublets, $\tan\beta$; and the sign of the Higgs mixing parameter, μ. We consider only parameter sets for which the LSP is the lightest neutralino. The following example parameter set, referred to as LM6, is used to illustrate possible CMSSM yields: $m_0 = 85$ GeV, $m_{1/2} = 400$ GeV, $A_0 = 0$, $\tan\beta = 10$, and $\mu > 0$.

A detailed description of the CMS apparatus can be found in Ref. [31]. Its central feature is a superconducting solenoid providing an axial magnetic field of 3.8 T. The bore of the solenoid is instrumented with several particle detection systems. Charged particle trajectories are measured by a silicon pixel and strip tracker system, with full azimuth (ϕ) coverage and a pseudo-rapidity (η) acceptance from -2.5 to $+2.5$. Here, $\eta \equiv - \ln|\tan(\theta / 2)|$ and θ is the polar angle with respect to the counterclockwise beam direction. A lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter surround the tracking volume and provide coverage in η from -3 to $+3$. The forward hadron calorimeter extends symmetrically the coverage by a further two units in η. Muons are identified in gas ionization detectors embedded in the steel return yoke of the magnet. The CMS detector is nearly hermetic, which allows for momentum-balance measurements in the plane transverse to the beam axis.

The offline event reconstruction and selection criteria described below are explained in more detail in Ref. [23]. Jets are reconstructed from the energy deposits in the calorimeter towers, clustered by the anti-k_T algorithm [32] with a size parameter of 0.5. The raw jet energies measured by the calorimeter systems are corrected to establish a uniform relative response in η and a calibrated absolute response in transverse momentum p_T with an associated uncertainty between 2% and 4%, depending on the jet η and p_T [33]. Jets considered in the analysis are required to have transverse energy $E_T > 50$ GeV. Events are vetoed if any additional jet satisfies $E_T > 50$ GeV and $|\eta| > 3$, or rare, spurious signals are identified in the calorimeters [34, 35]. The highest-E_T jet is required to be within the central tracker acceptance and the two highest-E_T jets must each have $E_T > 100$ GeV. To suppress SM processes with genuine E_T from neutrinos, events containing an isolated electron [36] or muon [37] with $p_T > 10$ GeV are vetoed. To select a pure multi-jet topology, events are vetoed in which an isolated photon [38] with $p_T > 25$ GeV is found.
The following two variables characterize the visible energy and missing momentum in the transverse plane: the scalar sum of the transverse energy E_T of jets, defined as $H_T = \sum_{i=1}^{N_{\text{jet}}} E_T$, and the magnitude of the vector sum of the transverse momenta \vec{p}_T of jets, defined as $H_T = \left| \sum_{i=1}^{N_{\text{jet}}} \vec{p}_T \right|$, where N_{jet} is the number of jets with $E_T > 50$ GeV. Significant hadronic activity in the event is ensured by requiring $H_T > 275$ GeV. Following these selections, the background from multi-jet production, a manifestation of quantum chromodynamics (QCD), is still several orders of magnitude larger than the typical signal expected from SUSY. While the bulk of these multi-jet events do not exhibit significant E_T, large values can be observed due to stochastic fluctuations in the measurement of jet energies or mismeasurements caused by nonuniformities in the calibration of the calorimeters or detector inefficiencies.

The α_T kinematic variable, first introduced in Refs. [39–41], is used in the selection to efficiently reject events either without significant E_T or with transverse energy mismeasurements, while retaining a large sensitivity to new physics with genuine E_T signatures. For events with two jets, the variable is defined as $\alpha_T = \frac{E_T^b}{M_T} = \frac{E_T^b}{\sqrt{H_T^2 - \vec{p}_T^2}}$, where E_T^b is the transverse energy of the less-energetic jet, and M_T is the transverse mass of the dijet system. For a perfectly measured dijet event with $E_T^b = E_T^b$ and jets back to back in ϕ, and in the limit of large jet momenta compared to their masses, the value of α_T is 0.5. In the case of an imbalance in the measured transverse energies of back-to-back jets, α_T is smaller than 0.5. Values significantly greater than 0.5 are observed when the two jets are not back to back and balancing genuine E_T. For events with three or more jets, a dijet system is formed by combining the jets in the event into two pseudo-jets. The total E_T of each of the two pseudo-jets is calculated as the scalar sum of the measured E_T of contributing jets. The combination chosen is the one that minimizes the E_T difference between the two pseudo-jets. This simple clustering criterion provides the best separation between QCD multi-jet events and events with genuine E_T. Events with multiple jets with $E_T < 50$ GeV or with severe jet energy undermeasurements due to detector inefficiencies can lead to values of α_T slightly above 0.5. Such events are effectively rejected by requiring $\alpha_T > 0.55$ and by applying dedicated vetoes, described further in Ref. [23]. These final selections complete the definition of the hadronic signal sample. A disjoint hadronic control sample consisting predominantly of QCD multi-jet events is defined by requiring $\alpha_T < 0.55$.

As can be seen in Fig. 1, the only expected remaining backgrounds with $\alpha_T > 0.55$ stem from SM processes with genuine E_T in the final state. In the dijet case, the largest backgrounds with genuine E_T are the associated production of W or Z bosons with jets, followed by either the weak decays $Z \rightarrow \nu \bar{\nu}$ or $W \rightarrow \tau \nu$, where the τ decays hadronically and is identified as a jet; or by leptonic decays that are not rejected by the dedicated electron or muon vetoes. At higher jet multiplicities, top quark production, followed by semileptonic weak top quark decay, becomes important.

Events in the hadronic signal sample are recorded with a trigger condition that identifies candidate events with energetic jets and significant E_T. Events are selected if they have $H_T > 250$ GeV and \vec{H}_T above a threshold that evolves with instantaneous luminosity, from 60 to 90 GeV. In the region $275 < H_T < 325$ GeV, the efficiency with which events satisfying the full reconstruction and selection criteria are triggered is $0.99^{+0.01}_{-0.02}$. For events with $H_T > 325$ GeV, the efficiency is $1.00^{+0.00}_{-0.03}$. A set of pre-scaled H_T trigger conditions are used to record events for the hadronic control sample.

The analysis makes use of two additional data samples to estimate the backgrounds with genuine E_T. First, a $\mu + \text{jets}$ sample is recorded with the hadronic trigger condition described above. The event selection, following closely the prescription described in Ref. [42], requires a
Figure 1: The distribution of α_T, described in the text, for events in data with two or more jets (black dots with error bars representing the statistical uncertainties), after all event selection criteria except α_T are applied and $H_T > 375$ GeV. For illustrative purposes only, expected yields from simulation are also shown for QCD multi-jet events (dotted-dashed line), associated production of top quarks, W, or Z with jets (long-dashed line), the sum of all aforementioned SM processes (solid line) and the SUSY LM6 model (dotted line). The uncertainties for the SM expectation, due to the limited accuracy of the available simulation datasets and jet energy calibrations, are represented by the hatched area. The highest bin contains the overflows.

single, isolated muon with $p_T > 10$ GeV in the final state and the transverse mass of the muon and H_T system to be larger than 30 GeV to ensure a sample rich in W bosons. The muon is required to be separated from the closest jet in the event by $\Delta \eta$ and $\Delta \phi$ such that the distance $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} > 0.5$. Second, a $\gamma +$ jets sample is selected using a dedicated photon trigger condition requiring a localized, large energy deposit in the ECAL with $p_T > 90$ GeV and that satisfies loose photon identification and isolation criteria [38]. The offline selection requires a single photon to be reconstructed with $p_T > 100$ GeV, $|\eta| < 1.45$, satisfying tight isolation criteria, and with a minimum distance to any jet of $\Delta R > 1.0$. For these selection criteria, the photon trigger condition is found to be fully efficient.

The hadronic signal region is divided into eight bins of H_T: two bins of width 50 GeV in the range $275 < H_T < 375$ GeV, five bins of width 100 GeV in the range $375 < H_T < 875$ GeV, and a final open bin, $H_T > 875$ GeV. As in Ref. [23], jet E_T thresholds are scaled down from their nominal values in the lowest two H_T bins to maintain jet multiplicities and thus comparable event kinematics, topologies, and background composition throughout the entire H_T range. The background estimation methods described below are combined in the statistical interpretation of the observed data yields to provide a single prediction of the SM background in each H_T bin of the hadronic signal region. With respect to Ref. [23], these refinements provide greater sensitivity across a broader SUSY parameter space and, in the context of CMSSM, up to higher-mass states.

The $\mu +$ jets data sample provides an estimate of the contributions from top quark and W production (leading to $W +$ jets final states) still remaining in each H_T bin of the hadronic signal re-
gion after all selection criteria are applied. Factors obtained from simulation [23] are then used to translate the yields in the $\mu + \text{jets}$ sample to estimates in each H_T bin of the hadronic signal region. These factors are found to be only weakly dependent on H_T, ranging from 1.14 at low H_T to 0.90 at high H_T. Conservative uncertainties on all the parameters entering these translation factors are assigned. The total systematic uncertainty is estimated to be 30%, dominated by the uncertainty on the efficiency for vetoing leptons. The remaining irreducible background of $Z \rightarrow \nu\bar{\nu} + \text{jets}$ events in the hadronic signal sample is estimated from $\gamma + \text{jets}$ events. These two processes have similar kinematic properties when the photon is ignored [43, 44], while the latter has a larger production cross section. Translation factors that account for the ratio of cross sections for $\gamma + \text{jets}$ and $Z \rightarrow \nu\bar{\nu} + \text{jets}$, and their relative acceptances, are obtained from simulation [23] and used to estimate the number of $Z \rightarrow \nu\bar{\nu} + \text{jets}$ events in each H_T bin of the hadronic signal region. As is the case of the $\mu + \text{jets}$ sample, these translation factors are only weakly dependent on H_T, ranging from 0.35 at low H_T to 0.45 at high H_T. The main systematic uncertainties on these factors are associated with the ratio of cross sections between $\gamma + \text{jets}$ and $Z \rightarrow \nu\bar{\nu} + \text{jets}$ in the simulation (30%), the efficiency for photon identification (20%), and the purity of the photon selection (20%), which add up in quadrature to 40%.

Furthermore, the H_T dependence of the ratio R_{α_T} is exploited to constrain the SM background estimate for each H_T bin. This ratio is defined as the number of events with α_T above and below a threshold value of 0.55 for a given bin in H_T. The denominator of the ratio is always dominated by events from QCD multi-jet production and is measured in data with samples selected by the set of pre-scaled H_T trigger conditions. The chosen α_T threshold ensures that, for a given bin in H_T, the numerator of the ratio is dominated by events from SM processes with genuine E_T from neutrinos, with no significant contribution from QCD multi-jet production. As observed in Ref. [23], this property leads to R_{α_T} being independent of H_T. The remaining backgrounds are those with genuine E_T from associated production of top quarks, W, or Z with jets. By relaxing the α_T threshold to values lower than 0.55, the numerator is instead dominated by mismeasured QCD multi-jet events, and an exponential dependence of R_{α_T} on H_T is observed [23]. The behaviours of α_T and $R_{\alpha_T}(H_T)$ are observed in data and simulation to be robust against the effects of multiple pp collisions per beam crossing (pileup). In the statistical interpretation of the analysis, $R_{\alpha_T}(H_T)$ is modelled as a superposition of a H_T-independent contribution from SM processes with genuine E_T, and an exponentially falling contribution to accommodate any potential QCD contamination. The latter is considered even though no evidence of a significant QCD contamination is found in the hadronic signal region.

To obtain an accurate and consistent prediction of the SM background, a simultaneous binned likelihood fit using information from all three data samples is performed. The fit maximizes the likelihood $L_{\text{total}} = L_{\text{hadronic}} \times L_{\mu+\text{jets}} \times L_{\gamma+\text{jets}}$, where L_{hadronic} characterizes $R_{\alpha_T}(H_T)$ in the hadronic sample with a single exponential function, Ae^{-kH_T}, to accommodate any QCD contamination and a constant, H_T-independent contribution, B, to describe SM processes with genuine E_T. The likelihoods $L_{\mu+\text{jets}}$ and $L_{\gamma+\text{jets}}$ describe the H_T-dependent yields in the $\mu + \text{jets}$ and $\gamma + \text{jets}$ samples. For each H_T bin, these yields are related to the numerator of $R_{\alpha_T}(H_T)$, measured in the hadronic signal sample, via the translation factors from the simulation.

With a fit probability (p value) of 0.56, the hypothesis for the R_{α_T} dependence on H_T reproduces the data well, as shown in Fig. 2. The only parameter with a significant non-zero value as determined by the fit is the constant term $B = (1.1 \pm 0.2) \times 10^{-5}$. The other two fit parameters, $A = (1.4 \pm 1.9) \times 10^{-5}$ and $k = (5.2 \pm 5.6) \times 10^{-3} \text{GeV}^{-1}$, are compatible with zero, indicating that no significant QCD contamination has been observed in the signal region. Furthermore, as a cross check, the fit is repeated with the assumption that R_{α_T} is independent of H_T, which in turn implies that the numerator of the ratio is fully dominated by SM backgrounds with
genuine E_T. The result of this fit, shown in Fig. 2, has a p value of 0.41 and is in good agreement with the nominal fit.

![Figure 2](image_url)

Figure 2: The ratio $R_{\alpha T}$ as a function of H_T, as measured in the hadronic data samples (black dots with error bars representing the statistical uncertainties). Also shown is the result of the simultaneous fit to the three data samples (solid line); the analogous result when assuming a H_T-independent hypothesis (dotted line); and, for illustrative purposes only, the expectation from the SUSY LM6 model when superimposed on the nominal fit result (long-dashed line).

<table>
<thead>
<tr>
<th>H_T bin (GeV)</th>
<th>275–325</th>
<th>325–375</th>
<th>375–475</th>
<th>475–575</th>
<th>575–675</th>
<th>675–775</th>
<th>775–875</th>
<th>>875</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM hadronic</td>
<td>787–122</td>
<td>310–178</td>
<td>202–190</td>
<td>604–324</td>
<td>203–188</td>
<td>7.7–1.7</td>
<td>3.2–0.4</td>
<td>2.8–0.2</td>
</tr>
<tr>
<td>Data hadronic</td>
<td>782–172</td>
<td>321–196</td>
<td>196–62</td>
<td>21–21</td>
<td>3–3</td>
<td>1–1</td>
<td>1–1</td>
<td>1–1</td>
</tr>
<tr>
<td>SM $\mu +$ jets</td>
<td>367–105</td>
<td>182–52</td>
<td>113–39</td>
<td>36.5–3.3</td>
<td>13.4–2.8</td>
<td>4.0–1.4</td>
<td>0.8–0.1</td>
<td>0.7–0.9</td>
</tr>
<tr>
<td>Data $\mu +$ jets</td>
<td>389–156</td>
<td>113–39</td>
<td>39–17</td>
<td>17–17</td>
<td>5–5</td>
<td>0–0</td>
<td>0–0</td>
<td>0–0</td>
</tr>
<tr>
<td>SM $\gamma +$ jets</td>
<td>834–122</td>
<td>325–172</td>
<td>210–122</td>
<td>64.7–19.9</td>
<td>21.1–3.9</td>
<td>10.5–2.6</td>
<td>6.1–1.7</td>
<td>5.5–1.9</td>
</tr>
<tr>
<td>Data $\gamma +$ jets</td>
<td>849–156</td>
<td>210–122</td>
<td>67–12</td>
<td>24–12</td>
<td>12–12</td>
<td>4–4</td>
<td>4–4</td>
<td>4–4</td>
</tr>
</tbody>
</table>

The fit results for all three data samples are listed in Table 1, along with the observed yields in the data. Good agreement between the measured H_T distribution and the fit is observed for all three data samples, indicating that the observed yields are compatible with the SM background expectation provided by the fit. The uncertainties listed with the SM predictions are obtained from an ensemble of pseudo-experiments. Figure 3 compares the result of the simultaneous fit to the observed yields in the hadronic signal sample.

Given the lack of an excess of events above the expected SM backgrounds, limits are set in the parameter space of the CMSSM. At each point of the parameter space, the SUSY particle spectrum is calculated with SOFTSUSY [45], and the signal events are generated at leading order with PYTHIA 6.4 [46]. Inclusive, process-dependent, next-to-leading-order (NLO) cross sections, obtained with the program PROSPINO [47], are used to calculate the observed and expected exclusion contours. The simulated signal events are reweighted so that the distri-
Figure 3: The observed event yields versus H_T in the hadronic signal sample (black dots with error bars representing the statistical uncertainties). Also shown are the expectations given by the simultaneous fit for the $Z \to \nu\bar{\nu} + \text{jets}$ process (dotted-dashed line); the associated production of top, W, or Z with jets (long-dashed line); the sum of QCD and all aforementioned processes (solid line); and, for illustrative purposes only, the SUSY LM6 model superimposed on the SM expectation (dotted line).

Figure 4 shows the observed and expected exclusion limits at 95% confidence level (CL) in the $(m_0, m_{1/2})$ plane for $\tan \beta = 10$ and $A_0 = 0 \text{ GeV}$, calculated with the CLs method [50]. For this choice of parameters in the CMSSM, squark masses below 1.1 TeV are excluded and gluino masses below the same value are ruled out for $m_0 < 500 \text{ GeV}$. The exclusion limit changes at most by 20 GeV in the $(m_0, m_{1/2})$ plane for different parameter values (e.g. $\tan \beta = 40$ and $A_0 = -500 \text{ GeV}$), indicating that the limit is only weakly dependent on these parameters.

In summary, the first search for supersymmetry from CMS based on an integrated luminosity in excess of 1 fb$^{-1}$ has been reported. Final states with two or more jets and significant E_T, as expected from high-mass squark and gluino production and decays, have been analysed. The search has been performed in eight bins of the scalar sum of the transverse energy of jets, H_T, considering events with H_T in excess of 275 GeV. The sum of standard model backgrounds per H_T bin has been estimated from a simultaneous binned likelihood fit to hadronic, $\mu + \text{jets}$, and $\gamma + \text{jets}$ samples. The observed yields in the eight H_T bins have been found to be in agreement with the expected contributions from standard model processes. Limits on the CMSSM parameters have been derived and squark masses below 1.1 TeV are excluded at 95% CL in this model. Gluino masses in the same range are ruled out at 95% CL for $m_0 < 500 \text{ GeV}$. This limit
Figure 4: Observed and expected 95% CL exclusion contours in the CMSSM ($m_0, m_{1/2}$) plane ($\tan\beta = 10, A_0 = 0, \mu > 0$) using NLO signal cross sections with the CL$_s$ method. The expected limit is shown with its 68% CL range. The SUSY benchmark model LM6 is also shown.

represents a tight constraint on the parameter space of SUSY models like the CMSSM.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos2, C.A. Bernardes2, F.A. Dias3, T.R. Fernandez Perez Tomei, E. M. Gregores2, C. Lagana, F. Marinho, P.G. Mercadante2, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov1, V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina¹, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran⁵, A. Ellithi Kamel⁶, S. Khalil⁷, M.A. Mahmoud⁸, A. Radi⁹

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, M. Görner,

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
S. Ahuja, B.C. Choudhary, P. Gupta, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, H. Hesari, A. Jafari,
A The CMS Collaboration

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurri a,c, G. Baglisi a, J. Bernardini a,b, T. Boccali a, G. Broccolo a,c, R. Castaldi a, R.T. D’Agnolo a,c, R. Dell’Orso a, F. Fiori a,b, L. Foà a,c, A. Giassi a, A. Kraan a, F. Ligabue a,c, T. Lomtadze a, L. Martini a,b, A. Messineo a,b, F. Palla a, F. Palmonari, G. Segneri a, A.T. Serban a, P. Spagnolo a, R. Tenchini a, G. Tonelli a,b,1, A. Venturi a,b,1, P.G. Verdini a

INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Barone a,b, F. Cavallari a, D. Del Re a,b,1, E. Di Marco a,b, M. Diemoz a, D. Franci a,b, M. Grassi a,1, E. Longo a,b, P. Meridiani a, S. Nourbakhsh a, G. Organtini a,b, F. Pandolfi a,b, R. Paramatti a, S. Rahatlou a,b, M. Sigamani a

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapane a,b, R. Arcidiacono a,c, S. Ariglio a,b, M. Arneodo a,c, C. Biino a, C. Botta a,b, N. Cartiglia a, R. Castello a,b, M. Costa a,b, N. Demaria a, A. Graziano a,b, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, M. Musich a, M.M. Obertino a,c, N. Pastrone a, M. Pelliccioni a,b, A. Potenza a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, V. Sola a,b, A. Solano a,b, A. Staiano a, A. Vilela Pereira a

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belforte a, F. Cossutti a, G. Della Ricca a,b, B. Gobbo a, M. Marone a,b, D. Montanino a,b, A. Penzo a

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

 Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, V. Kaftanov, M. Kossov, A. Krokhitin, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, A. Korabiev,
Baylor University, Waco, USA
K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, USA
C. Henderson

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA
Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA
Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeber, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, C. Vuosalo, G. Williams

Princeton University, Princeton, USA

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at California Institute of Technology, Pasadena, USA
4: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
5: Also at Suez Canal University, Suez, Egypt
6: Also at Cairo University, Cairo, Egypt
7: Also at British University, Cairo, Egypt
8: Also at Fayoum University, El-Fayoum, Egypt
9: Also at Ain Shams University, Cairo, Egypt
10: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
11: Also at Université de Haute-Alsace, Mulhouse, France
12: Also at Moscow State University, Moscow, Russia
13: Also at Brandenburg University of Technology, Cottbus, Germany
14: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
15: Also at Eötvös Loránd University, Budapest, Hungary
16: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
17: Also at University of Visva-Bharati, Santiniketan, India
18: Also at Sharif University of Technology, Tehran, Iran
19: Also at Isfahan University of Technology, Isfahan, Iran
20: Also at Shiraz University, Shiraz, Iran
21: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
22: Also at Università della Basilicata, Potenza, Italy
23: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
24: Also at Università degli studi di Siena, Siena, Italy
25: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
26: Also at University of California, Los Angeles, Los Angeles, USA
27: Also at University of Florida, Gainesville, USA
28: Also at Université de Genève, Geneva, Switzerland
29: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
30: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
31: Also at University of Athens, Athens, Greece
32: Now at Rutherford Appleton Laboratory, Didcot, United Kingdom
33: Also at The University of Kansas, Lawrence, USA
34: Also at Paul Scherrer Institut, Villigen, Switzerland
35: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
36: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
37: Also at Gaziosmanpasa University, Tokat, Turkey
38: Also at Adiyaman University, Adiyaman, Turkey
39: Also at The University of Iowa, Iowa City, USA
40: Also at Mersin University, Mersin, Turkey
41: Also at Izmir Institute of Technology, Izmir, Turkey
42: Also at Kafkas University, Kars, Turkey
43: Also at Suleyman Demirel University, Isparta, Turkey
44: Also at Ege University, Izmir, Turkey
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at Utah Valley University, Orem, USA
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Also at Los Alamos National Laboratory, Los Alamos, USA
50: Also at Erzincan University, Erzincan, Turkey