J/ψ Polarization in pp Collisions at $\sqrt{s} = 7$ TeV

B. Abelev et al.*

(ALICE Collaboration)

(Received 8 November 2011; published 23 February 2012)

The ALICE Collaboration has studied J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/ψ polarization parameters λ_ϕ and λ_θ were obtained. The study was performed in the kinematic region $2.5 < \eta < 4$, $2 < p_t < 8$ GeV/c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

DOI: 10.1103/PhysRevLett.108.082001 PACS numbers: 13.88.+e, 13.20.Gd, 13.85.Qk

Almost 40 years after its discovery, heavy quarkonium still represents a challenging testing ground for models [1] based on quantum chromodynamics (QCD). Results obtained for charmonium production at the Tevatron collider in the 1990s [2] led theory to recognize the role of intermediate quark-antiquark color-octet states in the production process, in the framework of the nonrelativistic QCD model [3]. This approach brought the calculations of p_t spectra to agree rather well with the data [4] (p_t is the transverse momentum, i.e., the momentum component perpendicular to the colliding beam direction). However, the same calculations were not able to reproduce satisfactorily the polarization results for the J/ψ obtained by the CDF experiment at $\sqrt{s} = 1.96$ TeV [5]. In particular, the nonrelativistic QCD model at leading order predicts for high-p_t, J/ψ ($p_t \gg m_{J/\psi}$) a significant transverse polarization, i.e., a dominant angular momentum component $J_z = \pm 1$, the z axis being defined by the J/ψ's own momentum direction in the center of mass frame of the pp ($p\bar{p}$) collision. Contrary to this expectation, the CDF data [5] rather exhibit a mild longitudinal polarization ($J_z = 0$). In a recent renaissance of quarkonium studies, also related to the publication of results from the Relativistic Heavy Ion Collider at $\sqrt{s} = 0.2$ TeV [6], next-to-leading-order corrections for both color-singlet and color-octet intermediate states were calculated, and their impact on the p_t spectra was found to be quite important [7–9]. The influence of these corrections on the polarization calculations is expected to be significant [10,11] and still has not been completely worked out. The start-up of the LHC provides the possibility to perform charmonium measurements in a new energy domain, over large ranges in p_t, and rapidity ($y = 0.5 \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the momentum component parallel to the colliding beam direction). Various theoretical approaches [8,12,13] proved to be rather successful in describing the first LHC experimental results on the J/ψ p_t spectra [14–17]. The measurement of polarization clearly represents a more stringent test of the theoretical calculations, offering therefore the possibility of confirming or ruling out the current QCD approach to charmonium production.

In this Letter, we present the results of a study of J/ψ polarization at the LHC, carried out by the ALICE experiment in pp collisions at $\sqrt{s} = 7$ TeV. The ALICE experiment [18] is based on a central barrel, covering the pseudorapidity region $|\eta| < 0.9$ [19], and a muon spectrometer, with $2.5 < \eta < 4$ coverage. The polarization results presented in this Letter refer to inclusive J/ψ, measured via the $J/\psi \rightarrow \mu^+ \mu^-$ decay in the muon spectrometer. The spectrometer [17] consists of a 10 interaction length (λ_I) thick front absorber, to remove hadrons, followed by a 3 Tm dipole magnet. Charged particles which exit the front absorber are tracked in a detector system made up of five stations, each one with two planes of cathode pad chambers. The tracking system is followed by a 7.2λ_I iron wall, which absorbs secondary hadrons escaping the front absorber and low-momentum muons. Finally, a trigger system, based on resistive plate chambers, is used to select candidate muons with a transverse momentum larger than a given programmable threshold.

The analysis presented in this Letter was carried out on a significant fraction of the 2010 sample of muon-triggered events, corresponding to an integrated luminosity $L_{\text{int}} \sim 100$ nb$^{-1}$. The usual event selection cuts, already applied to a previous analysis of J/ψ production [17], were also used for the polarization study. Events with at least one vertex reconstructed in the inner tracking system [20] are retained for the following analysis if they contain at least two tracks reconstructed in the muon spectrometer, out of which at least one has to satisfy the trigger condition (1 GeV/c p_t threshold). We note that with this requirement the acceptance of the spectrometer for J/ψ extends down to $p_t = 0$. The tracks must satisfy the condition $2.5 < \eta < 4$ and must also have $17.6 < R_{\text{abs}} < 88.9$ cm,
was carried out in three transverse momentum intervals between $j < p_t < 4$ GeV/c. The number of J/ψ signal events for the various bins in $|\cos\theta|$ and $|\phi|$ were obtained by means of fits to the corresponding dimuon invariant mass spectra performed in the range $1.5 < m_{\mu\mu} < 5$ GeV/c2, and in Fig. 1 we show one of them as an example. The J/ψ signal was described by a Crystal Ball (CB) function [22], while for the background an empirical function, corresponding to a Gaussian with a width linearly depending on mass, was adopted. The position of the CB peak was left as a free parameter in the fits and was found to correspond to the nominal J/ψ pole mass within at most 1%. The width of the CB function obtained from the data (between 72 and 120 MeV/c2, depending on the kinematics) was found to be in agreement with the Monte Carlo (MC) within ~ 8–10 MeV/c2. In the fits, the width of the CB function for each bin was fixed to $\sigma^2 = \sigma^2_{J/\psi} = \sigma^2_{J/\psi}$ (eq. $s_{J/\psi}$ / $s_{J/\psi}$), i.e., by scaling the measured width for the angle-integrated spectrum with the MC ratio between the widths for the bin i and for the integrated spectrum. The quality of all the fits is satisfactory, with $\chi^2/d.o.f.$ in a range between 0.63 and 1.34. Signal over background ratios in a ±3σ mass window around the CB peak vary between 0.5 and 3.5. The number of signal events per bin ranges from 0.5 to 3.5. The number of signal events per bin ranges from 0.5 to 3.5.

The polarization parameters for the J/ψ were obtained by correcting the number of signal events $N^i_{J/\psi}$ for each bin for the product $A_i e_i$ of acceptance times detection efficiency, calculated via MC simulation, and then fitting the corrected angular distributions with the functions shown in Eq. (2). The simulation includes, for the tracking chambers, a map of dead channels and the residual misalignment of the detection elements and, for the trigger chambers, an evaluation of their efficiency based on data. It also includes a random misalignment of the tracking detector elements.

FIG. 1 (color online). The dimuon invariant mass spectrum for $2 < p_t < 3$ GeV/c, $0 < |\cos\theta_{\text{HE}}| < 0.15$, together with the result of the fit. The contributions of the signal and background are also shown as dashed lines.
of the same size of the resolution obtained by the offline alignment procedure [17]. For both tracking and triggering detectors, the time variation of the efficiencies during the data-taking period was accounted for (see [17] for details). Since the \(\cos \theta \) and \(\phi \) acceptances are strongly correlated, the acceptance values as a function of one variable strongly depend on the input distribution used for the other variable. Given the fact that the correct input distributions are not known a priori but rather represent the outcome of the data analysis, an iterative procedure was followed in order to determine them. In the first iteration, a flat distribution of the angular variables (equivalent to a totally unpolarized \(J/\psi \) distribution) was adopted to calculate the acceptances. After correcting the signal with those acceptances, a first determination of the polarization parameters is performed, and the results are then used in a second determination of the acceptance values. The procedure is then repeated until convergence is reached; i.e., the extracted polarization parameters do not vary by more than 0.005 between two successive iterations. This occurs, for this analysis, after at most three steps. It was also checked that by using polarized MC input distributions in the first iteration the procedure converges towards the same results as in the default, unpolarized, case. Typical \(A_i \varepsilon_i \) values vary between \(-0.22\) (0.05) at low \(p_t \) and large \(|\cos \theta| \) and \(-0.41\) (0.63) at large \(p_t \) and small \(|\cos \theta| \) for the HE (CS) frame.

A simultaneous study of the \(J/\psi \) polarization variables in several reference frames, as first carried out in hadroproduction studies by the HERA-B experiment [23], is particularly interesting since consistency checks on the results can be performed, using combinations of the polarization parameters which are frame-invariant. In particular we made use of the invariant \(F = (\lambda_\theta + 3\lambda_\phi)/(1 - \lambda_\phi) \) [21], performing a simultaneous fit of the \(|\cos \theta| \) and \(|\phi| \) distributions in the two reference systems and further constraining the fit by imposing \(F \) to be the same in the CS and HE frames. In Fig. 2 we present, as an example, the result of such a fit relative to the last iteration of the \(A_i \varepsilon_i \) calculation, for \(2 < p_t < 3 \text{ GeV}/c \). The \(\chi^2/\text{d.o.f.} \) values (d.o.f. = 10) are 1.08, 1.00, 1.32 for \(2 < p_t < 3, 3 < p_t < 4 \) and \(4 < p_t < 8 \text{ GeV}/c \), respectively, showing that the quality of the fits is good. Compatible results are obtained when the constraint on \(F \) is released.

In the analysis described so far, the \(\lambda_{\theta\phi} \) parameter was implicitly assumed to be zero in the iterative acceptance calculation. In the one-dimensional approach followed in this analysis, \(\lambda_{\theta\phi} \) could be estimated from the data, defining an ad hoc variable \(\tilde{\phi} \), which is a function of \(\cos \theta \) and \(\phi \) and contains \(\lambda_{\theta\phi} \) as a parameter (see [21] for details). In principle, the iterative procedure applied to \(\lambda_\theta \) and \(\lambda_\phi \) determination could be extended to include \(\lambda_{\theta\phi} \); however, in some cases, relatively small statistical fluctuations in the distributions of the measured variables tend to induce large variations of the fitted values in the following iterations, leading to convergence problems. A check of the \(\lambda_{\theta\phi} = 0 \) assumption was done a posteriori for each \(p_t \) bin, by fitting the \(\tilde{\phi} \) distributions, corrected with an acceptance which makes use of the measured \(\lambda_\theta \) and \(\lambda_\phi \) values as inputs. In this way, we get for all the \(p_t \) bins \(\lambda_{\theta\phi} \) values compatible with zero for both CS and HE reference frames. We also note that all the previous experiments assumed \(\lambda_{\theta\phi} = 0 \) in their analysis, with the exception of HERA-B [23], who measured it in \(pA \) collisions at \(\sqrt{s} = 41.6 \text{ GeV} \) and found values ranging from 0 to 0.05.

Various sources of systematic uncertainty on the measurement of the polarization parameters have been investigated. The uncertainty on the signal extraction was studied by leaving in the fits the width of the CB function as a free parameter. This choice leads to an absolute variation of the polarization parameters between 0.02 and 0.10. Another sizable source of systematic uncertainty is the choice of the input distributions for \(p_t \) and \(y \) in the simulation. It was evaluated by comparing the results obtained with a parameterization of our 7 TeV results on differential \(J/\psi \) cross sections [17] with those obtained by using an extrapolation of lower energy results [24]. The absolute effect on the polarization parameters varies between 0.01 and 0.07. For the lowest \(p_t \) bin, the acceptance in the HE frame drops by about 40% in the highest \(|\cos \theta| \) bin used in the analysis (0.6 < \(|\cos \theta| \) < 0.8) and has also a strong variation inside the bin itself. We therefore followed an alternative approach, fitting the angular spectrum in the restricted interval 0 < \(|\cos \theta| \) < 0.6 (instead of the default choice 0 < \(|\cos \theta| \) < 0.8), and we conservatively considered the variation in the result of the fit (0.15) as an additional systematic uncertainty on \(\lambda_\theta \). For consistency, the same evaluation was performed in the CS frame. The role of the systematic uncertainties on the trigger and tracking efficiency [17] was also studied. The first was
evaluated by varying the efficiency values for each detector element by 2% with respect to the default values in the simulation. This choice is related to the estimated uncertainty on the detector efficiency calculation. For the second, we have used the rather conservative choice of comparing the reference results, obtained with realistic dead channel maps, with those relative to an ideal detector setup. The result is typically 0.03–0.04. Finally, by quadratically combining the results for the various sources, values between 0.04 and 0.21 are obtained for the global systematic uncertainties.

In Fig. 3, we show the results on λ_θ and λ_ϕ for inclusive J/ψ production. In both frames, all the parameters are compatible with zero, with a possible hint for a longitudinal polarization at low p_T (at a 1.6s level) in the HE frame. The numerical values are given in Table I.

The inclusive J/ψ yield is composed of a “prompt” component [direct $J/\psi + \text{decay of the } \psi(2S)$ and χ_c resonances] and of a component from B-meson decays. In the p_T range accessed in this analysis, the B-meson decay component accounts for 10% ($2 < p_T < 3 \text{ GeV}/c$), 12% ($3 < p_T < 4 \text{ GeV}/c$), and 15% ($4 < p_T < 8 \text{ GeV}/c$) of the inclusive yield, according to the LHCb measurements carried out in our same kinematical domain [15]. The polarization of the nonprompt component is expected to be quite small. In fact, even if a sizable polarization were observed when the polarization axis refers to the B-meson direction [25], it would be strongly smeared when it is calculated with respect to the direction of the decay J/ψ [15], as observed by CDF, who measured in this way $\lambda_\theta(J/\psi \rightarrow B) \sim -0.1$ in the HE frame [5]. By assuming conservatively $|\lambda_\theta(J/\psi \rightarrow B)| < 0.2$ for both frames, and taking into account the fraction of the inclusive yield coming from B-meson decays [15], the difference between prompt and inclusive J/ψ polarization was estimated and found to be at most 0.05, a value smaller than the systematic uncertainties of our measurements. Concerning higher-mass charmonia, the $\chi_c \rightarrow J/\psi + \gamma$ decay cannot be reconstructed in the muon spectrometer, and the $\psi(2S) \rightarrow \mu\mu$ statistics is currently too low. Values of the feed-down ratios measured mainly by lower energy experiments range from $\sim 10\%$ for the $\psi(2S)$ [26] to 25%–30% for the χ_c [27], implying that there could be a sizable difference between direct and prompt J/ψ polarization.

The results presented in Fig. 3 extend the study of the J/ψ polarization to LHC energies and therefore open up a new testing ground for theoretical models. At present, next-to-leading-order calculations for direct J/ψ polarization at the LHC via the color-singlet channel [10,12] predict a large longitudinal polarization in the HE frame ($\lambda_\theta \sim -0.6$) at $p_T \sim 5 \text{ GeV}/c$, which is in contrast with the vanishing polarization that we observe in such a transverse momentum region. The contribution of the S-wave color-octet channels was also worked out [9] and indicates a significantly different trend (large transverse polarization) with respect to the color-singlet contribution, but again in contrast with our result. In this situation, a rigorous treatment on the theory side of all the color-octet terms (including P-wave contributions) is mandatory, as well as a study of the contribution of χ_c and $\psi(2S)$ feed-down which, as outlined before, is important for a quantitative comparison with our result [28]. Such studies are presently in progress, and the comparison of their outcome with the results presented in this Letter will allow a very significant test of the understanding of the heavy-quarkonium production mechanisms in QCD-based models.

In summary, we have measured the polarization parameters λ_θ and λ_ϕ for inclusive J/ψ production in $\sqrt{s} = 7 \text{ TeV } pp$ collisions at the LHC. The measurement was carried out in the kinematical region $2.5 < y < 4$, $2 < p_T < 8 \text{ GeV}/c$. The polarization parameters λ_θ and λ_ϕ are consistent with zero, in both the helicity and Collins-Soper reference frames. These results can be used as a stringent constraint on the commonly adopted QCD framework for heavy-quarkonium production.

The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Department of Science and Technology, South Africa; Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de
TABLE I. The values of λ_θ and λ_ϕ in the two reference frames. Statistical and systematic uncertainties are quoted separately.

<table>
<thead>
<tr>
<th>p_t (p_T) (GeV/c)</th>
<th>λ_θ</th>
<th>λ_ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 (2.5)</td>
<td>$-0.36 \pm 0.09 \pm 0.21$</td>
<td>$0.05 \pm 0.04 \pm 0.04$</td>
</tr>
<tr>
<td>3–4 (3.4)</td>
<td>$-0.20 \pm 0.11 \pm 0.13$</td>
<td>$0.01 \pm 0.05 \pm 0.05$</td>
</tr>
<tr>
<td>4–8 (5.1)</td>
<td>$0.00 \pm 0.10 \pm 0.10$</td>
<td>$0.00 \pm 0.04 \pm 0.04$</td>
</tr>
<tr>
<td>CS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 (2.5)</td>
<td>$-0.10 \pm 0.14 \pm 0.13$</td>
<td>$-0.04 \pm 0.08 \pm 0.07$</td>
</tr>
<tr>
<td>3–4 (3.4)</td>
<td>$-0.06 \pm 0.14 \pm 0.07$</td>
<td>$-0.03 \pm 0.08 \pm 0.05$</td>
</tr>
<tr>
<td>4–8 (5.1)</td>
<td>$-0.09 \pm 0.10 \pm 0.08$</td>
<td>$0.03 \pm 0.06 \pm 0.07$</td>
</tr>
</tbody>
</table>

[19] $\eta = -\ln[\tan(\theta_{lab}/2)]$, where θ_{lab} is the polar angle in the laboratory frame.
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
71Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
72Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
73Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
74Petersburg Nuclear Physics Institute, Gatchina, Russia
75Physics Department, Creighton University, Omaha, Nebraska, USA
76Physics Department, Panjab University, Chandigarh, India
77Physics Department, University of Athens, Athens, Greece
78Physics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa
79Physics Department, University of Jammu, Jammu, India
80Physics Department, University of Rajasthan, Jaipur, India
81Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
82Purdue University, West Lafayette, Indiana, USA
83Pusan National University, Pusan, South Korea
84Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
85Rudjer Bošković Institute, Zagreb, Croatia
86Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
87Russian Research Centre, Kurchatov Institute, Moscow, Russia
88Saha Institute of Nuclear Physics, Kolkata, India
89School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
90Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
91Sezione INFN, Cagliari, Italy
92Sezione INFN, Bari, Italy
93Sezione INFN, Turin, Italy
94Sezione INFN, Bologna, Italy
95Sezione INFN, Catania, Italy
96Sezione INFN, Trieste, Italy
97Sezione INFN, Rome, Italy
98Sezione INFN, Padova, Italy
99Soltan Institute for Nuclear Studies, Warsaw, Poland
100SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
101Technical University of Split FESB, Split, Croatia
102The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
103The University of Texas at Austin, Physics Department, Austin, Texas, USA
104Universidad Autónoma de Sinaloa, Culiacán, Mexico
105Universidade de São Paulo (USP), São Paulo, Brazil
106Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
107Université de Lyon, Université Lyon 1, CNRS-IN2P3, IPN-Lyon, Villeurbanne, France
108University of Houston, Houston, Texas, USA
109University of Tennessee, Knoxville, Tennessee, USA
110University of Tokyo, Tokyo, Japan
111University of Tsukuba, Tsukuba, Japan
112Eberhard Karls Universität Tübingen, Tübingen, Germany
113Variable Energy Cyclotron Centre, Kolkata, India
114V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
115Warsaw University of Technology, Warsaw, Poland
116Wayne State University, Detroit, Michigan, USA
117Yale University, New Haven, Connecticut, USA
118Yerevan Physics Institute, Yerevan, Armenia
119Yıldız Technical University, Istanbul, Turkey
120Yonsei University, Seoul, South Korea
121Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

*Deceased.
†Also at Dipartimento di Fisica dell’Università, Udine, Italy.
‡Also at M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.
§Also at “Vinča” Institute of Nuclear Sciences, Belgrade, Serbia.