$B_s \rightarrow \mu^+\mu^-$ in LHCb

Diego Martínez Santos
Universidade de Santiago de Compostela (USC) (Spain)
- Motivation
- LHCb conditions
- Soft Bs $\rightarrow \mu\mu$ selection
- N-counting method
 Backgrounds
- Exclusion/discovery potential of LHCb
- Normalization effect
- mSUGRA examples
Motivation: BR (B_s \rightarrow \mu\mu) sensitive to New Physics (NP)

- Accurate SM prediction: $(3.4 \pm 0.5) \times 10^{-9}$ (*)
- Could be **enhanced** by $\tan^6 \beta$ (SUSY)
- CMSSM: Relation with *Muon Anomalous Magnetic Dipole Moment*
 \[\alpha_{\mu} - \alpha_{\mu}(SM) \rightarrow \text{if } \tan \beta \sim 50 \]
 gaugino mass are in ~ 400 – 600 GeV \rightarrow BR(B_s \rightarrow \mu\mu) $\sim 1-4 \times 10^{-8}$
- Sensitive to several other models

LHCb conditions

- b produced at low angle
- $L \sim 2 - 5 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- $\sim 5 \times 10^{11} \text{ bb/fb}^{-1}$
- Trigger dedicated to select b events (\(\sim 90\%\) for reconstructed $B_s \to \mu\mu$)
- Total efficiency on $B_s \to \mu\mu$ (detection + reconstruction + trigger + selection) $\sim 10 \%$

The LHCb detector: single arm forward spectrometer: 15-300 mrad (1.9 < η < 4.9)
LHCb conditions (II). Tracking & muon IDentification

- Excellent tracking resolution

- Invariant Mass Resolution in BS peak ~ 18 MeV

\rightarrow *Reduction of search window (less background)*

- LHCb muon ID variable(s): DLL($\mu - \pi$), DLL($\mu - K$)… Combines Muon System & Calorimeters info (& RICH for kaons) \rightarrow *95% efficiency for 0.6% of missID pions* (hits in certain Field Of Interest (depending on p) in M.Chambers are required before use DLL)
Bs → μμ Event Selection

- Very soft cuts are applied in order to keep most of the signal events, but removing an important amount of background.

- ~ 400 K background events/fb⁻¹ expected after selection (and trigger) - and 35.4 Bs → μμ for SM BR.

- But most of these 400 K are not significant, (see next slides)

- **Cut** (arbitrary normalization)

- Mass window: 60 MeV
- Vertex Chi2 < 14
- B IPS < 6
- Z (SV – PV) > 0
- Pointing angle < 0.1 rad
- Hits in FOI’s of Muon Chambers

Winter Meeting, Santiago de Compostela
N-counting Experiment

Counting: Take a variable (or a set of), make some cuts and look at the surviving events.

N-Counting: Do not cut in your set of variables, but make a counting bin-by-bin.

Bs → μμ Analysis: N-Counting in a 3D space, composed by:

- **Geometrical likelihood:** [0,1]
- **PID Likelihood:** [0,1]
 (Combines DLL(μπ) DLL(μK) of both ‘muons’)
- **Invariant Mass:** [-60, +60] around Bs peak

Winter Meeting, Santiago de Compostela
Geometrical Variables

- lifetime
- muon Impact Parameter Significant (IPS)
- DOCA: distance between tracks making the vertex
- B Impact Parameter (IP) to PV
- Isolation: Idea: muons making fake Bs→μμ might came from another SV’s → For each muon; remove the other μ and look at the rest of the event: How many good - SV’s (forward, DOCA, pointing) can it make?

\[\text{Red: signal} \]
\[\text{Blue: bb inc.} \]
\[\text{Black: } b \rightarrow \mu \]
\[\text{Green: } Bc^+ \rightarrow J/\Psi \mu \nu \]

Discussion:
- \(n \) signal events with good isolation
- \(m \) background events with bad isolation

(arbitrary normalization)

<table>
<thead>
<tr>
<th>DOCA (mm)</th>
<th>lifetime (ps)</th>
<th>Bs IP (mm)</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Winter Meeting, Santiago de Compostela

Method for variable-combination

- For constructing Geometry & PID likelihoods, we have made some operations over the input variables. Trying to make them uncorrelated

- A very similar method is described by Dean Karlen, *Computers in Physics* Vol 12, N.4, Jul/Aug 1998

- The main idea:

\[
\chi^2_S = \sum S_i^2
\]

\[
\chi^2_B = \sum b_i^2
\]

\[
\chi^2 = \chi^2_S - \chi^2_B
\]

And made it uniform for signal (\(\rightarrow\) flat distribution)
\textbf{N-counting Experiment (II): Backgrounds}

- Geometry (GL) < 0.5 \rightarrow large background
- $b\rightarrow\mu b\rightarrow\mu$ % in bb sample increases with geometry
 - identified as main source of background
 - < 210 evts/fb$^{-1}$ @ 90 $\%$ CL for GL > 0.5
N-counting Experiment (II):
B → *h+h-* background

(after selection)

- At least one particle not from *B* → *hh* tree
- At least one hadron decays before T stations
- Rest of *B* → *hh*

→ Decays in flight degraded in mass and geometry
→ Wrong particle mass assignation causes also a mass degradation

→ Was shown that probability to misidentify a pion from *B* → ππ is ~ 0.6 %

→ ‘Survivors’ still fall in low PIDL values.

B → *hh* **NEGLIGIBLE** (~ 2 evts) in comparison to ~210 events/fb-1 from *b* → *μ* *b* → *μ*
LHCb potential

Limit @ 90% CL
No signal observed

No signal observed in 2008 \rightarrow BR \leq BR (SM)

~ end 2008

LHCb sensitivity
signal + background observed

~ end 2009
Normalization

- Using B+ $\to J/\Psi K^+$ and Bs $\to J/\Psi \Phi$

- Implies uncertainties of $\sim 14\%$ (due to uncertainty in b quark hadronization) in 1$^{\text{st}}$ case and $\sim 35\%$ in 2$^{\text{nd}}$ (due to uncertainty in Bs $\to J/\Psi \Phi$ BR)

- Uncertainties in the number of events for both normalization channels are completely negligible in comparison with those above
Some mSUGRA-implications examples

CMSSM parameter values chosen:

- $m_{1/2}$ in [0, 1400 GeV]
- m_0 in [0, 1400 GeV]
- $A_0 = 0$
- $\mu > 0$

Other constraints:
- $h_0 > 114$ GeV
- $m_W = 80.398 \pm 0.025$ GeV

Calculations using the program *SoftSUSY* from Ben Allanch (Cambridge); BR’s computed using program from Athanasios Dedes (Durham)
Exclusion

Only background observed in 2008 would indicate low $\tan\beta$ or/and high m_0 with low $m_{1/2}$.

Higgs mass constraint makes this region empty.

~ end 2008 if only background is observed.

Winter Meeting, Santiago de Compostela
In case of $B_s \rightarrow \mu\mu$ Observation

mSUGRA Phase Space is strongly reduced as function of the BR seen (and its accuracy)

if 5σ in ~2009

$4.6 \times 10^{-9} < BR < 6 \times 10^{-9}$

Phase Space region compatible with $0.8 \times 10^{-8} < BR(B_s \rightarrow \mu\mu) < 1.2 \times 10^{-8}$

5σ observation before end 2008 \rightarrow BR $\sim 10^{-8}$
Backup Slides
Correlation for signal (very small for background)

- Signal independent Gaussian variables (for background)

→ Same procedure making a 2D Gaussian for Background
Winter Meeting, Santiago de Compostela