Quarkonium Production @ LHCb

Giacomo Graziani (INFN Firenze) on behalf of the LHCb Collaboration

June 5th, 2012
PLHC2012, Vancouver
The LHCb Experiment

conceived for CP violation and rare decays in the heavy flavour sector

single–armed forward spectrometer covering the rapidity range where most $b\bar{b}$ pairs are produced

Can study quarkonia production in unique rapidity range at the LHC energy frontier
The LHCb Detector

optimized for B meson decays: emphasis on vertexing, p resolution, PID, trigger

Muon ID eff: ~ 97 %
Mis-ID ($\pi\rightarrow\mu$) 1-3 %

J/ψ Mass
$\sigma=14.6$ MeV/c2

Momentum resolution:
$\sigma(p)/p \sim 0.4\%$ (5 GeV/c)
0.6% (100 GeV/c)

Vertex resolution for average mult. (25 tracks):
$\sigma_{x,y} \sim 15 \mu$m
$\sigma_z \sim 70 \mu$m
robust and flexible design
very low p_T cuts!
Half of bandwidth for (di)muon lines!
bandwidth increase in 2012 thanks to farm upgrade and deferred trigger
A Quarkonium Mine

Dimuon mass spectrum after 48 hours of data taking at the current luminosity

\[\mathcal{L} = 4 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]

LHCb Preliminary 70 pb\(^{-1}\) \(\sqrt{s} = 7 \text{ TeV}\)
LHCb data samples

2010: 37 pb$^{-1}$, low luminosity, Minimum Bias triggers

2011: 1100 pb$^{-1}$

2012: $\sqrt{s} = 8$ TeV
currently 400 pb$^{-1}$, aim at 1500
Measuring production (and soon polarization) of $c\bar{c}$ and $b\bar{b}$ states

- tests QCD production models:
 - Color Singlet (CS) model vs Color Octet (CO) contributions
 - J/ψ, $\psi(2S)$
 - $\chi_c/J/\psi$
 - $\Upsilon(nS)$

- the B_c meson
 - test QCD in unique meson made from 2 pairs of heavy quarks

- double J/ψ and double charm production
 - probe of double parton scattering, possible contributions from tetraquarks, . . .

- unpredicted X states: $X(3872)$ and the mysterious $X(4140)$
Charmonium/Bottomonium to $\mu^+\mu^-$

- Production rates of J/ψ, $\psi(2S)$, $\Upsilon(nS)$ ($n=1,2,3$) measured from the 2010 data.

- High efficiency of dimuon channels: $\epsilon_{tot} > 40\%$ (including acceptance, trigger, reconstruction and selection) for high $p_T (> 10\text{ GeV}/c)$ and $2 < \eta < 4.5$.

- Mass resolution: $\sim 15\text{ MeV}/c^2$ for J/ψ, $\sim 50\text{ MeV}/c^2$ for $\Upsilon(1S)$.

- For charmonium, prompt production separated from b decays using pseudo proper time:

$$t_z = \frac{(z_{J/\psi} - z_{PV}) m_{J/\psi}}{p_z}$$

- Limited by systematics: largest error from the unknown polarizations (10 – 20\%).
Production cross sections assuming unpolarized states

\[\frac{d^2 \sigma (J/\psi)}{dp_T dy} \]

\[\psi(2S) \]

\[J/\psi \]

\[\Upsilon(1S) \]

\[\Upsilon(2, 3S) / \Upsilon(1S) \]

\[LHCb: \text{arXiv:1202.6579} \]

\[CMS: \text{Phys.Rev.D83:112004,2011} \]
Comparison with theory

- as already seen by Tevatron, production is larger by 2 orders of magnitude than LO CSM predictions.
- better agreement with N(N)LO CSM calculations
- remarkable agreements with NRQDC calculations including CO, and FONLL formalism for $b \to Q$
χc Production

- radiative decays with low–pT γ: challenging!
- measure $\sigma(\chi_c \rightarrow J/\psi \gamma)/\sigma(J/\psi)$, mostly due to $\chi_{c1,2}$, using calorimeter system for γ identification and energy reconstruction
- $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ seems larger than any prediction
- result confirmed using photons converted in tracker (lower statistics, better mass resolution)
Polarization

- polarization in helicity frame

\[
\frac{dN}{dcos\theta d\phi} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos 2\phi + \lambda_\theta\phi \sin^2 \theta \cos \phi
\]

- improve accuracy on cross sections, but also
critical test for production models: sizeable \(J/\psi\) polarization predicted by COM not observed by CDF!

- strategy: extract \(\lambda_\theta, \lambda_\phi, \lambda_\theta\phi\) from unbinned ML fit in bins of \(\eta, p_T\)

\(J/\psi\) result expected soon
The B_c meson

- Quarkonium-like state made of $b\bar{c}$ (or c.c.)
- Only ground state observed so far, a rich spectroscopy to be started
- LHCb already provided the world best mass measurement from 2010 data in $B_c^+ \rightarrow J/\psi \pi^+$

![Graph showing $M(J/\psi \pi^+)$ vs. $M(J/\psi \pi^+)$ for LHCb Preliminary data.](image1)

![Graph showing B_c mass spectrum.](image2)
B_c production

- **J/ψ π⁺ channel**: preliminary result from 2010 data (CERN-LHCb-CONF-2011-017)

\[
\frac{\sigma(B_c^+ \times B(B_c^+ \rightarrow J/\psi \pi^+))}{\sigma(B^+ \times B(B^+ \rightarrow J/\psi K^+))} = (2.2 \pm 0.8_{\text{stat}} \pm 0.2_{\text{syst}})\% \quad (P_T > 4 \text{ GeV/c, } 2.5 < \eta < 4.5)
\]

to be improved using 2011 data and more precise lifetime measurement (largest systematic)

- **First Observation of B_c^+ → J/ψ π⁺π⁻ π⁺**

using 2011 data (arXiv:1204.0079)

\[
\frac{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)} = 2.41 \pm 0.30_{\text{stat}} \pm 0.33_{\text{syst}}
\]

Systematics dominated by uncertainty on decay model

Predictions were ranging from 1.5 to 2.3
Double J/ψ production

- Production of double $c\bar{c}$ pair is expected from high order gluon-gluon diagrams, with strong sensitivity to possible CO contributions.

- Could be enhanced by double parton scattering (DPS) and charm content of the proton (IC).

![Graph showing dN(J/ψ J/ψ)/dμ±μ∓ vs m(μ±μ∓)2](image)

- $\sigma(J/ψ J/ψ)$ measured from 2010 data (37.5 pb$^{-1}$) requiring 2 J/ψ from common vertex.

- 141 ± 19 events observed, with average efficiency of 21%
Cross-section result for \(p_T < 10 \text{ GeV/c} \), \(2 < \eta < 4.5 \)

\[
\sigma(J/\psi J/\psi) = 5.1 \pm 1.0_{\text{stat}} \pm 1.1_{\text{syst}} \text{ nb}
\]

Theoretical predictions:

4.1 \pm 1.2 \text{ nb} from LO CSM

(including feed–down from \(\psi(2S) \))

2 \pm 1 \text{ nb} from double parton scattering

(Berezhnoy et al., Phys.Rev.D84 (2011))

(Novoselov, arXiv:1106.2184)

Look at invariant mass to test production model and possible feed–down from charm tetraquark (low mass) or \(\chi_b \)

Result to be updated with full statistics
Double charm production was also looked at in channels $J/\psi C$ (or $J/\psi \bar{C}$) and CC ($\bar{C}C$)
where $C = D^0(\rightarrow K^-\pi^+)$, $D^+(\rightarrow K^-\pi^+\pi^+)$, $D_{s}^{+}(\rightarrow \phi\pi^+)$, $\Lambda_c^+(\rightarrow pK^-\pi^+)$,
measuring also $C\bar{C}$ states as a reference

predictions from DPS and IC larger by one order of magnitude than LO CSM calculations

if DPS dominates, one would expect

$$\frac{\sigma_{C_1}\sigma_{C_2}}{\sigma_{C_1C_2}} = \frac{\sigma_{DPS}}{\sigma_{eff}} \sim 15 \text{ mb}$$
(from Tevatron multi–jet events)

very clean and large samples obtained from 0.36 fb^{-1}

<table>
<thead>
<tr>
<th>Mode</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi D^0$</td>
<td>4875 ± 86</td>
</tr>
<tr>
<td>$J/\psi D^+$</td>
<td>3323 ± 71</td>
</tr>
<tr>
<td>$J/\psi D_{s}^+$</td>
<td>328 ± 22</td>
</tr>
<tr>
<td>$J/\psi \Lambda_c^+$</td>
<td>116 ± 14</td>
</tr>
</tbody>
</table>

and 6 CC modes with $> 3\sigma$ SIG.
Cross–section results:

<table>
<thead>
<tr>
<th>LHCb</th>
<th>$D^0\bar{D}^0$</th>
<th>D^0D^-</th>
<th>$D^0D_s^-$</th>
<th>$D^0\Lambda_c^-$</th>
<th>D^+D^-</th>
<th>$D^+D_s^-$</th>
<th>$D^+\Lambda_c^-$</th>
</tr>
</thead>
</table>

Much larger than LO predictions:

DPS prediction works well for $J/\psi C$ modes!
while CC modes are lower by factor 2 to 3

DPS prediction, Phys.Rev. D56 (1997) 3811
Looking for X,Y,Z states

- $X(3872)$ production from 2010 data (35 pb^{-1}):
 \[\sigma (X(3872)) \times B(X(3872) \rightarrow J/\psi \pi^+\pi^-) = 5.4 \pm 1.3_{\text{stat}} \pm 0.8_{\text{syst}} \text{ nb} \]
 for $5 < p_T < 20\text{ GeV/c}$, $2.5 < \eta < 4.5$

- $m_{X(3872)} = 3871.95 \pm 0.48_{\text{stat}} \pm 0.12_{\text{syst}} \text{ MeV/c}^2$
 still unclear if above DD^* threshold or not
 $(m(D^0)+m(D^{*0}) = 3871.79 \pm 0.29 \text{ MeV/c}^2)$

- search for the $X(4140)$ and $X(4274)$ states claimed by CDF (arXiv:1101.6058) with significance $> 5\sigma$ and 3.1σ
- no evidence for such states is found from 0.37 fb^{-1}
 disagreement with CDF is estimated at the 2.4σ level

Conclusions and Prospects

<table>
<thead>
<tr>
<th></th>
<th>Achieved</th>
<th>much more to come</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarkonia</td>
<td>Accurate production measurements of main quarkonia states @7 TeV:</td>
<td>Polarization for J/ψ and others, studies @8 TeV, χb studies</td>
</tr>
<tr>
<td></td>
<td>plenty of inputs for theorists!</td>
<td></td>
</tr>
<tr>
<td>B_c</td>
<td>production in J/ψ π channel and first observation of J/ψ π π π, best mass</td>
<td>updated results, search in new decay modes</td>
</tr>
<tr>
<td></td>
<td>measurement</td>
<td></td>
</tr>
<tr>
<td>Double c̅c̅</td>
<td>Observation of double J/ψ, 4 J/ψ + C and 6 CC modes with high (> 3σ)</td>
<td>updated J/ψ J/ψ result, search for double heavy baryons</td>
</tr>
<tr>
<td></td>
<td>significance, strong hint for DPS!</td>
<td></td>
</tr>
<tr>
<td>New/exotic states</td>
<td>X(3872) production and mass, search for X(4140)</td>
<td>X(3872) from B, search for claimed Z states and for tetra/pentaquarks</td>
</tr>
</tbody>
</table>