Appendix A
Basic engineering aspects of the laminar–turbulent transition

In the previous chapters, the laminar–turbulent transition was discussed in detail as a continuous process starting from excitation of small-amplitude shear-layer disturbances up to establishment of a developed turbulent flow. Finally, we briefly comment applications of basic knowledge on instability and transition in shear flows to engineering problems of the laminar–turbulent transition prediction and control.

A.1 Transition prediction

Basically, the goal of transition prediction is to clarify whether it takes place in a flow under consideration and to find the corresponding transition Reynolds number \(\text{Re}_T \). In early studies, the laminar–turbulent transition in boundary layers was predicted through empirical correlations between the basic flow parameters and \(\text{Re}_T \). One of the correlations was proposed by Michel (1951) and relates the Reynolds number based on the momentum thickness \(\text{Re}_\theta \) to the transition Reynolds number as

\[
\text{Re}_\theta = 1.174 \left(1 + \frac{22.400}{\text{Re}_T} \right) \text{Re}_T^{0.46}.
\]

This formula is applicable for attached boundary layers on airfoils with Reynolds numbers based on the wing chord length \(\text{Re}_l \gtrsim 2 \times 10^6 \). There exist also some correlation techniques taking into account the level of free-stream turbulence.

If the transition is modeled without resorting to empirical correlations, the most justified are the methods based on the concept of hydrodynamic stability. In this case, the prediction procedure should include three basic elements:

1. Determination of the structure of initial boundary-layer disturbances excited by external perturbations.
2. Calculation of linear development of small disturbances in the boundary layer.
3. Determination and calculation of the dominant nonlinear processes that characterize the beginning of final laminar flow breakdown.
To date certain techniques have been developed, allowing calculation of the initial amplitudes of Tollmien–Schlichting waves in some practical situations. The computations of the linear growth of boundary-layer disturbances are quite well advanced, and the adequacy of the description of Tollmien–Schlichting wave, crossflow, and Görtler vortex amplification by the linear theory of hydrodynamic stability is confirmed experimentally. The calculation of the nonlinear stage of the transition is a more difficult problem; however, it can be sometimes bypassed in practice. Particularly, at a low free-stream turbulence level, nonlinear processes are usually very fast, and the development of small-amplitude disturbances described by the linear stability theory takes place in the major part of a transitional boundary layer. This enables the use of the linear theory for prediction of the transition ‘point,’ neglecting the details of nonlinear phenomena.

According to experimental data and estimations, the nonlinear processes usually begin to play a noticeable role at amplitudes of the Tollmien–Schlichting waves of about $u' \approx 1\%$ of external-flow velocity U_e. Since the nonlinear zone is relatively short, it is possible to admit the linear growth of disturbances in calculations a little above their real saturation amplitude and accept a transition ‘point’ at which the amplitude of a Tollmien–Schlichting wave of a certain frequency (defined during the calculations) reaches the value $u' = 2–4\%$ of U_e. The exponential growth of disturbances in the linear region makes the calculated Reynolds number insensitive to some arbitrariness in selection of the limit value Re_T. In such a way, knowing the initial amplitude and frequency characteristics of the Tollmien–Schlichting waves (from an experiment or a solution of a relevant receptivity problem), it is possible to calculate the transition position with reasonable accuracy. This idea constitutes the essence of the so-called eN-method originally suggested by van Ingen (1956), Smith and Gamberoni (1956), which can be applied to two-dimensional boundary layers as well as to three-dimensional and separated flows dominated by convective instabilities.

![Fig. A.1](image-url)
Fig. A.1 To the eN-method: amplification curves for instability waves with different frequency parameters F
According to the method, Re₋ is determined by the minimum Reynolds number at which an envelope of the growth rate curves for instability waves of different frequencies (see, Fig. A.1)

\[
\ln \left(\frac{u'}{u'_0} \right) = - \int_{Re_F}^{Re} \alpha_i dRe_x ,
\]

where Re₋ corresponds to branch I of the neutral stability curve for the wave with the frequency parameter F, reaches a predefined value N. Usually for plane and axisymmetric flows at a low level of free-stream turbulence, N is about 8–10.

The value of N varies depending on external-flow perturbations. For example, the results of experiments on the transition on gliders are well generalized by the e^N-method, but with the exponent N = 15. Such a high value of the exponent, compared with other flight experiments, is stipulated by the absence of disturbing sources, e.g., a propulsion system. The influence of free-stream turbulence, assuming its isotropy \(\overline{u'^2} \approx \overline{v'^2} \approx \overline{w'^2} \), so that \(Tu = \sqrt{\overline{u'^2}}/U_e \), on the transition in a flat-plate boundary layer can be expressed by the interpolation formula

\[
N = -8.43 - 2.4 \ln(Tu),
\]

which provides acceptable accuracy in the range \(Tu \approx 0.1–2\% \).

For transition prediction at a high free-stream turbulence level, methods based on consideration of spatial growth of optimal disturbances can be used. Let us assume that:

1. Initial kinetic energy of the optimal disturbances in the boundary layer is proportional to kinetic energy of isotropic disturbances of the external flow \(E_e = Tu^2 \) that models the receptivity of flow to external vortical perturbations;
2. Kinetic energy of the unstable disturbances is related to \(E_e \) as \(E = \overline{G} Re E_e \), where \(\overline{G} \) is independent of Re, i.e., the growth is in accordance with the growth of the optimal disturbances;
3. Transition to turbulence occurs when kinetic energy of the disturbances reaches certain value \(E = E_T \).

Combining these requirements yields

\[
Tu \sqrt{Re_T} = K ,
\]

where \(K \) is a constant. Experiments testify that \(K \) is in the range of 1131–1506 at \(Tu = 0.9–6.0 \).

The experimental observations of the transition in swept-wing boundary layers show the presence of quite extended regions of linear-waves development, which enables extension of the e^N-method to three-dimensional flows. The transition to turbulence in a swept-wing boundary layer can occur in the region of the negative pressure gradient as a result of crossflow instability, or downstream where there is an amplification of the Tollmien–Schlichting waves. Then it is possible to apply the e^N-method to both kinds of instability and to consider that the transition occurs if its criterion is satisfied for at least one of them. The main difficulty of application of the e^N-method for three-dimensional flows is the necessity of determining the
direction of the disturbance growth, as outlined in Sect. 6.4.2. Nevertheless, Cebeci (1999), Cebeci et al (1991) applied the procedure and showed the efficiency of the \(e^N \)-method for the ONERA–D airfoil with the angles of sweep 49–60° and angles of attack 0–6° at \(\text{Re}_l = 1.2–1.6 \times 10^6 \). Crouch and Ng (2000) proposed a further modification of the \(e^N \)-method to account for both the crossflow instability and the flow receptivity, which demonstrated promising results at experimental verification.

We also notice that streamwise surface curvature in the absence of centrifugal instabilities can be taken into account through local profiles of the basic flow. However, it is known that the Görtler vortices together with the Tollmien–Schlichting and crossflow waves promote an earlier transition to turbulence. Experiments on concave surfaces with domination of the Görtler vortices indicate that the transition occurs at the Görtler number based on boundary-layer momentum thickness depending on the free-stream turbulence level as

\[
\text{Go}_\theta = 9e^{-17.3\text{Tu}}.
\]

Further advances in transition prediction are related to more accurate account of the nonparallel flow effects and curvature with the help of parabolized stability equations. This approach is attractive because of the low cost of the calculations comparable with the standard \(e^N \)-method. The approach also admits account of the flow receptivity in a natural manner through modification of initial and boundary conditions.

A.2 Outline of the linear control theory

The primary goal of the laminar–turbulent transition control is neutralizing disruptive shear-layer perturbations, thereby prolonging the laminar flow state. Research data on this subject are widely reported in original studies and reviewing papers while here we notice some fundamentals only.

The control strategies can be categorized based on the type of flow actuation as passive or active, depending on the absence or presence of energy consumption by the controlling device from external sources. Another classification scheme is based on the means by which the actuation changes in response to modifications in the flow. In such a way, the control strategy can be open-loop (without feedback) or closed-loop (with feedback). In open-loop control, actuator characteristics are designed in advance and remain fixed during its operation. Note that passive control is always the open-loop one.

In the control theory, the governing equations (the Navier–Stokes momentum equations and the continuity equation in our case) are called the descriptor system. In generalized form it can be written as

\[
\mathcal{E} \frac{\partial \mathbf{q}}{\partial t} = \mathcal{A} \mathbf{q} + \mathcal{B} \mathbf{g} + \mathcal{D} \mathbf{w},
\]

where \(\mathbf{q} \) is called the state vector consisting of disturbance velocities and pressure, \(\mathbf{w} \) is the vector of initial conditions, and \(\mathbf{g} \) is the control vector of forcing by which
the system is manipulated with the actuator described by B. The sensor gives information (usually limited) about the flow state as

$$y = C q,$$

where y is the vector of measured values and C describes the sensor characteristics.

To conduct the control in an open-loop manner, it is usually assumed that $y = q$ and forcing is changed through variations of actuator parameters, while the resulting measurements y are monitored to reach an objective.

A closed-loop control system, in addition to the actuator and the sensor, requires a controller. To close the loop, the control system must estimate the input given by y and try to tune the forcing in real time according to the measurements:

$$g = \mathcal{K} y$$

to reach an objective that is used to construct the feedback kernel \mathcal{K}.

It is frequently required to solve an optimization problem to design the actuator with account of given constraints, for example, to find a control technique that minimizes efforts to suppress the worst initial condition. The problem of optimization of a specified objective functional is called the optimal control problem. However, the presence of the control can make the worst initial condition different. This implies that both must be simultaneously optimized, to ensure control robustness. This approach is called the robust control.

References

van Ingen JL (1956) A suggested semi-empirical method for the calculation of the boundary layer transition region. VTH 74, Department of Aerospace Engineering, Delft University of Technology

Michel R (1951) Étude de la transition sur les profiles d’aile; établissement d’un critère de determination de point de transition et calcul de la traînée de profilé incompressible. Rep. 1/1578A, Onera

Further Reading

van Driest ER, Blumer CB (1963) Boundary layer transition: Freestream turbulence and pressure gradient effects. AIAA J 1:1303–1306

Dryden HL (1948) Recent advances in mechanics of boundary layer flow. Adv Appl Mech 1:1–40

Forest AE (1977) Engineering predictions of transitional boundary-layers. CP 224, AGARD

Further Reading

Runiyan LJ, Gerge-Falvy D (1979) Amplification factors corresponding to transition on an unswept wing in free flight and on a swept wing in wind tunnel. AIAA Paper 79–0267

Index

A

adjoint pressure, 25
adjoint stress, 182
adjoint velocity, 25
algorithm
Arnoldi, 44
QZ, 42, 44
amplification rate, see growth rate
attraction radius, 5
attractor, 4

B

bi-orthogonality condition, 26
bifurcation, 4
boundary conditions, see conditions, boundary
boundary layer, 21, 24, 30
asymptotic-suction, 14, 115
attached, 21, 133, 259
axisymmetric, 91
Blasius, 7, 9, 20, 47–50, 53, 55, 60, 85, 132
curved-wall, 67
reattached, 130, 132
self-similar, 51, 60, 67, 71, 109, 114
swept-wing, 108, 109, 137, 156, 209, 225, 261
variable-viscosity, 112
boundary-layer equations, see equations, Prandtl
burst, turbulent, 243–246

C

Chebyshev polynomial, 41
circular frequency, see frequency, circular
collocation point, 40, 97
Gauss–Lobatto, 41
trigonometric, 104
concomitant, bilinear, 25, 192
conditions, boundary, 5, 9, 13, 19, 27, 28, 41,
68, 69, 71, 74–76, 80, 91, 93, 98, 114, 180, 184, 192, 262
asymptotic, 53
constant, 3
Dirichlet, 41, 94, 99
homogeneous, 16, 17, 24, 25, 29, 53, 57,
94–96, 98, 104, 106, 122, 164, 166, 167, 208, 211
inhomogeneous, 179, 182
linearized, 183
natural, 9
Neumann, 41
no-slip, 14, 26, 28, 29, 52, 93, 112, 117
periodic, 102, 104
viscous, 21
conditions, initial, 5, 13, 14, 79, 80, 98, 111,
149, 160, 161, 163, 167, 168, 223, 229, 262
control
active, 262
closed-loop, 262
open-loop, 262
optimal, 263
passive, 262
robust, 162, 263
coordinate system
Cartesian, 10, 13, 16, 25, 91, 94, 115, 151
cylindrical, 13, 67, 72, 91
local, 108
model-fitted, 69, 108
natural, see coordinate system, model-fitted
Squire transformation, 111, 160
Stuart transformation, 160

© Springer Science+Business Media B.V. 2012

267
wavevector-aligned, 111, 160
criterion
circulation, 71, 73, 76
inflection point, 19, 52, 107, 111
maximum vorticity, 19
critical layer, see layer, critical
crossflow, 109–111, 137, 139, 207, 209, 225

D
deformation tensor, 10
dispersion, 16, 17, 23, 111, 135, 136, 153, 156, 160, 228, 230
displacement thickness, 47, 79, 119, 191
disturbance
asymptotic behavior of, 4, 150, 159
convective, 5
finite, 7, 8, 230
free-stream, 30
fundamental, 230
infinitesimal, 7, 8, 14
initial, 7, 167, 181, 247
localized, 150, 171, 195
modal, 13
neutral, 8
optimal, 162, 164, 166–168, 173, 214, 261
primary, 207, 209
secondary, 207, 209, 215
small, 17, 21, 39, 47, 57, 109, 115, 121, 135, 136, 149, 171, 229, 259, 260
symmetric, 96
three-dimensional, 15
transient, 24, 36, 161, 171
two-dimensional, 15
disturbance energy, 10, 21, 36, 59, 60, 116, 150, 159–161, 167, 171, 209, 235, 261
disturbance kinetic energy, see disturbance energy
disturbance profile
amplitude, 15
phase, 15

E
eN-method, 260
eigenfunctions, 16, 17, 24, 30, 37, 93, 106, 161
adjoint, 154, 182, 193
complete set of, 27
even, 37
generalized, 27
odd, 37
orthogonal, 24
eigenvalue, 17, 21, 24
leading, 37, 43, 44, 49, 105, 106, 167

secondary, 208
spatial, 22
temporal, 38
eigenvalue problem, 16–18, 22, 76, 81, 93, 96, 99, 100, 106, 122, 164, 177, 208
generalized, 44
nonlinear, 43, 86
solution, numerical, 42
equation
Blasius, 52
continuity, 10, 13, 14, 25, 50, 67, 80, 91, 98, 99, 111, 207, 262
energy balance, see equation, Reynolds–Orr
Falkner–Skan, 51
Falkner–Skan–Cooke, 109
Landau, 8
normal vorticity, see equation, Squire
Orr–Sommerfeld, 16, 18, 20, 23, 35, 37, 41, 51, 75, 77, 81, 86, 110, 121, 154, 208
Orr–Sommerfeld, adjoint, 26
Orr–Sommerfeld, asymptotic behavior of, 27
Poisson, 15, 94, 97, 98, 102
Rayleigh, 19, 171
Reynolds–Orr, 10
Squire, 17, 35, 37, 110
Voigt, 116

equations
Navier–Stokes, 4, 9, 55, 58, 67, 69, 92, 98, 181, 223, 262
Navier–Stokes, adjoint, 25
Dean, 77
Görtler, 81
Görtler, adjoint, 192, 193
Navier, 115
Prandtl, 70, 107, 109, 114
Taylor, 75

excitation
hard, 8, 9
soft, 8
excitation, efficiency of, 182
experimental modeling, see simulation, experimental

F
flapping, 130, 139
Floquet parameter, 105
Floquet theory, 102, 105, 208
Fredholm alternative, 57
<table>
<thead>
<tr>
<th>Index</th>
<th>269</th>
</tr>
</thead>
<tbody>
<tr>
<td>free-stream turbulence, 49, 51, 177, 189, 197, 212, 253, 259, 261, 262 high, 168, 195, 197, 231, 235, 252, 261 low, 224, 225, 233, 252, 260, 261 suppression, 60 frequency parameter, 47, 61, 81, 83, 86 frequency, circular, 15</td>
<td></td>
</tr>
<tr>
<td>H Hilbert space, 26 hot-wire anemometer, 40, 49, 60, 78, 131, 139, 155, 186, 225, 243, 244, 250</td>
<td></td>
</tr>
<tr>
<td>I Impulse response, 21 increment, see growth rate inflection point, 19, 21, 37, 107, 113, 114, 132–134, 137 initial conditions, see conditions instability absolute, 4, 5, 37, 151, 153, 154, 208, 215, 253 absolute, centrifugal, 72 algebraic, 30, 159, 161 compliance-induced, 120 convective, 4, 22, 111, 130, 137, 151, 153, 154, 177, 189, 208, 253 convective, centrifugal, 72, 77, 78 crossflow, 111, 114, 139, 153, 156, 177, 180, 181, 190, 194, 209, 212, 214, 260–262 Dean, 72, 209 Eckhaus, 210 global, 94, 130, 253 Görtler, 72, 78, 79, 83, 177, 192, 209, 214, 260, 262 inviscid, 19, 36, 73, 111, 113</td>
<td></td>
</tr>
<tr>
<td>J Jacobian, 103</td>
<td></td>
</tr>
<tr>
<td>K Knot, see collocation point Kronecker collocation point</td>
<td></td>
</tr>
<tr>
<td>L Lagrange identity, 25, 26, 182, 192 Λ-structure, 215, 225, 227 Λ-vortex, see Λ-structure layer, critical, 19, 213, 223</td>
<td></td>
</tr>
<tr>
<td>M Metastability, 8, 9, 39 mode detuned, 106 mixed, see mode, detuned normal, 15, 18, 21, 24, 26, 37, 49, 76, 96, 106, 160, 163, 182, 185, 187, 210 sinuous, 106, 211, 212, 214 spurious, 41, 98 varicose, 106, 211, 212, 214 modulus bulk, 116 shear, 116 momentum thickness, 114, 132, 134, 259, 262</td>
<td></td>
</tr>
<tr>
<td>N Narrow-gap approximation, 68, 69 near-wall jet, 52 Node, see collocation point number Dean, 77, 78 Görtler, 7, 79, 194 critical, 7 subcritical, 81 transition, 7 Reynolds, 6 critical, 6, 37, 47, 51, 94, 96, 102, 113, 115, 120, 153, 186</td>
<td></td>
</tr>
</tbody>
</table>
subcritical, 10, 161, 164, 172, 186, 214, 229
transition, 7, 39, 243, 245, 246, 259, 260
Taylor, 75

P

parametric resonance, see resonance, parametric
particle image velocimetry, 139
Poisson’s ratio, 116
pressure gradient
favorable, 107
unfavorable, 107
pressure gradient parameter, 52, 109
principle of exchange of stabilities, see stabilities, exchange of
problem
adjoint, 24, 167, 184, 192
boundary-value, 4
initial-value, 4, 24

Q

QR-decomposition, 100
QZ-algorithm, see algorithm, QZ

R

radius, nodal, 73
Rayleigh line, 73
Rayleigh quotient, 10, 163
Rayleigh theorem
first, see criterion, inflection point
second, 19
receptivity function, 180, 182, 184, 188, 191, 194
resonance, 178, 209
resonance, parametric, 227, 229, 231
root-mean-square amplitude, 39, 59

S

semicircle theorem, 19
shape factor, 134
shedding, see vortex shedding
simulation
direct numerical, 55, 58, 60, 133, 181, 228
experimental, 63, 184, 244
solvability condition, see Fredholm alternative source
far-field, 85, 150, 159, 177
near-field, 150, 159, 161, 177
spectrum
continuous, 27–30, 53, 161, 162
discrete, 27, 28, 30, 229
spike, 225, 227, 243
spike, cubic, 139
spot
turbulent, 170, 224, 232, 235, 243, 245
turbulent, incipient, 232, 233, 249
stabilities, exchange of, 5, 7, 8, 75, 77, 78
stability
asymptotic, 5, 13
conditional, 5, 36
global, 5, 7
indefinite, see stability, neutral
linear, 13
local approach, see stability, linear
locally-parallel approach
locally-parallel approach, 14, 81, 133, 139, 191, 194, 210
quasi-parallel approach, see stability,
linear locally-parallel approach
monotonic, 5, 36, 161
neutral, 3, 17, 19
asymptotic, 20, 50, 81
curve of, 20, 22, 24, 37, 39, 47, 48, 50, 58,
60, 62, 63, 73, 81–83, 86, 113, 114, 153, 234
surface of, 17, 18, 22, 24, 86
parallel approach, 13
streak, see streaky structure
streaky structure, 164, 168, 170, 171, 194, 195,
197, 209, 213–215, 229, 232, 252

T

tensor product, 97
transition scenario, 154, 162, 177, 233
transpose, 14
Hermitian, 100
turbulent burst, see burst, turbulent

V

velocity
group, 21, 23, 111, 151, 153, 170, 215
phase, 15, 19, 22, 29, 85, 132, 135, 155,
207, 215, 234
vibrating-ribbon technique, 49, 61, 149, 188,
227, 235
viscosity
dynamic, 6, 112, 123
kinematic, 6, 79, 113, 121, 123
second, 116
Voigt model, see equation, Voigt
vortex shedding, 130
vortex, coherent, 231

W

wave
two-dimensional, 24
axisymmetric, 72, 73, 75, 94, 136
dilatation, 116
equivoluminal, 116
helical, 72, 76, 136
oblique, 13, 15, 24, 30, 55, 85, 119, 135, 136, 156, 166, 168, 170, 216, 225, 228
plane, 15
pressure, 28
primary, 208, 243

Rayleigh, 19
subharmonic, 208, 230, 243
two-dimensional, 15, 19, 24, 135, 136, 207, 225, 228
vorticity, 17, 18, 29, 30
wave train, 149, 150, 155
wavelength parameter, 81
wavenumber
azimuthal, 76, 92
streamwise, 15
transverse, 15
wavevector, 15, 22, 153, 156, 160, 228
angle, 15, 107, 136
magnitude, 24