LONGITUDINAL ASPECTS
OF SLOW EXTRACTION

Combined notes on:
Stochastic and other means of rf acceleration to 'feed' the resonance, 'Empty bucket' stabilisation of the spill and General longitudinal strategy

presented by
R. Cappi

February 13th and 14th 1996
PS, CERN
Example: \[\omega = 2\pi \cdot 500 \, \text{Hz}, \quad \epsilon = 10^{-4}, \quad \phi = 3 \cdot 10^{-3} \]

Then for \(v_0 = \omega r \): \(T_S = 100 \, \text{ms} \)

Duty Factor \(F \)

\[
F = \frac{\langle \phi \rangle}{\langle \phi^3 \rangle} = \frac{1}{1 + \frac{1}{2} \left(\frac{\omega r}{v_0} \right)} \quad 0 < F < 1
\]

If \(\omega r = v_0 \Rightarrow F = 2/3 \)

A mechanical analogy:

1st Analogy: Molecular Diffusion

Remarks:

1. one has a molecular diffusion when the spatial distribution of \(p \) is not uniform.
2. diffusion is always towards the low concentration

\[n = \# \text{ of } p/\text{m}^3 = \text{concentration} \]

\[j = \text{current density} \]

\[j = \# \text{ of } p \text{ transferred in one second} \]

\[\text{over area} \left[\text{m}^2 \right] \]

NB: if \(n = \text{constant} \Rightarrow j = 0 \)

\[j = -D \frac{dn}{dx} \quad \text{(1)} \]

where \(D = \text{diffusion coefficient} \)
\[\frac{\partial p}{\partial t} = \nabla \cdot \mathbf{j} \]

\[\nabla \cdot \mathbf{j} = \frac{j}{\partial x} \]

Input Flow: \(j_{\text{in}} \)

Output Flow: \(j_{\text{out}} \)

Accumulation Rate:

\[j_{\text{in}} - j_{\text{out}} = \left(j \right)' \frac{dx}{dx} \]

\[= \frac{2}{\partial x} \frac{dx}{dx} \]

Differential Equation:

\[\frac{\partial n}{\partial t} = \frac{2}{\partial x} \frac{\partial^2 n}{\partial x^2} \]

Example 1:

\[t = 0 \]

\[n = n_0 \]

\[t = \infty \]

\[n = n_f \]

steady state
Example #2

\[t = 0 \]

\[\frac{\partial n}{\partial x} \]

\[\frac{\partial^2 n}{\partial x^2} \]

\[t \gg 0 \]

... Back to steady state ...

\[n = n(x, \pi) \]

i.e. the concentration is stationary

\[\frac{\partial n}{\partial t} = 0 \Rightarrow \frac{\partial}{\partial x} \frac{\partial^2 n}{\partial x^2} = 0 \]

i.e. \(D \frac{\partial n}{\partial x} = \text{constant} = j = \text{constant flux} = \text{no accumulation} \)

\[j = -D \frac{\partial n}{\partial x} = \frac{D n_0}{L} \]

\[\text{example:} \]

[Diagram of a ventilator system with a tank and flow control]
Remarks:
How the steady state is reached?

Case #1: OPEN PIPE

![Diagram of open pipe with temperature profiles.]

Case #2: CLOSED PIPE

![Diagram of closed pipe with temperature profiles.]

2nd Analogy: THERMAL DIFFUSION

That is a transfer of energy (or heat).

Remarks:
1. One has thermal diffusion when there is a temperature difference.
2. The direction is from HOT to COLD $(T > T_{cs})$.

As in molecular diffusion exchanging $v \rightarrow T$ or per unit area, the energy density current $J_e = \frac{\partial T}{\partial x}$.

And the diffusion Eq.

$$\frac{\partial T}{\partial t} = \frac{D}{\partial x^2} \frac{\partial T}{\partial x}$$

The steady state, that is, $\frac{\partial T}{\partial t} = 0$, means $\frac{\partial T}{\partial x} = -J_e = \text{constant}$.

For example:

- [Diagram of a heater with ice and temperature profile.]
- [Diagram of a thermometer with temperature reading.]
- [Diagram of a bed with thermal energy flux.]
PERTURBATION PROPAGATION

Given a perturbation like:

\[n = n_0 \sin(wt) \]

we'll this perturbation propagates like a travelling wave like

\[n(x,t) = n_0 + n_2 \sin(wt - kx) \]

\[\frac{\partial n}{\partial t} = n_0 w \cos(wt - kx) \]

\[\frac{\partial^2 n}{\partial x^2} = -k^2 n_0 \sin(wt - kx) \]

These do not satisfy:

\[\frac{\partial n}{\partial t} = \frac{2}{D} \frac{\partial^2 n}{\partial x^2} \]

The answer is: \(n_0 \). BUT

\[n = n_0 + n_2 \exp \left(-\frac{kx}{\sqrt{2D}} \right) \sin \left(wt - kx \right) \]

For

\[k = \frac{2\pi}{\lambda} = \frac{\sqrt{w^2}}{2D} \]

\[v = \Delta p/w = \sqrt{2D\omega} \]

\[\Delta t \ll \Delta x \Rightarrow \text{he damping is small} \]

1) The group velocity: \(v_g = \frac{\partial w}{\partial k} = \sqrt{2D\omega} > v \)

BACK TO OUR ACCELERATOR

\[n \left[P/P_{\infty} \right] \rightarrow \psi \left[P/P_{\infty} \right] = \text{proton density in space} \]

\[i \left[P/P_{\infty} \right] \rightarrow \phi \left[P/P_{\infty} \exp (1/s) \right] \]

\[\dot{E} = \frac{2}{D} \frac{\partial n}{\partial x} \]
Initial conditions

Remarks:
- For a p. in Brownian motion, the rms distance from the origin after a time t (where x0 = ar t0) is:
 \[\langle x^2 \rangle = 2D t \]
- The rms energy gain given by a noise with bandwidth W (overlapping only one harmonic of the modulation frequency) and rms voltage Vm is
 \[\frac{\Delta E}{\Delta E} = \frac{f_0}{W} \left(\frac{c V_m}{V_0} \right)^2 = \frac{1}{W} \left(\frac{c V_m}{V_0} \right)^2 \]
 from \[D = \frac{1}{2} \int \frac{d (e P P)^2}{d \phi} \]
 and knowing that \[\Delta P = \frac{1}{\beta \gamma} \Delta E \]
 we obtain
 \[D = \frac{1}{2W} \left(\frac{V_m}{\text{Peak BW}} \right)^2 \]
 \[F = \frac{1}{\frac{1}{2} \Delta P^2} = \frac{1}{\Delta P^2} \]
 \[\Rightarrow D > \omega P \]
 \[\text{or (Fig. 3)} \]
Fig. 2. Stochastic extraction in LEAR
Beam distribution during extraction

Sweep 10s
\[P_A = 0.6 \, \text{W} \]

Sweep 100s
\[P_A = 0.16 \, \text{W} \]

Fig. 3. First stochastic extraction in LEAR
Top trace: circulating beam current
Bottom: extracted flux
a) Phase jump debunching (16 GeV/c)

180° jump in unstable phase

leave the beam to

stretch

back on

stable phase

wait for

debunching
to take place

\[T_d = \frac{2\pi}{k \cdot T_s} \]

1) The beam is 'pushed' to the resonance by decreasing the B field

\[w_p \approx 2\pi s \cdot 10^{-4} \approx 0.03, \quad v_{w_p} = \frac{2\pi s}{2.6} \approx 0.01 \quad \Rightarrow F \approx 0.2 \]
Fig. 4: Empty bucket channeling

1) No RF
Servo loop current
Norm. = 100 mA/div.

2) RF on

3) RF on only during the 2nd half of extraction
(6th trace: losses in a n. 61)

NOISY BUCKETS

1) Moving, with a perturbation on the radial loop, the beam close to the extr. resonance
2) Shaking, with noise in the phase loop, the bunch to increase ε_c

Should provide a fair control of the spill

NB: - tails during Fc blow-up are welcome!
- the strong RF structure should not be a problem for medical applications
 - no dewaxing
 - no gap relays
 - feasible beam diagnostic (intensity, position,...)
SUMMARY

- **STOCHASTIC EXTRACTION**
 + good F for long spills (>> 1 sec.)
 + hardware simplicity
 + operational
 - moderate spill control
 - problems for short spill (< 1 sec.)

- **PHASE JUMP DEBUNCHING**
 + operationally simple & fast
 - distribution not very rectangular
 - hardware complicated

- **RESONANCE FEEDING WITH A SLOPE**
 + hardware simplicity (?)
 - poor F
 - poor spill control

- **EMPTY BUCKET CHANNELLING**
 + good for short spills (< 1 sec.)
 - hardware complicated
 - poor spill control

- **NOISY BUCKETS**
 + hardware simplicity
 + good spill control
 + no debunching
 + facile instrumentation
 - strong RF structure (may be acceptable ?)

- **UNSTARRING**
 + facile instrumentation
 - RF structure (may be acceptable ?)
 - hardware complicated
 - operationally
 - poor F

References
1) S. van der Meer, Stochastic extraction, a low ripple version of resonant extraction, CERN/PS/AA 78-6
2) W. Hardt, Ch. Steinbach, R. Cappi, Ultrafast extraction with good duty factor, Proc. of the XI th. Int. Conf. on High En. Accel., CERN, July 7-11, 1980, p.335-349 or CERN/PS/OP/ND 80-16
3) D. Bousard, M. Oy, K. H. Kistler, T. Linecar, Slow extraction at 400 GeV/c with stochastic RF noise, SPS Improvement report No. 179, 24th July, 1980
3a) R. Giannini, W. Hardt, R. Cappi, Ultrafast extraction, Proc. of LEAR workshop, Erice, May 9-16, 1982 or CERN/PS/LEA 82-3
4) see for ex. The Feynman Lectures on Physics
5) Ch. Steinbach, R. Cappi, Improvement of the low frequency duty factor of slow extraction by RF phase displacement, CERN/PS/OP 80-10