K$_S^0$K$_S^0$ correlations in pp collisions at $\sqrt{s} = 7$ TeV
from the LHC ALICE experiment

ALICE Collaboration*

Abstract

Identical neutral kaon pair correlations are measured in $\sqrt{s} = 7$ TeV pp collisions in the ALICE experiment. One–dimensional K$_S^0$K$_S^0$ correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final–state interactions of the a$_0$/f$_0$ resonance. K$_S^0$K$_S^0$ correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, m_T, as seen in $\pi \pi$ correlations in the pp system and in heavy–ion collisions. Transverse mass scaling is observed between the K$_S^0$K$_S^0$ and $\pi \pi$ radii. Also, the first observation is made of the decay of the $f'_2(1525)$ meson into the K$_S^0$K$_S^0$ channel in pp collisions.

*See Appendix A for the list of collaboration members
1 Introduction

In this paper we present results from a \(\Lambda^0 \Lambda^0 \) femtoscopy study by the ALICE experiment \(^1\) \(^2\) in pp collisions at \(\sqrt{s} = 7 \) TeV from the CERN LHC. Identical boson femtoscopy, especially identical charged \(\pi \pi \) femtoscopy, has been used extensively over the years to study experimentally the space–time geometry of the collision region in high–energy particle and heavy–ion collisions \(^3\). Recently, the ALICE collaboration has carried out a charged \(\pi \pi \) femtoscopy study for pp collisions at \(\sqrt{s} = 7 \) TeV. This study shows a transverse momentum dependence of the source radius developing with increasing particle multiplicity similar to the one observed in heavy-ion collisions \(^4\). The main motivations to carry out the present \(\Lambda^0 \Lambda^0 \) femtoscopy study to complement this \(\pi \pi \) study are 1) to extend the transverse pair momentum range of the charged \(\pi \pi \) studies which typically cuts off at about 0.8 GeV/c due to reaching the limit of particle identification, whereas \(\Lambda^0 \Lambda^0 \)'s can easily be identified to 2 GeV/c and beyond, 2) since \(\Lambda^0 \) is uncharged, \(\Lambda^0 \Lambda^0 \) pairs close in phase space are not suppressed by a final-state Coulomb repulsion as is the case of charged \(\pi \pi \) pairs, 3) \(\Lambda^0 \Lambda^0 \) pairs close in phase space are additionally enhanced by the strong final-state interaction due to the \(a_0/f_0 \) resonance giving a more pronounced signal, and 4) one can, in principle, obtain complementary information about the collision interaction region by using different types of mesons. The physics advantage of items 1) and 4) is to study transverse mass scaling, of the source size which is considered a signature of collective behaviour in heavy-ion collisions \(^3\). If \(m_T \) scaling is present, the source sizes from different species should fall on the same curve vs. \(m_T \). Thus, comparing results from \(\pi \pi \) and \(\Lambda^0 \Lambda^0 \), particularly at very different \(m_T \), would be a good test of this scaling. Item 3) can be used as an advantage since the final-state interaction of \(\Lambda^0 \Lambda^0 \) via the \(a_0/f_0 \) resonance can be calculated with a reasonable degree of precision. Previous \(\Lambda^0 \Lambda^0 \) studies have been carried out in LEP \(e^+e^- \) collisions \(^5\) \(^6\) \(^7\), HERA ep collisions \(^8\), and RHIC Au–Au collisions \(^9\).

Due to statistics limitations, a single set of femtoscopic source parameters, i.e. radius, \(R \), and correlation strength, \(\lambda \), was extracted in each of these studies. The present study is the first femtoscopic \(\Lambda^0 \Lambda^0 \) study to be carried out a) in pp collisions and b) in more than one multiplicity and transverse pair momentum, \(k_T \), range, where \(k_T = |\vec{p}_{T1} + \vec{p}_{T2}|/2 \) and \(\vec{p}_{T1} \) and \(\vec{p}_{T2} \) are the two transverse momenta of the \(\Lambda^0 \Lambda^0 \) pair.

2 Description of Experiment and Data Selection

The data analyzed for this work were taken by the ALICE experiment during the 2010 \(\sqrt{s} = 7 \) TeV pp run at the CERN LHC. About \(3 \times 10^8 \) minimum bias events were analyzed.

\(\Lambda^0 \) identification and momentum determination were performed with particle tracking in the ALICE Time Projection Chamber (TPC) and ALICE Inner Tracking System (ITS) \(^1\) \(^2\). The TPC was used to record charged-particle tracks as they left ionization trails in the Ne–CO\(_2\) gas. The ionization drifts up to 2.5 m from the central electrode to the end caps to be measured on 159 padrows, which are grouped into 18 sectors; the position at which the track crossed the padrow was determined with resolutions of 2 mm and 3 mm in the drift and transverse directions, respectively. The ITS was used also for tracking. It consists of six silicon layers, two innermost Silicon Pixel Detector (SPD) layers, two Silicon Drift Detector (SDD) layers, and two outer Silicon Strip Detector (SSD) layers, which provide up to six space points for each track. The tracks used in this analysis were reconstructed using the information from both the TPC and the ITS; such tracks were also used to reconstruct the primary vertex of the collision. For details of this procedure and its efficiency see Ref.\(^2\).

The forward scintillator detectors, VZERO, are placed along the beam line at \(+3\) m and \(−0.9\) m from the nominal interaction point. They cover a region \(2.8 < \eta < 5.1 \) and \(−3.7 < \eta < −1.7 \), respectively. They were used in the minimum–bias trigger and their timing signal was used to reject the beam–gas and beam–halo collisions. The minimum–bias trigger required a signal in either of the two VZERO counters or one of the two inner layers of the SPD. Within this sample, events were selected based on the measured charged–particle multiplicity within the pseudorapidity range \(|\eta| < 1.2\). Events were required
to have a primary vertex within 1 mm of the beam line and 10 cm of the centre of the 5 m long TPC. This provides almost uniform acceptance for particles with $|\eta| < 1$ for all events in the sample. It decreases for $1.0 < |\eta| < 1.2$. In addition, we require events to have at least one charged particle reconstructed within $|\eta| < 1.2$.

The decay channel $K^0_s \to \pi^+ \pi^-$ was used for particle identification, with a typical momentum resolution of $\sim 1\%$ [10]. The distance of closest approach (DCA) of the candidate K^0_s decay daughters was required to be ≤ 0.1 cm. Figure 1 shows invariant mass distributions of candidate K^0_s vertices for the four multiplicity–k_T ranges used in this study (see below) along with a Gaussian+linear fit to the data. The invariant mass at the peaks was found to be 0.497 GeV/c^2, which is within 1 MeV/c^2 of the accepted mass of the K^0_s [11]. The average peak width was $\sigma = 3.72$ MeV/c^2 demonstrating the good K^0_s momentum resolution obtained in the ALICE tracking detectors. A vertex was identified with a K^0_s if the invariant mass of the candidate $\pi^+ \pi^-$ pair associated with it fell in the range $0.490-0.504$ GeV/c^2. As seen in Figure 1, the ratio of the K^0_s signal to signal+background, $S/(S+B)$, in each of the four ranges is determined to be 0.90 or greater. The minimum K^0_s flight distance from the primary vertex was 0.5 cm. Minimum bias events with two of more K^0_s's were selected for use in the analysis, with 19% having greater than two K^0_s's. A cut was imposed to prevent $K^0_s K^0_s$ pairs from sharing the same decay daughter.

3 Results

Figure 2 shows a $K^0_s K^0_s$ correlation function in the invariant momentum difference variable $Q_{inv} = \sqrt{Q^2 - Q_0^2}$, where Q and Q_0 are the 3–momentum and energy differences between the two particles respectively, for all event multiplicities and k_T. The correlation function was formed from the ratio of “real” $K^0_s K^0_s$ pairs from the same event to “background” $K^0_s K^0_s$ pairs constructed by event mixing of ten adjacent events. Bins in Q_{inv} were taken to be 20 MeV/c which is greater than the average resolution of Q_{inv} resulting from the experimental momentum resolution. Also, the enhancement region in Q_{inv} of the
Fig. 2: Inclusive (all event multiplicities and kT) $K_0^sK_0^s$ Q_{inv} correlation function. Plotted in the insert to the figure is the invariant $K_0^sK_0^s$ mass distribution, $dN/dm(K_0^sK_0^s)$, in the vicinity of the small peak at $Q_{inv} \approx 1.15$ GeV/c.

correlation functions for source sizes of ~ 1 fm is ~ 200 MeV/c. Thus the smearing of the correlation function by the experimental momentum resolution has a negligible effect on the present measurements. The three main features seen in this correlation function are 1) a well-defined enhancement region for $Q_{inv} < 0.3$ GeV/c, 2) a non-flat baseline for $Q_{inv} > 0.3$ GeV/c and 3) a small peak at $Q_{inv} \approx 1.15$ GeV/c.

Considering feature 3) first, fitting a quadratic + Breit-Wigner function to the invariant $K_0^sK_0^s$ mass distribution, $dN/dm(K_0^sK_0^s)$, around this peak, where $m(K_0^sK_0^s) = 2 \sqrt{(Q_{inv}/2)^2 + m_K^2}$, we obtain a mass of $1518 \pm 1 \pm 20$ MeV/c2 and full width (Γ) of $67 \pm 9 \pm 10$ MeV/c2 (giving the statistical and systematic errors, respectively). This is plotted in the insert to Figure 2. Comparing with the Particle Data Group meson table [11], this peak is a good candidate for the $f_2'(1525)$ meson ($m = 1525 \pm 5$ MeV/c2, $\Gamma = 73^{+6}_{-5}$ MeV/c2). This is the first observation of the decay of this meson into the $K_0^sK_0^s$ channel in pp collisions.

In order to disentangle the non-flat baseline from the low-Q_{inv} femtoscopic enhancement, the Monte Carlo event generator PYTHIA [12, 13] was used to model the baseline. PYTHIA contains neither quantum statistics nor the $K_0^sK_0^s \rightarrow a_0/f_0$ channel, but does contain other kinematic effects which could lead to baseline correlations such as mini-jets and momentum and energy conservation effects [4]. PYTHIA events were reconstructed and run through the same analysis method as used for the corresponding experimental data runs to simulate the same conditions as the experimental data analysis. The PYTHIA version of the invariant mass distributions shown for experiment in Figure 1 yielded similar $S/(S+B)$ values. As a test, the $K_0^sK_0^s$ background obtained from event mixing using PYTHIA events was compared with that from experiment. Since the background pairs do not have femtoscopic effects, these should ideally be in close agreement. A sample plot of the experimental to PYTHIA ratio of the background vs. Q_{inv} is shown in Figure 3 for the range $N_{ch} 1-11$, $k_T < 0.85$ GeV/c. The average of the ratio is normalized to unity. It is found that PYTHIA agrees with the experimental backgrounds within 10%. The Monte Carlo event generator PHOJET [14, 15] was also studied for use in modeling the baseline, but it was found to not agree as well with experiment as PYTHIA, and thus was not used.
K0_sK0_s correlation functions in Q_{inv} were formed from the data in four ranges: two event multiplicity (1-11, >11) ranges times two k_T (< 0.85, > 0.85 GeV/c) ranges. Event multiplicity was defined as the number of charged particles falling into the pseudorapidity range $|\eta| < 0.8$ and transverse momentum range $0.12 < p_T < 10$ GeV/c. The two event multiplicity ranges used, 1-11 and >11, correspond to mean charged particle densities, $\langle dN_{\text{ch}}/d\eta \rangle$, of 2.8 and 11.1, respectively, with uncertainties of \sim10%. PYTHIA events were used to estimate $\langle dN_{\text{ch}}/d\eta \rangle$ from the mean charged–particle multiplicity in each range as was done for Table I of Reference [4], which presents ALICE $\pi\pi$ results for pp collisions at $\sqrt{s} = 7$ TeV, event multiplicity having been determined in the same way there as in the present work. This is convenient since the K0_sK0_s source parameters from the present work are compared with those from the $\pi\pi$ measurement below. About 3 × 108 minimum bias events were analyzed yielding about 6 × 106 K0_sK0_s pairs. A similar number of PYTHIA minimum bias events used for the baseline determination were also analyzed. This was found to give sufficient statistics for the PYTHIA correlation functions such that the impact of these statistical uncertainties on the measurement of the source parameters was small compared with the systematic uncertainties present in the measurement. The femtoscopic variables R and λ were extracted in each range by fitting the experimental correlation function divided by the PYTHIA correlation function with the Lednicky parametrization [9] based on the model by R. Lednicky and V.L. Lyuboshitz [16]. This model takes into account both quantum statistics and strong final-state interactions from the a_0/f_0 resonance which occur between the K0_sK0_s pair. The K0_s spacial distribution is assumed to be Gaussian with a width R in the parametrization and so its influence on the correlation function is from both the quantum statistics and the strong final-state interaction. This is the same parametrization as was used by the RHIC STAR collaboration to extract R and λ from their K0_sK0_s study of Au–Au collisions [9]. The correlation function is

$$C(Q_{\text{inv}}) = \lambda C'(Q_{\text{inv}}) + (1 - \lambda)$$

where,

$$C'(Q_{\text{inv}}) = 1 + e^{-Q_{\text{inv}}R^2} + \alpha \left[f(k^*)^2 + \frac{4\Re f(k^*)}{\sqrt{\pi}R} F_1(Q_{\text{inv}}R) - \frac{2\Im f(k^*)}{R} F_2(Q_{\text{inv}}R) \right]$$

and where

$$F_1(z) = \int_0^z dx \frac{e^{x^2 - z^2}}{x} ; F_2(z) = \frac{1 - e^{-z^2}}{z}.$$
$K^0 K^0$ correlations in ALICE

ALICE pp @ $\sqrt{s} = 7$ TeV

$K^0 K^0$ correlation functions for the four multiplicity--k_T ranges.

Fig. 4: Experimental and PYTHIA $K^0 K^0$ correlation functions for the four multiplicity--k_T ranges.

$f(k^*)$ is the s--wave $K^0 \bar{K}^0$ scattering amplitude whose main contributions are the s--wave isoscalar and isovector f_0 and a_0 resonances [9]. λ is the correlation strength parameter (in the ideal case of pure quantum statistics $\lambda = 1$). α is the fraction of $K^0 \bar{K}^0$ pairs that come from the $K^0 \bar{K}^0$ system which is set to 0.5 assuming symmetry in K^0 and \bar{K}^0 production [9]. As seen in Eq. (2), the first term is the usual Gaussian from quantum statistics and the second term describes the final-state resonance scattering and both are sensitive to the radius parameter, R, giving enhanced sensitivity to this parameter. The scattering amplitude, $f(k^*)$, depends on the resonance masses and decay couplings which have been extracted in various experiments [9]. The uncertainties in these are found to have only a small effect on the extraction of R and λ in the present study. An overall normalization parameter multiplying Eq. (1) is also fit to the experimental correlation function.

Figure 4 shows the experimental and PYTHIA $K^0 K^0$ correlation functions for each of the four multiplicity--k_T ranges used. Whereas the experimental correlation functions show an enhancement for $Q_{inv} < 0.3$ GeV/c2, the PYTHIA correlation functions do not show a similar enhancement. This is what would be expected if the experimental correlation functions contain femtoscopic correlations since PYTHIA does not contain these. PYTHIA is seen to describe the experimental baseline rather well in the region $Q_{inv} > 0.4$ GeV/c2 where it is expected that effects of femtoscopic correlations are insignificant. Figure 5 shows the experimental correlation functions divided by the PYTHIA correlation functions from Figure 4 along with the fits with the Lednicky parametrization from Eqs. (1)-(3). The fits are seen to qualitatively describe the correlation functions within the error bars, which are statistical.

Figures 6 and 7 and Table 1 present the results of this study for λ and R parameters extracted by fitting the Lednicky parametrization to $K^0 K^0$ correlation functions as shown in Figure 5. The source parameters are plotted versus $m_T = \sqrt{(k_T)^2 + m_K^2}$ to observe whether m_T scaling is present (as discussed earlier) and statistical + systematic error bars are shown. The statistical uncertainties include both the experimental and the PYTHIA statistical uncertainties used to form the correlation functions, as shown in Figure 4. The largest contributions to the systematic uncertainties are 1) the non-statistical uncertainty in using PYTHIA to determine the baseline and 2) the effect of varying the Q_{inv} fit range by $\pm 10\%$. These
K^0_sK^0_s correlations in ALICE

ALICE Collaboration

Fig. 5: Experimental K^0_sK^0_s correlation functions divided by PYTHIA correlation functions for the four multiplicity–k_T ranges with femtoscopic fits using the Lednicky parametrization.

were found to be on the order of or greater than the size of the statistical uncertainties, as can be seen in Table I. The method used to estimate the systematic uncertainty of using PYTHIA was to set the PYTHIA K^0_sK^0_s background distribution equal to the experimental background distribution in the ratio of correlation functions, i.e., forcing the ratio plotted in Figure 3 to be exactly unity for all Q_inv. The ratio of correlation functions then becomes the ratio of the experimental to PYTHIA real pair distributions, which is then fit with the Lednicky parametrization to extract the source parameters. Parameters extracted from these correlation functions were then averaged with those from Figure 5 and are given in Figures 6 and 7 and Table I. This method is similar to that used in estimating systematic uncertainties in other K^0_sK^0_s measurements [6, 8].

To see the effect of the a_0/f_0 final-state interaction (FSI) term in the Lednicky parametrization, the correlation functions in Figure 5 were fit with Eqs. (1)-(3) for two cases: 1) quantum statistics + FSI terms, i.e., \(\alpha = 0.5 \) in Eq. (2), and 2) quantum statistics term only, i.e., \(\alpha = 0 \) in Eq. (2). Case 2) corresponds to the usual Gaussian parametrization for \(R \) and \(\lambda \). The results of these fits are shown in Table II. Including the FSI term in the fit is seen to significantly reduce both \(R \) and \(\lambda \), i.e., \(R \) by \(\sim 30\% \) and \(\lambda \) by \(\sim 50\% \). The FSI is thus seen to enhance the correlation function for Q_inv \(\rightarrow \) 0 making \(\lambda \) appear larger and making the enhancement region narrower resulting in an apparent larger \(R \). A reduction in \(R \) and \(\lambda \) when including the FSI term was also observed, but to a lesser extent, in the STAR Au–Au K^0_sK^0_s study [9]. A larger effect of the a_0/f_0 resonance on the correlation function in pp collisions compared with Au–Au collisions is expected since the two kaons are produced in closer proximity to each other in pp collisions, enhancing the probability for final-state interactions.

Within the uncertainties, the m_T dependence of \(\lambda \) is seen in Figure 6 to be mostly flat with \(\lambda \) lying at an average level of \(\sim 0.5 - 0.6 \), similar to that found in the ALICE \(\pi \pi \) results for pp collisions at \(\sqrt{s} = 7 \) TeV [4]. In \(\pi \pi \) studies the \(\lambda \) smaller than 1 has been shown at least in part to be due to the presence of long–lived meson resonances which distort the shape of the source so that the Gaussian assumption, which the fitting functions are based on, is less valid [17]. This same explanation is possible for the
In Figure 7 the dependence of the extracted radius parameters on the transverse mass and event multiplicity are shown. Also shown for comparison are R parameters extracted in the same event multiplicity ranges from a $\pi\pi$ femtoscopic study by ALICE [4] in 7 TeV pp collisions. Looking at the m_T dependence first, the $K^0_sK^0_s$ results alone suggest a tendency for R to decrease with increasing m_T for both multiplicity ranges. The $\pi\pi$ measurements also show this decreasing trend for the high multiplicity range, but show present λ parameters extracted from the $K^0_sK^0_s$ correlation functions. For example, the ϕ and K^* mesons with full widths of $\Gamma \sim 4$ and $\Gamma \sim 50$ MeV/c^2, respectively, could act as long–lived resonances compared with the extracted source scale of $R \sim 1$ fm, the larger scales being unresolved in the first few Q_{inv} bins but still depressing the overall correlation function.

In Figure 6, λ parameters extracted by fitting the Lednicky parametrization to $K^0_sK^0_s$ correlation functions as shown in Figure 5. Statistical (darker lines) and total errors are shown. The $N_{ch} > 11$ points are offset by 0.05 GeV/c^2 for clarity.

Table 1: $K^0_sK^0_s$ source parameters from Lednicky fits for $\sqrt{s} = 7$ TeV pp collisions. Statistical and systematic errors are shown.

<table>
<thead>
<tr>
<th>k_T range (GeV/c)</th>
<th>N_{ch} range</th>
<th>$\langle k_T \rangle$ (GeV/c)</th>
<th>$\langle dN_{ch}/d\eta \rangle$ (GeV/c)</th>
<th>λ (fm)</th>
<th>R (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.85</td>
<td>1-11</td>
<td>0.52</td>
<td>2.8</td>
<td>$0.66 \pm 0.07 \pm 0.04$</td>
<td>$0.99 \pm 0.04 \pm 0.04$</td>
</tr>
<tr>
<td>> 0.85</td>
<td>1-11</td>
<td>1.32</td>
<td>2.8</td>
<td>$0.48 \pm 0.04 \pm 0.06$</td>
<td>$0.75 \pm 0.02 \pm 0.07$</td>
</tr>
<tr>
<td>< 0.85</td>
<td>> 11</td>
<td>0.52</td>
<td>11.1</td>
<td>$0.53 \pm 0.07 \pm 0.05$</td>
<td>$1.15 \pm 0.05 \pm 0.05$</td>
</tr>
<tr>
<td>> 0.85</td>
<td>> 11</td>
<td>1.32</td>
<td>11.1</td>
<td>$0.54 \pm 0.04 \pm 0.09$</td>
<td>$1.00 \pm 0.02 \pm 0.07$</td>
</tr>
</tbody>
</table>

Table 2: $K^0_sK^0_s$ source parameters comparing $\alpha = 0.5$ (quantum statistics+FSI) and $\alpha = 0$ (quantum statistics only) fits to Figure 5 using Eqs. (1)-(3). Statistical errors are shown.

<table>
<thead>
<tr>
<th>k_T range (GeV/c)</th>
<th>N_{ch} range</th>
<th>λ (fm)</th>
<th>R (fm)</th>
<th>$\alpha = 0.5$ (fm)</th>
<th>R (fm)</th>
<th>$\alpha = 0$ (fm)</th>
<th>R (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.85</td>
<td>1-11</td>
<td>0.64 ± 0.07</td>
<td>1.36 ± 0.15</td>
<td>1.35 ± 0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0.85</td>
<td>1-11</td>
<td>0.50 ± 0.04</td>
<td>1.07 ± 0.09</td>
<td>1.05 ± 0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0.85</td>
<td>> 11</td>
<td>0.51 ± 0.07</td>
<td>1.12 ± 0.05</td>
<td>0.97 ± 0.15</td>
<td>1.64 ± 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0.85</td>
<td>> 11</td>
<td>0.56 ± 0.05</td>
<td>1.03 ± 0.02</td>
<td>0.89 ± 0.10</td>
<td>1.37 ± 0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the opposite trend for the low multiplicity range, \(R \) increasing slightly for increasing \(m_T \). Taken with the \(\pi \pi \) results the \(K^0_S K^0_S \) results for \(R \) extend the covered range of \(m_T \) to \(\sim 1.3 \text{ GeV}/c \), which is more than twice the range as for \(\pi \pi \). The lower \(m_T \) points for \(K^0_S K^0_S \) which are in close proximity in \(m_T \) to the highest \(m_T \) points for \(\pi \pi \) are seen to overlap within errors, showing \(m_T \) scaling. The \(m_T \) dependence of \(R \) combining both particle species is seen to be weak or nonexistent within the error bars. Looking at the multiplicity dependence, a tendency for \(R \) to increase overall for increasing event multiplicity is seen for both \(\pi \pi \) and \(K^0_S K^0_S \) measurements as is observed in \(\pi \pi \) heavy-ion collision studies [18].

The multiplicity–\(m_T \) dependence of the pion femtoscopic radii in heavy–ion collisions is interpreted as a signature for collective hydrodynamic matter behaviour [3]. The corresponding measurements in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \) show similar behaviour [4]. However, important differences with heavy-ion collisions remain, for example the low–multiplicity \(m_T \) dependence of \(R \) in pp for pions seems to increase with increasing \(m_T \) rather than decreasing as with heavy–ion collisions, as already mentioned earlier. The interpretation of these pp results for pions is still not clear, although model calculations exist that attempt to explain them via a collective phase created in high–multiplicity pp collisions [19, 20, 21]. If such a collective phase is hydrodynamic–like, the \(m_T \) dependence of the radii should extend to heavier particles such as the \(K^0_S \) as well, as shown in Ref. [21]. The measurements presented in this paper provide a crucial cross-check of the collectivity hypothesis. The interpretation is, however, complicated by the fact that in such small systems particles coming from the decay of strong resonances play a significant role [22]; simple chemical model calculations show that this influence should be relatively smaller for kaons than for pions. So far, no model calculations are known in the literature for any KK correlations in pp collisions for \(m_T \geq 0.7 \text{ GeV}/c^2 \), but the results measured in the present study should act as a motivation for such calculations.

4 Summary

In summary, identical neutral kaon pair correlations have been measured in \(\sqrt{s} = 7 \text{ TeV} \) pp collisions in the ALICE experiment. One–dimensional \(K^0_S K^0_S \) correlation functions in terms of the invariant momen-
K⁰K⁰ correlations in ALICE

ALICE Collaboration

tum difference of kaon pairs were formed in two multiplicity and two transverse momentum ranges. The femtoscopic kaon source parameters R and λ have been extracted. The fit includes quantum statistics and final–state interactions of the a⁰f⁰ resonance. K⁰K⁰ correlations show an increase in R for increasing multiplicity and a slight decrease in R for increasing m_T as seen in ππ correlations in the pp system and in heavy–ion collisions. The universality of the m_T dependence of the extracted radii, i.e. m_T scaling, is also observed within uncertainties for the K⁰K⁰ and ππ radii.

References

5 Acknowledgements

The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia;
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);
Ministry of Education and Youth of the Czech Republic;
Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;
The European Research Council under the European Community’s Seventh Framework Programme;
Helsinki Institute of Physics and the Academy of Finland;
French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;
German BMBF and the Helmholtz Association;
General Secretariat for Research and Technology, Ministry of Development, Greece;
Hungarian OTKA and National Office for Research and Technology (NKTH);
Department of Atomic Energy and Department of Science and Technology of the Government of India;
Istituto Nazionale di Fisica Nucleare (INFN) of Italy;
MEXT Grant-in-Aid for Specially Promoted Research, Japan;
Joint Institute for Nuclear Research, Dubna;
National Research Foundation of Korea (NRF);
CONACYT, DGAPA, México, ALFA-EC and the HELEN Program (High-Energy physics Latin-American–
European Network);
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Netherlands;
Research Council of Norway (NFR);
Polish Ministry of Science and Higher Education;
National Authority for Scientific Research - NASR (Autoritatea Națională pentru Cercetare Științifică -
ANCS);
Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International
Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy,
Russian Federal Agency for Science and Innovations and CERN-INTAS;
Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain, Xunta de Galicia (Consellería de Edu-
cación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);
Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council (STFC);
The United States Department of Energy, the United States National Science Foundation, the State of
Texas, and the State of Ohio.
A The ALICE Collaboration

A.G. Agostini70, A. Agostini71, S. Aguilar Salazar55, Z. Ahammed115, A. Ahmad Masood31, N. Ahmad43
S.A. Ahlen32, S.U. Ahmad70, A. Akimoto56, D. Aleksandrov58, B. Alessandro81, R. Alfaro Molin56
A. Alice23, A. Alkhat72, E. Almaráz Aviña50, J. Alm51, T. Almut51, V. Altin72, S. Altinpinar73, I. Altseybeev117
C. Andreo30, A. Andronia85, V. Anguelov62, J. Anielaki61, C. Ansell30, T. Antić56, F. Antinori23
P. Antonioli27, A. Aphecetche102, H. Appelshäuser82, N. Arbois71, S. Arcelli82, A. Arena22, N. Armetta12
R. Arndt41, T. Aronssson102, I. Arsentij55, M. Arslanbekov55, A. Asryan172, A. Augustin51, A. Averbeck55
T.C. Awer91, J. Ayestaran M.D. Azmi57, M. Bach23, A. Badal15, Y.W. Baek107, R. Bailhache14, R. Balaji84
R. Baldini Ferro91, A. Baldisserra51, A. Baldi82, F. Baltazar Dos Santos Pedros91, J. Barioli82, R.C. Barad32
N. Basta53, S. Basile70, B. Bathe11, A. Batigne50, B. Batyouny61, C. Baumann93, I.G. Bearden84
H. Becchi81, I. Belikov61, F. Bellini51, R. Bellwied110, E. Belmont-Moren55, G. Bencedi67, S. Beole71
I. Berceanu70, A. Bercuc65, Y. Berdnikov86, H. Berenyi83, A.E. Bergognone102, B. Berzand42, L. Betev22
A. Bhasin41, A.K. Bhat72, J. Bhom115, L. Bianchi23, N. Bianchi65, C. Bianchin72, J. Bielcik35
J. Bielcikov61, A. Bilandzi61, J. Bjelogrlic53, F. Blanco82, F. Blanck101, D. Bla65, C. Blume52
M. Bocciot52, N. Bočik33, S. Böttge51, A. Bogdanov60, H. Bøggild66, M. Bogolyubsky51, L. Boldizsár69
M. Bombard21, J. Bojo51, H. Borek41, A. Borriso119, S. Bos51, F. Bossou51, M. Botje22, B. Boys22
E. Braidot75, P. Braun-Munzinger53, M. Bregan102, T. Breiten61, T.A. Browning83, M. Brod53, R. Brui72
E. Brun25, G.E. Bruni27, D. Budniko52, H. Bueschlin52, S. Bufalino51, K. Bugaiев81, O. Busch22
Z. Buthelez21, D. Caballero Orduñaz21, D. Caffari19, X. Cal59, H. Caines21, E. Calvo Villa21, P. Camerini21
V. Canoa Romar15, G. Cara Romeo21, F. Carena21, W. Carena21, N. Carlin Fill107, F. Carminati21
C.A. Carrillo Montoya21, A. Casanova Diaz51, J. Castillo Castellanos41, J.F. Castillo Hernandez85
E.A.R. Casula65, V. Cataneschi21, C. Cavicchiol25, C. Ceballos Sanchez71, J. Cepila113, P. Cerrell21
B. Chang91, S. Chapeland89, J.L. Charve111, S. Chattopyady81, S. Chattopyady80, I. Chawla72
M. Cherney25, C. Cheshkov52, B. Cheyn102, V. Chibante Barros92, D.D. Chinellato108, P. Chochula
M. Chojnacki85, S. Choudhury116, P. Christakol65, C.J. Christensen71, P. Christensen22, T. Chu94
S.U. Chung83, C. Cicalese52, L. Cicatelli89, F. Cindorik51, J. Cleymans89, F. Cometti73, F. Colamori73
D. Coletta87, G. Conesa Balbastre38, Z. Conesa del Val61, P. Constantini22, G. Contini91, J.G. Contreras11
T.M. Cormier111, Y. Corrals Morata55, P. Cortes82, I. Cotters Maldonado51, M.R. Costrand95, F. Costa
M.E. Cotale94, E. Crescini41, P. Crochet38, E. Cruz Alani55, E. Cuaudal95, L. Cunqueiro65, A. Daines159
G.O.V. de Barro51, A. De Carli82, G. de Cataldo82, J. de Cuveland80, A. De Falcio51, D. De Gruttola51
H. Delagrange102, A. Deloff51, V. Demanov63, N. de Marco21, E. Dene60, S. De Pasquale21
A. Deppmann101, G. D Erasmo27, R. de Rooij85, M.A. Diaz Corchero21, D. Di Bart21, T. Dieter81
S. Di Liberto85, A. Di Mauro25, P Di Nezza65, R. Di Viati81, Ó. Dvujsvlad61, A. Dobrin119, Z8
H.A. Erdal31, B. Espagnoli88, M. Estienne82, P. Esposito51, E. Evans100, G. Eyyubov77, D. Fabbri19, 93
M.A.S. Figueredo51, S. Filchagin82, D. Finogeev43, F.M. Fiond82, E.M. Fiore110, M. Floris29, S. Foerstel92
P. For93, S. Fokin55, E. Frijaigaci82, U. Frankenfeld85, U. Fuch29, C. Furget29, M. Fusco Girard23
J.J. Gaardhøje64, M. Gagliardi25, A. Gage22, M. Gallio85, D.R. Ganghadar105, P. Ganot71, C. Garabato51
E. Garcia-Solà85, I. Garishvili83, J. Gerhard85, M. Germain82, C. Geun111, A. Gheata79, M. Gheata82
R. Gomez106, A. Goncharov73, E.G. Ferreiro21, L.H. González-Trueba51, S. González-Zamora, P. Sorbont
A. Goswami86, S. Gotovac85, V. Grabskii87, L.K. Graczykowski111, R. Graicer55, A. Greilk
C. Grigorov82, A. Grigorov82, V. Grigoriev82, A. Grigoryan101, S. Grigoryan91, B. Grinoy62, N. Grion
P. Gros105, J.F. Grosse-Oetringhaus51, Y.-Y. Grosio100, R. Gross103, F. Gubiec81, R. Guernane
C. Guerra Gutierrez51, B. Guerzoni111, M. Gulubov88, K. Gulbrandsen91, T. Gun91, A. Gupta11
R. Gupta50, H. Gutbrod23, Ø. Haaland11, C. Hadjidakis121, M. Haiduc31, H. Hamagak113, G. Hamara
B.H. Haib51, L.D. Hanprat15, A. Hansen81, Z. Harmanov51, J.W. Harris95, M. Hartig82, D. Hasegawa91
G. Herrera Corra61, N. Herrmann84, B.A. Hes115, K.F. Hetland41, B. Hicks110, P.T. Hild51, B. Hippolyte85
T. Horaguchi81, Y. Horii81, P. Hristov82, I. Hřívňákov82, M. Huang11, T.J. Humani51, D.S. Hwang16

12
K°K° correlations in ALICE

ALICE Collaboration

CNRS–IN2P3, Clermont-Ferrand, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
Laboratori Nazionali di Frascati, INFN, Frascati, Italy
Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lawrence Livermore National Laboratory, Livermore, California, United States
Moscow Engineering Physics Institute, Moscow, Russia
National Institute for Physics and Nuclear Engineering, Bucharest, Romania
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics Department, Creighton University, Omaha, Nebraska, United States
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Athens, Athens, Greece
Physics Department, University of Jammu, Jammu, India
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Purdue University, West Lafayette, Indiana, United States
Pusan National University, Pusan, South Korea
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Russian Research Centre Kurchatov Institute, Moscow, Russia
Saha Institute of Nuclear Physics, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
Sezione INFN, Trieste, Italy
Sezione INFN, Padova, Italy
Sezione INFN, Turin, Italy
Sezione INFN, Rome, Italy
Sezione INFN, Cagliari, Italy
Sezione INFN, Bologna, Italy
Sezione INFN, Bari, Italy
Sezione INFN, Catania, Italy
Soltan Institute for Nuclear Studies, Warsaw, Poland
Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
Technical University of Split FESB, Split, Croatia
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Physics Department, Austin, TX, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade de São Paulo (USP), São Paulo, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
University of Houston, Houston, Texas, United States
University of Technology and Austrian Academy of Sciences, Vienna, Austria
University of Tennessee, Knoxville, Tennessee, United States
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Eberhard Karls Universität Tübingen, Tübingen, Germany
Variable Energy Cyclotron Centre, Kolkata, India
$K^0 \bar{K}^0$ correlations in ALICE

ALICE Collaboration

V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Yale University, New Haven, Connecticut, United States
Yerevan Physics Institute, Yerevan, Armenia
Yildiz Technical University, Istanbul, Turkey
Yonsei University, Seoul, South Korea
Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany