Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

A search is presented for heavy-quark pair production (QQ) under the decay hypothesis $QQ \rightarrow W^+qW^-\bar{q}$ with $q = d, s, b$ for up-type Q or $q = u, c$ for down-type Q. The search is performed with 1.04 fb$^{-1}$ of integrated luminosity from pp collisions at $\sqrt{s} = 7$ TeV collected by the ATLAS detector at the CERN LHC. Dilepton final states are selected, requiring large missing transverse momentum and at least two jets. Mass reconstruction of heavy quark candidates is performed by assuming that the W boson decay products are nearly collinear. The data are in agreement with Standard Model expectations; a heavy quark with mass less than 350 GeV is excluded at 95% confidence level.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-q, 14.65.Jk, 14.80.-j

The addition of one or more heavy quarks is a natural extension to the Standard Model, capable of providing an additional source of CP violation in B_s decays and accommodating a heavy Higgs boson [1, 2]. Searches for heavy quarks with the Collider Detector at Fermilab (CDF) constrain the mass of heavy quarks (Q) that decay as $Q \rightarrow Wq$, where $q = d, s, b$ for up-type Q or $q = u, c$ for down-type Q, to be $m_Q > 340$ GeV [3]. More specific searches have also constrained the mass of up-type heavy quarks (t') that decay as $t' \rightarrow Wb$ to be $m_{t'} > 358$ GeV [3] and the mass of down-type heavy quarks (b') decaying via $b' \rightarrow Wt$ to be $m_{b'} > 372$ GeV [4]. The DØ experiment at Fermilab has set a mass limit of $m_Q > 285$ GeV [5] on heavy quarks that decay as $Q \rightarrow Wq$. All previous searches used the “lepton+jets” channel, where only one of the produced W bosons decays hadronically.

In this Article, a search is presented for pair production of a heavy quark (QQ) in data corresponding to an integrated luminosity of 1.04 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 7$ TeV collected by the ATLAS experiment. The heavy quark is assumed to decay via $Q \rightarrow Wq$ where $q = d, s, b$ for up-type Q or $q = u, c$ for down-type Q. This search does not include states with $q = t$, i.e. $d' \rightarrow Wt$ decays are assumed not to happen. The search is performed in the dilepton channel, where both W bosons decay leptonically. Fourth-generation up-type quarks (t') decaying through weak charged currents ($t' \rightarrow Wb$, $t' \rightarrow Ws$, and $t' \rightarrow Wd$) are used as a benchmark.

Three complementary searches for fourth-generation quarks were performed with the ATLAS detector using 1.04 fb$^{-1}$ of 2011 data. These searches all implement b-quark identification algorithms and are thus targeted towards more specific heavy quark decay modes. The channels considered are $t't' \rightarrow W^+W^-bb$ in the lepton plus jets channel (setting a limit $m_{t'} > 404$ GeV [6]), $b'b' \rightarrow W^+W^-\ell \rightarrow W^+W^-W^+W^-\ell$ in the lepton plus jets channel ($m_{b'} > 480$ GeV [7]), and $b'b' \rightarrow W^+W^-\ell \rightarrow W^+W^-W^+W^-\ell$ with two same sign leptons in the final state ($m_{b'} > 450$ GeV [8]).

The dileptonic final state arises in a way similar to that of pair-produced top quarks: $QQ \rightarrow \ell^+\nu\ell^−\bar{\nu}$, where ℓ is either e or μ. Leptonically-decaying intermediary τ leptons are able to contribute to this final state if additional neutrinos are considered. The signature is at least two jets, two oppositely charged leptons, and missing transverse momentum (E_T^{miss}) from undetected neutrinos. Top quark pair production is the dominant source of background. To distinguish a potential heavy-quark signal, heavy-quark mass reconstruction is performed by taking advantage of the larger boost each W boson receives from the decay of a heavy quark compared to the decay of a top quark. This large boost makes each undetected neutrino approximately collinear with an observed charged lepton.

The following sections contain descriptions of the ATLAS detector (Section I), simulated samples (Section II), object reconstruction (Section III), baseline event selection (Section IV), data-driven background estimates (Section V), mass reconstruction strategy (Section VI), validation of background modeling (Section VII), final event selection (Section VIII), binned maximum-likelihood ratio fit using the reconstructed mass (Section IX and Section X), and final results (Section XI).

I. THE ATLAS DETECTOR

The ATLAS detector [9] is a multi-purpose particle detector with precision trackers, calorimeters and muon spectrometers. The momenta of charged particles with pseudorapidity $|\eta| < 2.5$\(^1\) are measured by the inner detector (ID), which is a combination of silicon pixels, sili-
con microstrips and a straw-tube tracker. The ID operates in a uniform 2 T axial magnetic field produced by a superconducting solenoid. The pixel detector measurements enable precise determination of production vertices.

Electromagnetic (EM) calorimetry for electron and photon reconstruction is provided by a high-granularity, three layer liquid argon (LAr) sampling calorimeter with lead absorbers in the region $|\eta| < 3.2$. A presampler is used to correct for energy loss by electrons and photons in material in front of the calorimeter for $|\eta| < 1.8$. Hadronic calorimetry for $|\eta| < 1.7$ is provided by a scintillating tile sampling calorimeter with steel absorbers, and for $1.5 < |\eta| < 3.2$ it is provided by a LAr sampling calorimeter with copper-plate absorbers.

Muons are detected with a multi-system muon spectrometer (MS). Precision measurements in the η coordinate are made by monitored drift tubes for $|\eta| < 2.7$. These are supplemented by cathode-strip chambers measuring both the η and azimuth (ϕ) coordinates for $2.0 < |\eta| < 2.7$. Fast measurements required for initiating trigger logic are provided by resistive-plate chambers for $|\eta| < 1.05$ and then by thin-gap chambers for $1.05 < |\eta| < 2.4$. The muon detectors operate in a non-uniform toroidal magnetic field generated by a superconducting air-core magnet system.

The ATLAS detector uses a three-level trigger system to select events for offline analysis. For this search, events are required to have at least one lepton satisfying trigger requirements. Electron trigger candidates must have transverse energy $E_T > 20$ GeV, must satisfy shower-shape requirements [10] and must have an ID track matched to the EM shower. Muon trigger candidates must have transverse momentum $p_T > 18$ GeV and matching tracks in the ID and MS.

II. SIMULATED SIGNAL AND BACKGROUND SAMPLES

Simulated samples are used to evaluate the contributions from the $Q\bar{Q}$ signal (assuming an up-type heavy quark) and most background processes. Unless otherwise noted, all events are showered and hadronized with HERWIG v6.5 [11, 12], using JIMMY [13] for the underlying event model. After event generation, all samples are processed with the GEANT4-based [14] simulation of the ATLAS detector [15] and subject to the same reconstruction algorithms as the data.

The CERN LHC instantaneous luminosity varied during data-taking from about 2×10^{32} cm$^{-2}$s$^{-1}$ to 1×10^{33} cm$^{-2}$s$^{-1}$ [16, 17]. At maximum luminosity numerous proton-proton (pp) interactions were superimposed in each bunch crossing. This pileup background produces additional activity in the detector, affecting variables such as jet reconstruction and isolation energies. Monte Carlo (MC) events simulate the pileup background by adding minimum bias events on top of the hard scatter. The MC events are later reweighted such that the simulated instantaneous luminosity distribution matches that in data.

A. Heavy-quark pair production

Production and decay of heavy-quark pairs ($Q\bar{Q}$) is modeled with the leading-order (LO) generator PYTHIA 6.421 [18] using MRST 2007 LO* [19] parton distribution functions (PDFs). The production cross-section is calculated using HATHOR [20] with approximate next-to-next-to-leading-order (NNLO) QCD calculations with CTEQ6.6 PDFs [21] for several heavy-quark masses (m_Q). In addition, scale uncertainties are evaluated in the range $m_Q/2$ to $2 \times m_Q$ and PDF uncertainties are calculated from the CTEQ6.6 error eigenvectors. The cross-sections and uncertainties for each heavy-quark mass considered in this analysis are shown in Table I. Samples are generated with either $t' \rightarrow Wb$, $t' \rightarrow Ws$, or $t' \rightarrow Wd$ final states; final results are verified with all three decay modes.

<table>
<thead>
<tr>
<th>m_Q (GeV)</th>
<th>$\sigma_{Q\bar{Q}}$ (pb)</th>
<th>Scale Δ</th>
<th>PDF Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>8.0</td>
<td>+0.2</td>
<td>+1.0</td>
</tr>
<tr>
<td>350</td>
<td>3.2</td>
<td>+0.1</td>
<td>+0.4</td>
</tr>
<tr>
<td>400</td>
<td>1.4</td>
<td>+0.1</td>
<td>+0.2</td>
</tr>
<tr>
<td>450</td>
<td>0.68</td>
<td>+0.02</td>
<td>+0.11</td>
</tr>
<tr>
<td>500</td>
<td>0.34</td>
<td>+0.01</td>
<td>+0.06</td>
</tr>
</tbody>
</table>

B. Top quark pair production

The background due to $t\bar{t}$ production is modeled using the next-to-leading-order (NLO) generator MC@NLO v3.41 [22] with an assumed top quark mass of 172.5 GeV and the NLO PDF set CTEQ6.6. The cross-section for $t\bar{t}$ production is normalized to the value obtained from an approximate NNLO calculation [20].
C. Z boson, diboson and single-top quark production

The background from Z/γ^* boson production in association with jets is modeled with the LO generator ALPGEN v2.13 [23]. The LO PDF set CTEQ6.1 [21] is used to generate Z/γ^*+jets events with dilepton invariant mass m_{ll} > 10 GeV. For WW, WZ and ZZ production, events are generated with the LO generator HERWIG v6.5 and the LO PDF set CTEQ6.1. For the small background from single-top production, MC@NLO is used with the NLO PDF set CTEQ6.6, invoking the diagram removal scheme [24, 25] to remove overlaps between the single-top and tt final states. The cross-sections for Z/γ^*+jets samples are determined using NNLO inclusive calculations from FEWZ [26, 27] and from a data-driven technique where possible, while the cross-sections for diboson samples are determined using NLO calculations with MC@NLO. The cross-sections for single-top samples are normalized to an approximate NNLO prediction [28, 29].

III. OBJECT SELECTION

Electrons are found by a calorimeter-seeded reconstruction algorithm and must have a track that matches an energy deposit in the calorimeter. They are required to satisfy $E_{\text{cluster}} / \cosh(\eta_{\text{track}}) > 25$ GeV, where E_{cluster} is the energy deposited in the calorimeter cluster and η_{track} is the pseudorapidity of the matching track. Electrons are required to be in a pseudorapidity range $|\eta_{\text{cluster}}| < 2.47$, excluding the transition region $1.37 < |\eta_{\text{cluster}}| < 1.52$ between the EM calorimeter barrel and endcap. They must also satisfy a calorimeter isolation $I_{\text{cal}} < 3.5$ GeV requirement in $\Delta R < 0.2$, where $\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}$. Calorimeter isolation is defined as the energy reconstructed within a cone of a certain radius around the lepton that is not associated with that lepton, and it is represented by I_{cal}. The calorimeter shower shape is required to closely resemble what is expected for electrons [10].

Jets are reconstructed from topological clusters of energy deposits in the calorimeter [30] using the anti-k_t algorithm with distance parameter $R = 0.4$ [31, 32]. These jets are calibrated to the hadronic energy scale using a correction factor obtained from simulation which depends on p_T and η [33]. They are required to satisfy $p_T > 25$ GeV and $|\eta| < 2.5$. Jets that fall within $\Delta R < 0.2$ of accepted electrons are rejected.

Muons are found by requiring that a track reconstructed in the MS has a matching track in the ID. A loose cosmic ray rejection is applied by removing all muon pairs that are back-to-back azimuthally ($\Delta \phi(\mu, \mu') > 3.1$) and whose transverse impact parameter with respect to the beam line is greater than 0.5 mm. Muon candidates must satisfy $p_T > 20$ GeV and $|\eta| < 2.5$. The muon must be isolated, satisfying calorimeter isolation $I_{\text{cal}} < 4$ GeV in $\Delta R < 0.3$ and tracking isolation $I_{\text{trk}} < 4$ GeV in $\Delta R < 0.3$. Tracking isolation is defined as the sum of track momenta within a cone of a certain radius around the lepton vertex, and it is represented by I_{trk}. The muon must also not fall within $\Delta R < 0.4$ of any jet with $p_T > 20$ GeV.

The E_T^{miss} is constructed from the vector sum of calorimeter topological cluster energies projected onto the transverse plane [34]. Calorimeter deposits not associated to a jet are calibrated at the EM energy scale. Deposits associated with selected jets contribute at the corrected hadronic energy scale. Muon transverse momenta are included after correcting for muon energy losses in the calorimeters.

IV. BASELINE EVENT SELECTION

The QQ pair decay yields two charged leptons, two jets and E_T^{miss} from the undetected neutrinos. An initial dilepton selection is applied to validate the modeling of the Z/γ^* boson production background as well as the identification of leptons, reconstruction of jets and measurement of E_T^{miss}.

The initial dilepton selection [35, 36] first requires that an event contains a high-quality reconstructed primary vertex. The event must also have exactly two leptons (e or μ) with opposite charges, at least one of which must be associated with the object that triggered the event. The two leptons must not share a track in the ID. At this stage, the data sample is dominated by $Z/\gamma^* \rightarrow \ell \ell$ decays (the Drell-Yan process), although the contribution from tt production is evident at large jet multiplicity, as can be seen in Figures 1 and 2. These figures show good agreement between the data and background expectation.

To reduce the background from $Z/\gamma^* \rightarrow \ell \ell$ decays, the baseline selection requires:

- All events must have at least two jets, each with $p_T > 25$ GeV and $|\eta| < 2.5$;

- Same-flavor events (ee and $\mu\mu$) must satisfy a missing transverse momentum requirement, $E_T^{\text{miss}} > 60$ GeV;

- The dilepton invariant mass of same-flavor events (ee and $\mu\mu$) must be greater than 15 GeV and must fall outside a window around the Z boson mass, defined as 81 GeV < m_{ll} < 101 GeV;

- In different-flavor events ($e\mu$), H_T, defined as the scalar sum of E_T from every lepton and jet passing the object selection criteria, must exceed 130 GeV. The H_T requirement reduces the $Z/\gamma^* \rightarrow \tau\tau$ background, where a E_T^{miss} requirement is insufficient due to the presence of neutrinos.
defined in Section V A has not been applied here. The data-driven Drell-Yan estimate defined in Section V A has not been applied here.
V. DATA-DRIVEN ESTIMATES

A. Drell-Yan events

The total number of Drell-Yan ee and $\mu\mu$ events remaining after the baseline selection has been applied is estimated with a data-driven technique that extrapolates from a control region (CR) [37]. Events in the CR have dilepton invariant mass in the range 81 GeV – 101 GeV with at least two jets and $E_{T}^{\text{miss}} > 30$ GeV. The number of data events in the control region, Data(CR), and MC Z/γ^{*}+jets events in the control region, MC$_{DY}$(CR), are used to scale the prediction of Z/γ^{*}+jets events in the signal region, MC$_{DY}$. Non-Z/γ^{*} background processes in the control region, MC$_{other}$(CR), are subtracted from the data using MC predictions. The estimated number of Z/γ^{*}+jets events in the signal region, N_{DY}, in the ee and $\mu\mu$ channels is calculated with Equation 1:

$$N_{DY} = \frac{\text{Data(CR)} - \text{MC}_{other}(CR)}{\text{MC}_{DY}(CR)} \times \text{MC}_{DY}. \quad (1)$$

B. Fake lepton events

A small fraction of the background consists of events in which a jet or a non-prompt lepton is misidentified as a prompt lepton from a W boson decay. Prompt leptons and misidentified non-prompt leptons are referred to as real and fake leptons, respectively. Fake muons are predominantly produced from semi-leptonic b or c quark decays in which the muon passes the isolation requirements despite being produced in association with a jet. There are three principal mechanisms for producing fake electrons: heavy-flavor decay, light flavor jets with a leading π^{0} overlapping with a reconstructed track from a charged particle, and asymmetric conversion of photons into $e^{+}e^{-}$. The largest source of events with fake leptons is W boson production with associated jets, including lepton plus jets decays of top quark pairs.

A matrix method [36] is used to estimate the fraction of the sample that comes from fake lepton events. A looser lepton selection is defined, and the number of observed dilepton events with two tight leptons (N_{TT}), one loose and one tight lepton (N_{TL}, N_{LT}) or two loose leptons (N_{LL}) is counted. The leptons are ordered by p_T such that the leading lepton in N_{TL} is tight and the leading lepton in N_{LL} is loose. Tight leptons pass the selection criteria defined in Section III. Loose electrons need to pass the same selections as the electrons defined in Section III except for looser shower shape and calorimeter isolation requirements [10]. Loose muons only need to satisfy $p_T > 20$ GeV, $|\eta| < 2.5$ and the muon-jet overlap requirements defined in Section III.

The probabilities for real and fake leptons that pass the loose identification criteria to also pass the tight criteria are defined as r_i and f_i, respectively. These two probabilities are measured separately for $\ell = e$ and $\ell = \mu$. Using r_i and f_i, linear expressions are obtained for the observed yields as a function of the number of events with zero, one and two real leptons together with two, one and zero fake leptons (N_{RR}, N_{RF} and N_{FR}; in N_{RF} the real lepton has greater p_T than the fake lepton, and vice versa for N_{FR}):

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = M \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}, \quad (2)$$

where M is a 4×4 matrix containing terms proportional to r_ℓ and f_ℓ. The matrix is inverted in order to extract the real and fake content of the observed dilepton event sample. The method explicitly accounts for the presence of events with two fake leptons.

The probability (r_ℓ) for a real loose lepton to pass the tight criteria is measured in $Z \to \ell\ell$ events in data with a tag-and-probe method. The probability for a fake loose electron to satisfy the tight requirements (f_ℓ) is measured by requiring exactly one loose electron in an event with $E_{T}^{\text{miss}} < 10$ GeV. The probability for a fake loose muon to satisfy the tight requirements (f_μ) is measured in a control region obtained by requiring exactly one loose muon with $|\Delta\phi(\mu, E_{T}^{\text{miss}})| < 0.5$. The baseline selection requirements from Section IV are not applied when checking these control regions.

VI. MASS RECONSTRUCTION

After the baseline selection has been applied, mass reconstruction of heavy quark candidates is performed in order to discriminate the heavy-quark decays from the dominant $t\bar{t}$ background. Direct reconstruction is not possible, as two neutinos escape the detector. However, a unique feature of the heavy quark is the large momentum of the daughter W boson, which makes its decay products approximately collinear in the detector as seen in Figure 3.

Both neutrino momentum vectors are reconstructed by assuming that the neutinos are the sole contributors to E_{T}^{miss} and that they are approximately collinear with the leptons. The optimal values of each $|\Delta\eta(\nu, \ell)|$ and each $|\Delta\phi(\nu, \ell)|$ are fit by minimizing the mass difference between the two reconstructed heavy quarks using MINUIT [38]. The fitted direction of each neutrino is constrained to be within $\Delta R < 2.5$ of the direction taken by the neutrino’s leptonic partner from the W boson decay, and all jet combinations are considered during each step of the mass difference minimization. A solution of the minimization procedure is penalized if the scalar sum of neutrino momenta exceeds the scalar sum of lepton momenta by at least 30%. The square of the difference between each reconstructed W boson mass and 80.4 GeV is
added to the square of the heavy-quark mass difference in the minimized function; the preferred solutions produce W bosons with reconstructed masses that are close to the W boson mass. The full minimization function is:
\[f_{\text{min}} = (m_{Q_1} - m_{Q_2})^2 + (m_{W_1} - (80.4 \text{ GeV}))^2 + (m_{W_2} - (80.4 \text{ GeV}))^2. \]

The two reconstructed mass values tend to be more correlated for signal than background, as shown in Figure 4. This is because the collinear approximation does not work well for single-top, diboson, Drell-Yan, and fake lepton events. An event is only kept if the two values of reconstructed mass are within 25 GeV of each other. The selection efficiency for this requirement is greater than 99% for each signal, 95% for \(t \bar{t} \), and only 75% – 90% for other backgrounds.

The final reconstructed mass \(m_{\text{Collinear}} \) is taken to be the average of the two reconstructed masses in the event. Distributions of \(m_{\text{Collinear}} \) for various simulated \(QQ \) samples and the \(t \bar{t} \) background are shown in Figure 5.

The expected background yields and number of observed events after the baseline selection are given in Table II. Distributions of \(H_T \) and \(m_{\text{Collinear}} \) are shown in Figure 6.

VII. BACKGROUND VALIDATION

Event samples with the baseline selection and low \(H_T \), low lepton \(p_T \), low jet \(p_T \) or low \(E_T^{\text{miss}} \) are examined to validate the modeling of the background (Figure 7). These conditions cause the distributions to be depleted of signal. In each case, the data is described well by the background model, within uncertainties.

VIII. FINAL EVENT SELECTION

The baseline selection provides excellent discrimination against \(Z/\gamma^* \) production and other backgrounds, but additional selection requirements are necessary to suppress the dominant \(t \bar{t} \) background. A triangular selection in \(H_T + E_T^{\text{miss}} \) versus \(m_{\text{Collinear}} \), \(H_T + E_T^{\text{miss}} > X - 0.4 \times m_{\text{Collinear}} \) with \(X \) dependent on the assumed signal mass, is applied. Mass-dependent requirements on \(E_T^{\text{miss}} \) and leading jet \(p_T \) are imposed as well. These selection requirements are optimized in MC simulation by seeking a point of maximum significance, \(S/\sqrt{S+B} \), while simultaneously varying all of
FIG. 6. Expected and observed distributions of (a) H_T and (b) $m_{\text{Collinear}}$ for the sum of ee, $\mu\mu$ and $e\mu$ channels after the baseline selection. The last bin contains overflow events. Samples are stacked in the same order as they are presented in the legend, from left to right; the first entry in the legend is at the bottom of the stack. The signal has been amplified to 20 times the expected rate.

TABLE II. Expected and observed number of events after baseline selection. Uncertainties shown are statistical and systematic, added in quadrature.

<table>
<thead>
<tr>
<th>Process</th>
<th>ee (Expected)</th>
<th>ee (Observed)</th>
<th>$e\mu$ (Expected)</th>
<th>$e\mu$ (Observed)</th>
<th>$\mu\mu$ (Expected)</th>
<th>$\mu\mu$ (Observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>190 ±40</td>
<td>1140 ±60</td>
<td>370 ±80</td>
<td>250 ±50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single-top</td>
<td>9.4 ±2.2</td>
<td>60 ±14</td>
<td>24 ±5</td>
<td>0 ±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow ee$</td>
<td>6.3 ±2.0</td>
<td>0 ±0.1</td>
<td>24 ±5</td>
<td>0 ±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \mu\mu$</td>
<td>0.4 ±0.1</td>
<td>2.2 ±1.1</td>
<td>17 ±4</td>
<td>0 ±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \tau\tau$</td>
<td>7.3 ±2.4</td>
<td>62 ±15</td>
<td>16 ±4</td>
<td>0 ±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>8.7 ±2.2</td>
<td>49 ±11</td>
<td>12.7 ±3.0</td>
<td>0 ±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fake leptons</td>
<td>3.7 ±2.8</td>
<td>70 ±40</td>
<td>0.5 ±0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Bg</td>
<td>230 ±50</td>
<td>1380 ±60</td>
<td>440 ±90</td>
<td>250 ±40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>243</td>
<td>1410</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 7. Distributions of $m_{\text{Collinear}}$ in events that have (a) $H_T < 400$ GeV, (b) two leptons with $p_T < 60$ GeV, (c) all jets with $p_T < 60$ GeV or (d) $E_{T\text{miss}} < 80$ GeV. Each histogram contains the sum of the ee, $\mu\mu$ and $e\mu$ channels. The last bin contains overflow events. Samples are stacked in the same order as they are presented in the legend, from left to right; the first entry in the legend is at the bottom of the stack.
the selection requirement parameters. Distributions of $H_T + E_T^{miss}$ versus $m_{Collinear}$ for background and signal are shown in Figure 8. Tables III and IV list the full set of optimized selection requirements at each mass point. Table V lists the expected backgrounds, expected signal and observed data for each mass point after this final selection. Figure 9 shows the distributions in $m_{Collinear}$ for two signal samples after the final selection.

![Figure 8](https://example.com/figure8)

FIG. 8. $H_T + E_T^{miss}$ versus $m_{Collinear}$ for (a) background and (b) $m_Q = 350$ GeV signal events for the sum of ee, $\mu\mu$, and $e\mu$ channels. The scale, shown on the right, indicates the number of reconstructed MC events per bin passing the baseline selection and weighted to $\int E dt = 1.04$ fb$^{-1}$. The shaded region is removed by the triangular selection requirement shown in Table III.

IX. SYSTEMATIC UNCERTAINTIES

The major sources of systematic uncertainty are due to modeling of the signal and most sources of background. The uncertainties due to simulation of the lepton trigger, reconstruction and selection efficiencies are assessed using leptons from $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ in data [36]. MC events are corrected for differences in data and simulation. The statistical and systematic uncertainties in these corrections are included in the uncertainties on the acceptance values. Uncertainties in the modeling of the lepton energy scale and resolution are studied using reconstructed Z boson mass distributions. The jet energy scale (JES) and its uncertainty are derived by combining information from test-beam data, LHC collision data and simulation [33]. The JES uncertainty varies as a function of jet p_T and η and also accounts for the presence of nearby jets and event pileup. There is additional uncertainty associated with jets originating from b quarks in simulation. Smaller uncertainties are associated with the jet energy resolution and jet finding efficiency.

Uncertainties related to the E_T^{miss} arise due to uncertainties associated with low momenta jets, event pileup, and calorimeter energy not associated with reconstructed leptons or jets [34]. There is also some uncertainty in esti-

TABLE III. List of $H_T + E_T^{miss}$ versus $m_{Collinear}$ requirements for each m_Q.

<table>
<thead>
<tr>
<th>m_Q (GeV)</th>
<th>Triangle Requirement (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>$H_T + E_T^{miss} > 610 - 0.4 \times m_{Collinear}$</td>
</tr>
<tr>
<td>350</td>
<td>$H_T + E_T^{miss} > 700 - 0.4 \times m_{Collinear}$</td>
</tr>
<tr>
<td>400</td>
<td>$H_T + E_T^{miss} > 790 - 0.4 \times m_{Collinear}$</td>
</tr>
<tr>
<td>450</td>
<td>$H_T + E_T^{miss} > 880 - 0.4 \times m_{Collinear}$</td>
</tr>
<tr>
<td>500</td>
<td>$H_T + E_T^{miss} > 970 - 0.4 \times m_{Collinear}$</td>
</tr>
</tbody>
</table>

TABLE IV. List of jet p_T and E_T^{miss} requirements for each m_Q.

<table>
<thead>
<tr>
<th>m_Q (GeV)</th>
<th>Jet p_T (GeV)</th>
<th>E_T^{miss} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Leading jet $p_T > 80$</td>
<td>—</td>
</tr>
<tr>
<td>350</td>
<td>Leading jet $p_T > 120$</td>
<td>—</td>
</tr>
<tr>
<td>400</td>
<td>Leading jet $p_T > 130$</td>
<td>$E_T^{miss} > 70$</td>
</tr>
<tr>
<td>450</td>
<td>Leading jet $p_T > 130$</td>
<td>$E_T^{miss} > 70$</td>
</tr>
<tr>
<td>500</td>
<td>Leading jet $p_T > 130$</td>
<td>$E_T^{miss} > 70$</td>
</tr>
</tbody>
</table>

TABLE V. Expected background, expected signal and observed data in ee, $\mu\mu$, and $e\mu$ channels for $m_Q = 300 - 500$ GeV after final selection. The uncertainties shown include both statistical and systematic contributions.

<table>
<thead>
<tr>
<th>m_Q (GeV)</th>
<th>Expected Background</th>
<th>Expected Signal</th>
<th>Observed Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300^{+40}_{-40}</td>
<td>95^{+14}_{-12}</td>
<td>315</td>
</tr>
<tr>
<td>350</td>
<td>148^{+22}_{-18}</td>
<td>35^{+5}_{-4}</td>
<td>180</td>
</tr>
<tr>
<td>400</td>
<td>75^{+11}_{-10}</td>
<td>$17.1^{+2.5}_{-2.1}$</td>
<td>89</td>
</tr>
<tr>
<td>450</td>
<td>49^{+8}_{-6}</td>
<td>$8.4^{+1.2}_{-1.0}$</td>
<td>57</td>
</tr>
<tr>
<td>500</td>
<td>30^{+5}_{-4}</td>
<td>$4.4^{+0.6}_{-0.5}$</td>
<td>36</td>
</tr>
</tbody>
</table>
FIG. 9. Distributions of $m_{\text{Collinear}}$ for the sum of ee, $\mu\mu$, and $e\mu$ channels after applying the final selection for (a) $m_Q = 350$ GeV and (b) $m_Q = 400$ GeV. The last bin contains overflow events. The uncertainty bands include all statistical and systematic background uncertainties. The signal samples are normalized using the cross-sections in Table I. Samples are stacked in the same order as they are presented in the legend, from left to right; the first entry in the legend is at the bottom of the stack.

TABLE VI. Overall normalization uncertainties for each background, which are either due to cross-section uncertainties or uncertainties related to data-driven methods.

<table>
<thead>
<tr>
<th>Background</th>
<th>$+1\sigma$ Unc.</th>
<th>-1σ Unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>7 %</td>
<td>10 %</td>
</tr>
<tr>
<td>single-top</td>
<td>7 %</td>
<td>7 %</td>
</tr>
<tr>
<td>$Z/\gamma^* \to ee$</td>
<td>60 %</td>
<td>30 %</td>
</tr>
<tr>
<td>$Z/\gamma^* \to \mu\mu$</td>
<td>40 %</td>
<td>30 %</td>
</tr>
<tr>
<td>$Z/\gamma^* \to \tau\tau$</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>5 %</td>
<td>5 %</td>
</tr>
<tr>
<td>fake leptons</td>
<td>50 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

The integrated luminosity measurement carries a 3.7% uncertainty [16, 17]. Each sample also has an uncertainty associated with its theoretical cross-section or with its data-driven rate. For $t\bar{t}$ [20], single-top [28, 29] and $Z/\gamma^* \to \tau\tau$ [43] the rate uncertainty is estimated from theoretical calculations. $Z/\gamma^* \to ee$, $Z/\gamma^* \to \mu\mu$ and fake lepton event rate uncertainties are evaluated with the data-driven fitting described in Section V. The cross-section uncertainty for each signal point comes from HATHOR NNLO calculations and can be found in Table I. The background normalization uncertainties are listed in Table VI.

The effects of the systematic uncertainties on the overall background yield are summarized in Table VII for the cuts used for $m_Q = 350$ GeV.

X. RESULTS AND DISCUSSION

A binned maximum-likelihood ratio technique is used to fit distributions of $m_{\text{Collinear}}$ to the observed data in order to measure the most likely QQ production cross-section, $\sigma(pp \to QQ)$. In the fitting technique, all events with $m_{\text{Collinear}} > 760$ GeV are considered to belong in the same bin. A shape fit is performed on background and signal simultaneously; this allows the background normalization to float, but maintains the bin-to-bin relationships which defines the background and signal shapes in $m_{\text{Collinear}}$. This fitting procedure allows for the possibility of an underestimated or overestimated background in the signal region. To take into account systematic uncertainties, the signal and background shapes are smoothly deformed in generated samples of pseudo-data by random variations consistent with these uncertainties as shown in Table VI and Table VII; these fluctuations are not constrained by the data. Most of the systematic uncertainties are assumed to be correlated between signal and background; the uncertainties due to cross-section or data-driven estimates, Drell-Yan modeling, $t\bar{t}$ modeling,
and $t\bar{t}$ generation are uncorrelated between signal and background. A small excess is observed over the background expectation for each hypothetical Q mass.

Since the statistical interpretation uses the full shape of the signal and background distributions, the results in Table V do not entirely determine the results; only a signal-like excess would weaken the observed limits. The excess shape in the $m_{\text{collinear}}$ distribution is not particularly signal-like and the data are found to be in better agreement with the background-only than the signal+background hypothesis.

Statistical interpretation of the fitted cross-section σ is made using the CLs technique [44, 45]. This technique performs fits in pseudo-data generated from the background model and varying levels of injected signal to measure the ability of the fit to distinguish between the background-only and background-plus-signal hypotheses. In the case that the data are in better agreement with the background-only hypothesis, 95% CL upper limits on the signal cross-section σ^{95} are derived. The limit σ^{95} is chosen so that

$$\frac{p_0}{1-p_0} < 0.05$$

where p_0 is the fraction of fits in pseudo-data with injected signal σ^{95} which give a result as seen in the data, and p_0 is the corresponding fraction from pseudo-data drawn from the background hypothesis. Thus the performance of the fitting technique in ensembles of pseudo-data is naturally accounted for. Figure 10 shows the observed and expected limits on the production cross-section $\sigma(pp \rightarrow QQ)$.

The upper limit on the production cross-section is converted into a lower limit on m_Q by finding the point of intersection with the theoretical prediction as a function of m_Q. This analysis finds a lower limit of $m_Q > 350$ GeV at 95% confidence level (C.L.) whereas a limit of $m_Q > 335$ GeV was expected. This limit assumes that the branching ratio (BR) of $Q \rightarrow Wq$ is 100%. Limits were calculated for simulated samples of $Q \rightarrow Wb$, $Q \rightarrow Ws$, and $Q \rightarrow Wd$, but the results were approximately the same for all samples. The results from $Q \rightarrow Wu$ and $Q \rightarrow Wc$ were assumed to be analogous for $Q \rightarrow Ws$ and $Q \rightarrow Wd$, respectively.

![Figure 10](image.png)

FIG. 10. Observed and median expected 95% C.L. cross-section upper limits on QQ production, compared to the theoretical prediction. The limit was calculated for five signal masses, and a linear interpolation has been made between mass points. Limits were calculated for simulated samples of $Q \rightarrow Wb$, $Q \rightarrow Ws$, and $Q \rightarrow Wd$, but the results were approximately the same for all samples. The results from $Q \rightarrow Wu$ and $Q \rightarrow Wc$ were assumed to be analogous for $Q \rightarrow Ws$ and $Q \rightarrow Wd$, respectively.

XI. CONCLUSIONS

This Article presents a search for pair production of heavy quarks decaying to Wq in the dilepton channel at the CERN LHC. This search allows $q = d, s, b$ for up-type Q final states or $q = u, c$ for down-type Q final states. The analyzed data correspond to an integrated luminosity of 1.04 fb$^{-1}$ collected by the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV. To enhance the sensitivity to a new quark, mass reconstruction is performed by exploiting the boost received by the heavy-quark decay products. The reconstructed mass is used for binned maximum-likelihood ratio fitting.

The data are found to be in agreement with the expectation from the Standard Model. A lower limit is set on the mass $m_Q > 350$ GeV at 95% confidence level. This limit assumes BR($Q \rightarrow Wq$) = 100% and is appli-
cable to many exotic models \cite{46, 47}, including up-type fourth-generation quarks \(t'\), down-type fourth generation quarks \(b'\), and quarks with exotic charges (such as \(-4/3\)) decaying to light quarks.

\section*{XII. ACKNOWLEDGEMENTS}

We thank CERN for the successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

\begin{thebibliography}{99}
\bibitem{1} B. Holdom \textit{et al.}, PMC Phys. A \textbf{3}, 4 (2009).
\bibitem{9} The ATLAS Collaboration, JINST \textbf{3}, S08003 (2008).
\bibitem{29} N. Kidonakis, Phys. Rev. D \textbf{81}, 054028 (2010).
\bibitem{38} F. James, CERN Program Library Long Writeup D506 (1998).
\bibitem{39} P. Nason, PoS RADCOR2009 018 (2010).
\bibitem{40} B. Kersevan \textit{et al.}, TPJU-6/2004 (2004).
\end{thebibliography}
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, University of Oklahoma, Norman OK, United States of America
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia, Italy