Liquid argon calorimeter performance at high rates

Contents:
1. The ATLAS experiment at the LHC
2. Upgrade plans
3. Hilum project
4. Summary and Conclusions

CALOR 2012
1. The ATLAS experiment at the LHC

- 2011: 7 TeV, ~ 5 fb\(^{-1}\) recorded
- 2012: 8 TeV, ~ 15 fb\(^{-1}\) expected
- inst. luminosity reached: \(6.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}\)

- Planned to be reached after shutdown 2013/2014:
 - 13 TeV, \(L = 1-2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}\) inst. luminosity
 (nominal design: \(10^{34} \text{ cm}^{-2} \text{s}^{-1}\))
2. Upgrade plans

Phase II: Instantaneous luminosity of $5-7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Problems with rates and average energy deposits in calorimeter endcap region.

Ion build-up, HV drop, boiling Argon and space-charge effects in ATLAS FCal.

Confirm operation of Endcap and FCal calorimeters

Replace FCal with sFCal or install additional miniFCal
2. Upgrade plans

LAr calorimeter system

- **Liquid-Argon sampling calorimeters**
 - EM Barrel + EM Endcap (EMEC)
 - Hadronic Endcap calorimeter (HEC)
 - Forward calorimeter (FCal)

- Highest particle flux in forward region (EMEC, HEC, FCal)

Operation after Phase II upgrade need to be tested.
2. Upgrade plans

Simulations:

- Particle flux at $> 3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ is expected to be too high for current FCal with 250 μm gaps.

FCal1 structure:

Operation performance with increased luminosity:

[Diagram of FCal1 structure]

[Graph showing Relative Current vs. time (t) with different luminosities and HV values]
3. Hilum project

- Hilum project at U-70 accelerator in Protvino, Russia
- Goal: test EMEC, HEC and FCal in HL-LHC environment

INTAS Project INTAS-CERN 05-103-7555

Hilum ATLAS LAr Endcap Collaboration:
- Univ. of Arizona
- Univ. of Dresden
- JINR Dubna
- IEP Košice
- Univ. of Mainz
- LPI Moscow
- MPI Munich
- BINP Novosibirsk
- IHEP Protvino
- TRIUMF Vancouver
- Univ. of Wuppertal
3. Hilum project

- Proton beam of 50 GeV
- Bunch structure with every 6th bunch filled → \(\sim 1\mu s\) bunch spacing
- Extract one accelerator fill in \(\sim 1.2\) s spill
- \(\sim 10\)s spill cycle time
- Intensity range: \(10^6 - \sim 3\times10^{11}\) p/spill
- Beam extraction with bent crystal technique
3. Hilum project

Setup in experimental area

Goal: simulate particle flux through calorimeters in dependence of η as in ATLAS

→ Testbeam setup and absorber thickness was optimized in MC simulations, using the 2D-gaussian beam size of 10mm.
3. Hilum project

The calorimeter test modules

HEC module

EMEC module

FCal1/sFCal module

60×60 mm²
4 readout channels
4 HV channels

70×70 mm²
4 readout channels
3 HV channels

90×60 mm²
2x4 readout channels
2x4 HV channels

Each module is housed in a separate movable cryostat.
3. Hilum project

Beam intensity monitoring

- Bunch based: Cherenkov counter with fast ADC-readout
 - Resolution of single bunches possible
 - Important due to bunch-to-bunch variations

- Absolute calibration done with activation of AL foils:
 - Reaction: \(27\text{Al}(p,3p3n)\text{22Na, } 22\text{Na} \rightarrow \gamma \) (1275 keV)
 - Overall precision: 15%.
Readout signal shapes

- Charged particles passing the LAr detectors produce typical triangular pulse at the detector
 - This is shaped by the front-end electronics
- Readout done with two 25ns sampling ADCs
- Main mode + delayed mode → effective: 12.5ns
- 2 gains: low and medium gain
 - Understanding of the whole readout chain is rather good

- In addition a charge flow in the gap needs to be compensated by the HV system (→HV DC current).

Response of one readout channel of the HEC to a calibration pulse (black)
Corresponding model function (red)
3. Hilum project

Prediction for signal behaviour

Problem of positive ion buildup:
- D is ionization rate per volume
- \(D_c \) is critical ionization rate \(\rightarrow \) charge build-up in gap is equal to charge on electrodes
- Relative rate \(r = D/D_c \)
- \(w \): recombination rate
- Signal \(S \): \(1 \) for \(r \leq 1 \) and \(1/r^{1/4} \) for \(r > 1 \)

Prediction of HV currents:
Above critical intensity \(I_c \) \(\rightarrow \) space charge limit. Current drawn at \(I_c \) is critical current \(i_c \)

\[
\frac{i}{i_c} = \begin{cases}
\frac{I}{I_c} & \text{for } I < I_c \\
(I/I_c)^{3/4} & \text{for } I > I_c
\end{cases}
\]

J. Rutherfoord, NIM A 482 (2002) 156-178:

Analytic calculations (curves) and simulations (dots) for different recombination rates \(w \)

More details on that: Presentation by John Rutherfoord
3. Hilum project

Prediction for signal behaviour (2)

Simulations of charge density and electric field over 2mm LAr gap of EMEC module for different beam intensities.

Assumed: HV = 1.2kV
- ion mobility: $\mu_+ = 10^{-3}$ cm2/Vs
- reco. rate constant: $k_r = 10^{-5}$ cm3/s

Current and shaped pulse for 2mm LAr gap of EMEC module for different beam intensities.

Scale factors of 3.3 (10^8 p/s) and 10 (3×10^8 p/s) are used for better comparison of the effects.
3. Hilum project

Results – Readout signal shapes EMEC
3. Hilum project

Results – Readout signals

EMEC

Pulse Height, ADC/proton vs Beam Intensity, protons/s

Critical Intensity = (1.64 \pm 0.77) \times 10^8

HV corrected critical intensity

nominal LHC

HEC

Pulse Height, ADC/proton vs Beam Intensity, protons/s

Critical Intensity = (1.78 \pm 0.7) \times 10^8

HV corrected critical intensity

nominal LHC

FCal 250 \(\mu \)m gap

Pulse Height, ADC/proton vs Beam Intensity, protons/s

Critical Intensity = (9.8 \pm 0.3) \times 10^8

nominal LHC

Critical intensity

FCal 100 \(\mu \)m gap

Pulse Height, ADC/proton vs Beam Intensity, protons/s

Critical Intensity > 1.0 \times 10^{10}

nominal LHC
3. Hilum project

Results – HV currents

FCal (250μm gap)
Result from testbeam run 2008

- FCal current increases linearly with beam intensity
- Has become one of the standard methods for relative luminosity measurement in ATLAS

EMEC
Result from testbeam run 2010

- Behaviour of EMEC currents as predicted
- Prediction: \(i = i_c \times \left(\frac{I}{I_c} \right)^{0.75} \) for \(I > I_c \)
- Fit: Exponent \(p = 0.76 \pm 0.03 \)
4. Summary and Conclusion

 - Observed pulse shapes follow closely the expectations.
 - Signal behaviour of EMEC and HEC is flat up to $\sim 5-8 \times$ nominal LHC intensity (within present uncertainties).
 - $\text{FCal}(250\mu\text{m gap})$ amplitudes drop already slightly above nominal LHC intensity.
 - Proposed $\text{FCal}(100\mu\text{m gap})$ test module shows very stable behaviour until $10 \times$ nominal LHC luminosity.
 - HV currents of EMEC behave well as predicted in dependence of intensity.

- **Recent run in 2012 (analysis ongoing) allows to reduce the systematic uncertainties at both low and high intensities.**
References

2. Upgrade plans

Simulated neutron flux in ATLAS

![Neutrons in ATLAS detector at $L = 10^{34}$ cm$^{-2}$ s$^{-1}$](image)
Cryogenic and LAr purity monitoring

- Temperature, pressure and level of LAr was monitored.
- Purity has to be < 1ppm O₂ equivalent to prevent signal bias due to space charge effects.
 - sufficient and stable enough over the time.
3. Hilum project

Results – Readout signal shapes HEC

![Graphs showing response vs time for different bunch conditions and voltages.](image-url)
3. Hilum project

Results – Readout signal shapes FCal(269)
3. Hilum project

Results – Readout signal shapes FCal(119)
Lumi monitoring with HV currents

- Was possible to show, that FCal HV current depends linear on beam intensity with non-linear part < 0.36% (95% CL) at 10^9 p/spill $\approx 10^{34}$ LHC Lumi.

- Results are published in JINST:

 http://iopscience.iop.org/1748-0221/5/05/P05005

 ➔ including systematic uncertainties a precision of $\sim 0.5\%$ might be possible in ATLAS at nominal luminosity

- Relative luminosity in ATLAS is measured using HV currents with < 1% precision.