Search for the Higgs boson in the $H \rightarrow WW \rightarrow ℓνjj$ decay channel at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A search for the Standard Model Higgs boson has been performed in the $H \rightarrow WW \rightarrow ℓνjj$ channel using 4.7 fb$^{-1}$ of $pp$ collision data recorded at a centre-of-mass energy of $\sqrt{s} = 7$ TeV with the ATLAS detector at the Large Hadron Collider. Higgs boson candidates produced in association with zero, one or two jets are included in the analysis to maximize the acceptance for both gluon fusion and weak boson fusion Higgs boson production processes. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range $300 \text{ GeV} < m_H < 600 \text{ GeV}$. The best sensitivity is reached for $m_H = 400 \text{ GeV}$, where the observed (expected) 95% confidence level upper bound on the cross section for $H \rightarrow WW$ produced in association with zero or one jet is 2.2 pb (1.9 pb), corresponding to 1.9 (1.6) times the Standard Model prediction. In the Higgs boson plus two jets channel, which is more sensitive to the weak boson fusion process, the observed (expected) 95% confidence level upper bound on the cross section for $H \rightarrow WW$ production with $m_H = 400 \text{ GeV}$ is 0.7 pb (0.6 pb), corresponding to 7.9 (6.5) times the Standard Model prediction.
Abstract
A search for the Standard Model Higgs boson has been performed in the $H \rightarrow WW \rightarrow \ell\nu jj$ channel using 4.7 fb$^{-1}$ of $pp$ collision data recorded at a centre-of-mass energy of $\sqrt{s} = 7$ TeV with the ATLAS detector at the Large Hadron Collider. Higgs boson candidates produced in association with zero, one or two jets are included in the analysis to maximize the acceptance for both gluon fusion and weak boson fusion Higgs boson production processes. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range $300 \text{ GeV} < m_H < 600 \text{ GeV}$. The best sensitivity is reached for $m_H = 400 \text{ GeV}$, where the observed (expected) 95% confidence level upper bound on the cross section for $H \rightarrow WW$ produced in association with zero or one jet is 2.2 pb (1.9 pb), corresponding to 1.9 (1.6) times the Standard Model prediction. In the Higgs boson plus two jets channel, which is more sensitive to the weak boson fusion process, the observed (expected) 95% confidence level upper bound on the cross section for $H \rightarrow WW$ production with $m_H = 400 \text{ GeV}$ is 0.7 pb (0.6 pb), corresponding to 7.9 (6.5) times the Standard Model prediction.

Keywords: ATLAS, LHC, Higgs, WW
PACS: 14.80.Bn, 12.15.Ji, 14.70.Fm

1. Introduction

In the Standard Model (SM), a scalar field with a non-zero vacuum expectation value breaks the electroweak symmetry, gives masses to the W/Z bosons and fermions [1–6], and manifests itself directly as a particle, the Higgs boson [2, 3, 5]. A primary goal of the Large Hadron Collider (LHC) is to test the SM mechanism of electroweak symmetry breaking by searching for Higgs boson production in high-energy proton-proton collisions. At LHC energies, the Higgs boson is predominantly produced via gluon fusion ($gg \rightarrow H$) and via weak boson fusion ($qq \rightarrow qqH$).

Results of Higgs boson searches in various channels using data up to an integrated luminosity of approximately 5 fb$^{-1}$ have recently been reported by both the ATLAS and CMS collaborations [7,8]. The ATLAS analysis excludes a Higgs boson with mass in the ranges 112.9–115.5 GeV, 131–238 GeV, and 251–466 GeV while the CMS analysis excludes the range 127–600 GeV at 95% confidence level (CL). Direct searches at LEP and the Tevatron exclude Higgs boson masses $m_H < 114.4 \text{ GeV}$ [9] and $156 \text{ GeV} < m_H < 177 \text{ GeV}$ [10] respectively at 95% CL.

For $m_H \gtrsim 135 \text{ GeV}$, the dominant decay mode of the Higgs boson is $H \rightarrow WW^{\ell\nu}$. For $m_H \gtrsim 200 \text{ GeV}$, the $H \rightarrow WW \rightarrow \ell\nu jj$ channel, where one W boson decays into two quarks leading to a pair of jets ($W \rightarrow jj$) and the other decays into a charged lepton and a neutrino ($W \rightarrow \ell\nu$) where $\ell = e$ or $\mu$, becomes interesting since jets from the Higgs boson decay are, on average, more energetic than the jets from the dominant background ($W+jets$). An advantage of $H \rightarrow WW \rightarrow \ell\nu jj$ over channels with two final-state neutrinos is the possibility of reconstructing the Higgs boson mass using kinematical constraints to estimate the component of the neutrino momentum along the beam axis.

This Letter describes a search for the SM Higgs boson in the $H \rightarrow WW \rightarrow \ell\nu jj$ channel using the ATLAS detector at the LHC, based on 4.7 fb$^{-1}$ of $pp$ collision data collected at a centre-of-mass energy $\sqrt{s} = 7 \text{ TeV}$ during 2011. The present search supersedes a previous analysis in the same Higgs boson decay channel published by the ATLAS Collaboration [11]. The distribution of the
\( \ell \nu jj \) invariant mass \( m(\ell \nu jj) \), reconstructed using the \( \ell \nu \) invariant mass constraint \( m(\ell \nu) = m(W) \) and the requirement that two of the jets in the event are consistent with a \( W \to jj \) decay, is used to search for a Higgs boson signal. Feed-down from \( \tau \) lepton decays is included in this analysis for both background and signal, i.e. \( H \to WW \to \tau \nu \tau \nu jj \to \ell \nu \ell \nu \tau \nu jj \).

The present search is restricted to \( m_H > 300 \) GeV in order to ensure a smoothly varying non-resonant background. The search is further limited to \( m_H < 600 \) GeV since, for higher Higgs boson masses, the jets from \( W \to jj \) decay begin to overlap due to the large boost of the \( W \) boson, and the natural width of the Higgs boson exceeds 100 GeV. The best sensitivity to Higgs boson production in this analysis is expected for \( m_H \sim 400 \) GeV.

2. The ATLAS Detector

The ATLAS experiment \( [12] \) uses a multipurpose particle detector with forward-backward symmetric cylindrical geometry \( [9] \) covering the pseudorapidity range \( |\eta| < 2.5 \) for charged particles and \( |\eta| < 4.9 \) for jet measurements. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. The superconducting solenoid is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic (EM) calorimeter. An iron/scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering.

3. Data and simulation samples

The data were collected using single-muon and single-electron triggers \( [13] \). The single-muon trigger required the transverse momentum \( (p_T) \) of the muon with respect to the beam line to exceed 18 GeV; for the single-electron trigger, the threshold varied from 20 GeV to 22 GeV. The trigger object quality requirements were tightened throughout the data-taking period to cope with increasing instantaneous luminosity.

Using the ATLAS simulation framework \( [14] \), detailed Monte Carlo (MC) studies of signal and backgrounds have been performed. The interaction with the ATLAS detector is modelled with GEANT4 \( [15] \) and the events are processed through the same reconstruction chain that is used to perform the reconstruction of data events. The effect of multiple \( pp \) interactions in the same and nearby bunch crossings (pile-up) is modelled by superimposing several simulated minimum-bias events on the simulated signal and background events. Simulated MC events are weighted to match the distribution of interactions per beam crossing in the dataset.

4. Object Selection

The \( pp \) collision vertices in each bunch crossing are reconstructed using the inner tracking system \( [16] \). To remove cosmic-ray and beam-induced backgrounds, events are required to have at least one reconstructed primary vertex with at least three associated tracks with \( p_T > 400 \) MeV. If multiple collision vertices are reconstructed, the vertex with the largest summed \( p_T^2 \) of the associated tracks is selected as the primary vertex.

Each electron candidate is reconstructed from clustered energy deposits in the EM calorimeter with an associated track. It is further required to satisfy a tight set of identification criteria with an efficiency of approximately 80\% for electrons from \( W \to e\nu \) decays with transverse energy \( 20 \) GeV < \( E_T \) < 50 GeV \( [17] \). While the energy measurement is taken from the EM calorimeter, the pseudorapidity \( \eta \) and azimuthal angle \( \phi \) are taken from the associated track. The cluster is required to be in the range \( |\eta| < 2.47 \), excluding the transition region between barrel and end-cap calorimeters, 1.37 < \( |\eta| < 1.52 \), and small calorimeter regions affected by temporary operational problems. The track associated with the electron candidate is required to point back to the
reconstructed primary vertex with a transverse impact parameter significance $|d_{0}/\sigma_{d_{0}}| < 10$ and with an impact parameter along the beam direction of $|\zeta_{0}| < 1$ mm. Electrons are further required to be isolated: the sum of the transverse energies (excluding the electron itself) in calorimeter cells inside a cone $\Delta R \equiv \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3$ around the cluster barycentre must satisfy $\Sigma(E_{T}^{\text{clus}})/p_{T} < 0.14$ and the scalar sum of the transverse momenta of all tracks (excluding the electron track itself) with $p_{T} > 1$ GeV from the primary vertex in the same cone must satisfy $\Sigma(p_{T}^{\text{track}})/p_{T} < 0.13$.

Muons are reconstructed by combining tracks in the inner detector and the muon spectrometer. The identification efficiency is measured to be $(92.8 \pm 0.2)\%$ for muons with transverse momentum $p_{T} > 20$ GeV [13]. Tracks are required to pass basic quality cuts on the number and type of hits in the inner detector. They must lie within the range $|\eta| < 2.4$. The tracks must satisfy the same $z_{0}$ cut as electrons and $|d_{0}/\sigma_{d_{0}}| < 3$. They must also be isolated, with the sum of the transverse energies (excluding those attributed to the muon itself) in calorimeter cells inside a cone $\Delta R = 0.3$ around the muon satisfying $\Sigma(E_{T}^{\text{clus}})/p_{T} < 0.14$. Furthermore, the scalar sum of the transverse momenta of all tracks with $p_{T} > 1$ GeV from the primary vertex inside a cone $\Delta R = 0.4$ around the muon must satisfy $\Sigma(p_{T}^{\text{track}})/p_{T} < 0.15$.

Jets are reconstructed from topological clusters of energy deposited in the calorimeters using the anti-$k_{t}$ algorithm [19] with radius parameter $R = 0.4$. The reconstructed jet energy is calibrated using $p_{T}$- and $\eta$-dependent correction factors based on MC simulation and validated with data [20]. The selected jets are required to have $p_{T} > 25$ GeV and $|\eta| < 4.5$. Jets are considered $b$-tagged if they satisfy the requirement $|\eta| < 2.8$ and are consistent with having originated from the decay of a $b$-quark. This latter requirement is determined by a $b$-tagging algorithm which uses a combination of impact parameter significance and secondary vertex information and exploits the topology of weak decays of $b$- and $c$-hadrons. The algorithm is tuned to achieve an 80% $b$-jet identification efficiency, which results in a tagging rate for light quark jets of approximately 6% [21,22]. The missing transverse momentum and its magnitude $E_{T}^{\text{miss}}$ are reconstructed from calibrated jets, leptons and photons, and take into account soft clustered energy in the calorimeters [23]. Energy deposited by muons is subtracted in the $E_{T}^{\text{miss}}$ calculation to avoid double counting.

5. Event Selection

Events are classified based on the number of jets selected in addition to the two jets from the Higgs boson decay candidate. For events to be selected as Higgs boson candidates without an additional jet ($H + 0j$) or with exactly one additional jet ($H + 1j$), the channels which are more sensitive to the gluon fusion process, the following conditions must be met: only one reconstructed lepton candidate (electron or muon) with $p_{T} > 40$ GeV, no additional leptons with $p_{T} > 20$ GeV, $E_{T}^{\text{miss}} > 40$ GeV, and exactly two jets ($t\bar{t}jj$ + 0 jet sample) or exactly three jets ($t\bar{t}jj + 1$ jet sample) with $p_{T} > 40$ GeV and $|\eta| < 4.5$. The two jets with invariant mass ($m_{jj}$) closest to the mass of the $W$ boson are required to satisfy $71$ GeV $< m_{jj} < 91$ GeV. The more energetic of these two jets must satisfy $p_{T} > 60$ GeV. These two jets are taken as the $W$ boson decay jets and are required to lie within the range $|\eta| < 2.8$, where the jet energy scale is best known (with an uncertainty of 5% or less for $p_{T} > 40$ GeV, depending on $p_{T}$ and $|\eta|$ over this range [20]), and have $\Delta R_{jj} < 1.3$ to suppress $W$+jets background. In order to reduce top quark background, the event is rejected if either of the $W$ boson decay jets is $b$-tagged.

For the $t\bar{t}jj + 2j$ selection ($H + 2j$), which is more sensitive to the weak boson fusion Higgs boson production mode, the following requirements are applied. The charged lepton $p_{T}$ and the $E_{T}^{\text{miss}}$ must both exceed 30 GeV. There must be at least four jets with $p_{T} > 25$ GeV and $|\eta| < 4.5$. The two jets with invariant mass closest to the mass of the $W$ boson are required to satisfy $71$ GeV $< m_{jj} < 91$ GeV. These jets are labelled as the $W$ boson decay jets. Because of the small signal cross section in this channel, the $W$ boson decay jets are not required to lie within $|\eta| < 2.8$, in order to increase the acceptance. The event is required to satisfy a set of “forward jet tagging” cuts designed to select $qq \rightarrow qqH$ events. The two highest-$p_{T}$ jets apart from the $W$ boson decay jets are labelled as the “tag” jets, and they are required to be in opposite hemispheres ($\eta_{1} \cdot \eta_{2} < 0$). They are also required to be well-separated in pseudorapidity ($\Delta\eta_{jj} = |\eta_{1} - \eta_{2}| > 3$). The lepton is required to be between the two tag jets in pseudorapidity. The two tag jets must have large invariant mass ($m_{jj} > 600$ GeV) and there must be no additional jets in the range $|\eta| < 3.2$. The event is rejected if it contains a $b$-tagged jet.

The $t\bar{t}jj + 0/1j$ selection differs from the selection used Ref. [11]. The selection criteria are op-
optimized to improve the expected Higgs boson sensitivity for masses above 300 GeV and require a more complex parameterization of the background shape, as discussed in Section 8.

6. Expected Backgrounds

In both the $\ell\nu j + 0/1j$ and $\ell\nu j + 2j$ selections, the background is expected to be dominated by $W+jets$ production. Other important backgrounds are $Z+jets, t\bar{t}$, single top quark, diboson ($WW$, $WZ$, $ZZ$, $W\gamma$ and $Z\gamma$) production, and multijets (MJ) from strong interaction processes that can be selected due either to the presence of leptons from heavy-flavour decays or jets misidentified as leptons.

Although MC predictions are not used to model the background in the Higgs boson search results, at this intermediate stage. Backgrounds due to $WZ$ production is modelled with MC@NLO. The small contributions from top quark ($t\bar{t}$, single top quark, diboson ($WW$, $WZ$, $ZZ$, $W\gamma$ and $Z\gamma$)) production, and multijets (MJ) from strong interaction processes that can be selected due either to the presence of leptons from heavy-flavour decays or jets misidentified as leptons.

The MC simulation predicts that $W/Z+jets$ events constitute $(72 \pm 14)\%$ of the total background for $\ell\nu j + 0/1j$ and $(77\pm15)\%$ for $\ell\nu j + 2j$, while the top quark background contributes with $(19\pm5)\%$ and $(9\pm2)\%$ for $\ell\nu j + 0/1j$ and $\ell\nu j + 2j$ respectively.

7. WW Mass Reconstruction

To reconstruct the invariant mass $m(\ell\nu j)$ of the WW system, the neutrino momentum is required. Its transverse momentum $p_T^n$ is taken from the measured $E_T^{miss}$ while the neutrino longitudinal momentum $p_L^n$ is computed using the second degree equation given by the mass constraint $m(\ell\nu) = m(W)$. In the case of two real solutions, the solution with smaller neutrino longitudinal momentum $p_L^n$ is taken, based on simulation studies. In the case of complex solutions, the event is rejected. This requirement rejects $(20 \pm 1)\%$ of MC signal events at $m_H = 400$ GeV, while for MC $W+jets$ the corresponding rejection is $(30 \pm 1)\%$. These estimates include only statistical uncertainties. Larger fractions of events are rejected in $\ell\nu j + 1j$ than in $\ell\nu j + 0j$ independent of lepton flavour. In collision data $(30 \pm 1)\%$ of the events are rejected by this requirement, consistent with the expectations from the $W+jets$ background simulation.

8. Signal and Background Modelling

The Higgs boson signal is expected to appear as a peak in the $m(\ell\nu j)$ distribution. Its width, before detector effects, varies from about 10 GeV at $m_H = 300$ GeV to about 70 GeV at $m_H = 550$ GeV. The non-resonant background for the $\ell\nu j + 0/1j$ channel is modelled by a smooth function of the form $f(x) = [1/(1 + |a(x - m)^b|) \times \exp[-c(x - 200)]$, where $x$ is $m(\ell\nu j)$ in GeV and $a$, $b$, $c$, and $m$ are free parameters with the appropriate units. In the $\ell\nu j + 2j$ channel, the background is modelled by the sum of two exponential functions. The parameters of the fitted function in each of these models are not subjected to any external constraint. The functional form for the background model is well
motivated by studies using MC simulation, and is tested by fits to the $m(l\nu jj)$ distributions obtained through event selection in the $W$ sidebands, with $m_{jj}$ just below ($45 \text{ GeV} < m_{jj} < 60 \text{ GeV}$) or just above ($100 \text{ GeV} < m_{jj} < 115 \text{ GeV}$) the $W$ boson peak. Figures 1 and 2 show fits of the $l\nu jj$ mass to the background model for $l\nu jj + 0j$ and $l\nu jj + 1j$ selections with $m_{jj}$ in the $W$ sidebands. The \(\chi^2\) probabilities of these fits are between 25% and 75%, providing support for the background functional form used in this analysis.

MC simulation is used to study the expected Higgs boson contribution to the $m(l\nu jj)$ distributions. Both the gluon fusion and the weak boson fusion signal production processes are simulated using the POWHEG [29, 30] event generator interfaced to PYTHIA [31] and are normalized to the next-to-next-to-leading order cross sections [32] shown in Table 1. The $m(l\nu jj)$ distribution for the expected signal at each hypothesis is modelled using the functional form \[1/(a + (x - m_1)^2 + b(x - m_2)^2)\] with parameters \(a, b, m_1\) and \(m_2\) determined from a fit to the MC simulation of the expected Higgs boson signal. The $m(l\nu jj)$ fractional resolution is $8.8 \pm 1.3\%$ at $m_H = 400 \text{ GeV}$, the uncertainty arising mostly from the $E_T^{\text{miss}}$ and jet energy scale as described below, and shows a $1/\sqrt{m_H}$ dependence over the range of this analysis.

9. Systematic Uncertainties

The systematic uncertainty due to the background modelling is included by treating the uncertainties on the background model parameters resulting from fits to the data as nuisance parameters in the statistical interpretation of the data. Both the background model and the sum of signal and background models are found to be good fits to the data. For $m_H = 400 \text{ GeV}$, the \(\chi^2\) probabilities are 33% and 31% for the background-only and background-plus-signal fits, respectively. Therefore, alternative parameterizations of the background expectation that are consistent with the data will also be consistent with the background model within its uncertainties. This is tested by fitting both the signal region and the sideband regions of the data with two alternative parameterizations. Differences in the fitted background yield between these parameterizations and the nominal background model are less than 5%, while the uncertainty from the nuisance parameters and statistical uncertainty is 10-12%.

The remaining systematic uncertainties are related to the Higgs boson signal. The fit includes nuisance parameters which account for the uncertainty in the reconstruction efficiency. The trigger efficiencies, the electron and muon reconstruction efficiencies, lepton energy resolution and scale are varied within their uncertainties, giving an uncertainty in the signal efficiency of less than 1%. Varying the jet energy scale [20] within its uncertainties yields an uncertainty of up to 8% in the expected signal in the $l\nu jj + 0/1j$ channel for $m_H > 400 \text{ GeV}$. Smearing the jet energies within the uncertainty on their resolutions [35] results in a signal uncertainty of 7% for $m_H = 400 \text{ GeV}$ and 5% for $m_H = 600 \text{ GeV}$. The reconstructed $E_T^{\text{miss}}$ is also affected by the uncertainties on the energy scales and resolutions of reconstructed leptons and jets. The signal uncertainties given above include the propagation of these effects to the reconstructed $E_T^{\text{miss}}$. The propagation to $E_T^{\text{miss}}$ adds a small contribution to the overall signal uncertainty. In addition, a 7% uncertainty on the degradation of the $E_T^{\text{miss}}$ resolution and scale due to pile-up effects is estimated, which results in a negligible uncertainty on the signal efficiency. The looser selection criteria for the $l\nu jj + 2j$ channel result in an 11% uncertainty on the signal efficiency from the jet energy scale at $m_H = 400 \text{ GeV}$ while the uncertainty due to the jet energy resolution is 16%. The uncertainty on the $b$-tagging efficiency [35] gives a maximum uncertainty of 8% on the signal efficiency and shows no strong dependence on $m_H$ or the selection criteria.

The uncertainties on jet energy resolution and jet energy scale, which also have an impact on $E_T^{\text{miss}}$, lead to systematic uncertainties on the Higgs boson mass resolution (5%) and on the Higgs boson mass scale (2%). These uncertainties are not included since their effect on the fitted Higgs boson yield is considerably smaller than the systematic uncertainty on the signal acceptance due to jet energy scale and resolution.

The Higgs boson signal expectation includes a 3.9% systematic uncertainty due the luminosity determination [37, 38] and a 19.4% uncertainty on the predicted Higgs boson cross section [32], taken to be independent of the mass. Off-shell effects and interference between the signal and background processes are discussed in Refs. [39, 40]. To account for the uncertainties from these effects, an uncertainty of $150\% \times m_H^2$ ($m_H$ in TeV) on the signal cross section is included in the statistical interpretation of the data, where the $m_H^2$ form is motivated by the scaling of the
Figure 1: Fits of the background model described in the text to the reconstructed invariant mass $m(\ell\nu jj)$ when $m_{jj}$ is in the $W$ sidebands for the $\ell\nu jj + 0j$ selection. The left (right) figure shows the electron (muon) channel distribution. The $\chi^2$/dof and $\chi^2$ probability of these fits are also shown in the figure.

Figure 2: Fits of the background model described in the text to the reconstructed invariant mass $m(\ell\nu jj)$ when the $m_{jj}$ is in the $W$ sidebands for the $\ell\nu jj + 1j$ selection. The left (right) figure shows the electron (muon) channel distributions. The $\chi^2$/dof and $\chi^2$ probability of these fits are also shown in the figure.
Higgs boson width with $m_H$ and the normalization factor of 150% is chosen to give $\sim 30\%$ at $m_H = 600$ GeV [32].

10. Results and Conclusions

Figures 3, 4, and 5 show the $m(\ell v jj)$ distributions and the ratio of data to background expectation from MC simulation for the six different final states considered in this analysis, along with bands showing the total background uncertainty. The simulated background is not used in the statistical interpretation of the data. Instead, the parameterizations described in Section 8 are used to model the background.

The Higgs boson signal yield in each final state is determined using a binned maximum likelihood fit to the observed $m(\ell v jj)$ distribution in the range $200$ GeV $< m(\ell v jj) < 2000$ GeV. As a check, fits over a smaller range ($200$ GeV $< m(\ell v jj) < 1000$ GeV) were also performed and the results were found to be consistent with the results presented here.

The difference between data and the fitted background is shown in Figure 6. The expected signals for $m_H = 400$ GeV and $m_H = 600$ GeV are also shown, each scaled to the $95\%$ CL limit on the production cross section.

Figure 6 shows that there is no indication of a significant excess of data above the background model. Limits on SM Higgs boson production are extracted using the profile likelihood ratio [41] as a test statistic and following the $CL_s$ procedure described in Refs. [4, 5, 6].

Figure 7 shows the $95\%$ CL upper bound on the cross section times branching ratio for Higgs boson production with respect to the Standard Model prediction, as a function of $m_H$. The best sensitivity is reached at $m_H = 400$ GeV, where the $95\%$ confidence level upper bound on the cross section for $H \to WW$ production using the combined $H + 0j$ and $H + 1j$ channels is observed (expected) to be $2.2$ pb ($1.9$ pb) corresponding to $1.9$ ($1.6$) times the Standard Model prediction. In the $H + 2j$ channel, which is more sensitive to Higgs boson production via weak boson fusion, the $95\%$ confidence level upper bound on the cross section for $H \to WW$ production with $m_H = 400$ GeV is observed (expected) to be $0.7$ pb ($0.6$ pb) corresponding to $7.9$ ($6.5$) times the Standard Model prediction.

The $H + 2j$ channel with the $H + 0/1j$ channels. Figure 7 shows the probability $p_\ell$ to observe a fluctuation in $300 < m(\ell v jj) < 600$ GeV at least as large as the one observed in data if there is no signal contribution, where the signal and background are modelled as described in Section 8. The expected $p_\ell$ for $H + 0/1j$ if there were a SM Higgs at 400 GeV is 0.091, and the observed value is 0.276. For $H + 2j$, the observed $p_\ell$ is 0.369 and the observed is 0.293. The significance is computed as $\sqrt{2 \log \lambda}$ where $\lambda$ is the likelihood ratio obtained by the fit, and the significance is converted into the probability $p_\ell$ using the Gauss error function.

In summary, a search for the SM Higgs boson has been performed in the $H \to WW \to \ell v jj$ channel using 4.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV recorded by the ATLAS detector. No significant excess of events over the expected background has been observed. Exclusion limits on SM Higgs boson production at $95\%$ CL are reported over the Higgs boson mass range of $300 - 600$ GeV.

11. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
Figure 3: The reconstructed invariant mass $m(\ell\nu jj)$ in the data and expected backgrounds using MC simulation for the $\ell\nu jj + 0j$ selection. The left (right) figure shows the electron (muon) channel distribution. The expected Higgs boson signal for $m_H = 400$ GeV is also shown. The bottom panels show the data divided by the MC expectation as markers, and the shaded (orange) region indicates the systematic uncertainty on the background expectation from MC simulation.

Figure 4: The reconstructed invariant mass $m(\ell\nu jj)$ in the data and expected backgrounds using MC simulation for the $\ell\nu jj + 1j$ selection. The left (right) figure shows the electron (muon) channel distribution. The expected Higgs boson signal for $m_H = 400$ GeV is also shown. The bottom panels show the data divided by the MC expectation as markers, and the shaded (orange) region indicates the systematic uncertainty on the background expectation from MC simulation.
Figure 5: The reconstructed invariant mass $m(\ell\nu jj)$ in the data and expected backgrounds using MC simulation for the $\ell\nu jj + 2j$ selection. The left (right) figure shows the electron (muon) channel distribution. The expected Higgs boson signal for $m_H = 400$ GeV is also shown, scaled up by a factor of 10 for visibility. The bottom panels show the data divided by the MC expectation as markers, and the shaded (orange) region indicates the systematic uncertainty on the background expectation from MC simulation.

Figure 6: The difference between data and the fitted background under a no-signal hypothesis, for the (left) $\ell\nu jj + 0/1j$ selection and (right) $\ell\nu jj + 2j$ selection, both summed over lepton flavours. The expected contribution from SM Higgs boson decays is also shown for $m_H = 400$ GeV and $m_H = 600$ GeV, multiplied by a factor equal to the ratio of 95% CL limit on its production to the SM prediction.
Figure 7: The expected and observed 95% CL upper limits on the Higgs boson production cross section divided by the SM prediction. The left figure shows the combination of $H + 0j$ with $H + 1j$ and the right figure shows the $H + 2j$ limits. For any hypothesized Higgs boson mass, the background contribution used in the calculation of this limit is obtained from a fit to the $m(\ell\nu jj)$ distribution. The dark (green) and light (yellow) bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the expected limit.

Figure 8: The expected and observed 95% CL upper limits on the Higgs boson production cross section divided by the SM prediction. This figure shows the combination of the $H + 0j$, $H + 1j$ and $H + 2j$ channels. The background contribution used in the calculation of this limit is obtained from a fit to the $m(\ell\nu jj)$ distribution. The green and yellow bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the expected limit.
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN, CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEADSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[10] The CDF and D0 Collaborations, and the Tevatron New Phenomena and Higgs Working Group, Combined CDF and D0 upper limits on Standard Model Higgs boson production with up to 8.6 fb^{-1} of data, arXiv:1107.5518
The ATLAS Collaboration

G. Aad\textsuperscript{48}, B. Abbott\textsuperscript{111}, J. Abdallah\textsuperscript{11}, S. AbdelKhalek\textsuperscript{115}, A.A. Abdelalim\textsuperscript{49}, O. Abdirnov\textsuperscript{10}, R. Aben\textsuperscript{105}, B. Abi\textsuperscript{111}, M. Abolins\textsuperscript{88}, O.S. AbouZeid\textsuperscript{158}, H. Abramowicz\textsuperscript{153}, H. Abreu\textsuperscript{136}, E. Aceti\textsuperscript{89a,89b}, B.S. Acharya\textsuperscript{84a,164a}, L. Adamczyk\textsuperscript{37}, D.L. Adams\textsuperscript{34}, T.N. Addy\textsuperscript{56}, J. Adelman\textsuperscript{176}, S. Adomeit\textsuperscript{98}, P. Adragna\textsuperscript{55}, T. Adye\textsuperscript{129}, S. Aefsky\textsuperscript{22}, J.A. Aguilar-Saavedra\textsuperscript{124a,6}, M. Agustoni\textsuperscript{6}, M. Aharrouche\textsuperscript{81}, S.P. Ahlen\textsuperscript{21}, F. Ahles\textsuperscript{48}, A. Ahmad\textsuperscript{148}, M. Ahsan\textsuperscript{40}, G. Aielli\textsuperscript{133a,133b}, T. Akgun\textsuperscript{182}, T.P.A. Akesson\textsuperscript{79}, G. Akimoto\textsuperscript{155}, A.V. Akimov\textsuperscript{94}, M.S. Alam\textsuperscript{1}, M.A. Alam\textsuperscript{76}, J. Albers\textsuperscript{169}, S. Albrand\textsuperscript{55}, M. Aleksa\textsuperscript{29}, I.N. Aleksandrov\textsuperscript{6}, F. Alessandria\textsuperscript{89a}, C. Alexa\textsuperscript{25a}, G. Alexander\textsuperscript{153}, G. Alexandre\textsuperscript{94}, T. Alexopoulos\textsuperscript{9}, M. Alhroob\textsuperscript{164a,164c}, M. Ali\textsuperscript{15}, G. Alimonti\textsuperscript{89f}, J. Alison\textsuperscript{120}, B.M.M. Allbrook\textsuperscript{17}, P.P. Allport\textsuperscript{73}, S.E. Allwood-Spiers\textsuperscript{53}, J. Almond\textsuperscript{52}, A. Aloisio\textsuperscript{102a,102b}, R. Alon\textsuperscript{172}, A. Alonso\textsuperscript{70}, F. Alonso\textsuperscript{70}, B. Alvarez Gonzalez\textsuperscript{21}, P. Anger\textsuperscript{58b}, M. Antonelli\textsuperscript{9}, R. Avramidou\textsuperscript{18a}, E. Arik\textsuperscript{18a}, M. Arik\textsuperscript{18a}, A.J. Armbruster\textsuperscript{8}, O. Armaez\textsuperscript{81}, V. Arnaiz\textsuperscript{115}, C. Arnan\textsuperscript{91}, A. Artonov\textsuperscript{25}, G. Artoni\textsuperscript{132a,132b}, D. Arutunov\textsuperscript{20}, T. Barklow\textsuperscript{169}, 99, 49, E. Benhar Noccioli\textsuperscript{18a}, O. Benary\textsuperscript{233}, F. Bellina\textsuperscript{29}, F. Barreiro\textsuperscript{149}, V. Bartsch\textsuperscript{82}, A.K. Becker\textsuperscript{82}, W. Bhimji\textsuperscript{48}, U. Bitenc\textsuperscript{18}, J. Blocki\textsuperscript{19a}, N.M. Bolnet\textsuperscript{107}, 134a, 88, R. Brock\textsuperscript{66}, A. Borisov\textsuperscript{78}, J. Bremer\textsuperscript{128}, M. Bomben\textsuperscript{54}, 71, I.R. Boyko\textsuperscript{29}, K. Brendlinger\textsuperscript{20}, R. Bressler\textsuperscript{172}, D. Britton\textsuperscript{53}, F.M. Brochu\textsuperscript{27}, I. Brock\textsuperscript{29}, R. Brock\textsuperscript{88}, F. Broggi\textsuperscript{89}, C. Bromberg\textsuperscript{88}, J. Bronner\textsuperscript{99}, G. Brooijmans\textsuperscript{34}, T. Brooks\textsuperscript{56}, W.K. Brooks\textsuperscript{31b}, G. Brown\textsuperscript{55}, H. Brown\textsuperscript{4}, P.A. Bruckman de Renstrom\textsuperscript{38}, D. Brunko\textsuperscript{144b}, R. Bruneliere\textsuperscript{48}, S. Brunet\textsuperscript{60},
W. Wiedenmann\textsuperscript{173}, M. Wieler\textsuperscript{129}, P. Wiemers\textsuperscript{20}, C. Wiglesworth\textsuperscript{75}, L.A.M. Wijk-Fuchs\textsuperscript{48}, P.A. Wijeratne\textsuperscript{77}, A. Wildauer\textsuperscript{165}, M.A. Wildt\textsuperscript{41,4}, I. Wilhelm\textsuperscript{126}, H.G. Wilkens\textsuperscript{29}, J.Z. Wilf\textsuperscript{98}, E. Williams\textsuperscript{34}, H.H. Williams\textsuperscript{120}, W. Willis\textsuperscript{34}, S. Willocq\textsuperscript{65}, J.A. Wilson\textsuperscript{17}, M.G. Wilson\textsuperscript{143}, A. Wilson\textsuperscript{87}, I. Wingenter-Seez\textsuperscript{4}, S. Winkelmann\textsuperscript{48}, F. Winklmeier\textsuperscript{29}, M. Wittgen\textsuperscript{143}, S.J. Wollstadt\textsuperscript{81}, M.W. Wolter\textsuperscript{38}, H. Wolters\textsuperscript{24a,8}, W.C. Wong\textsuperscript{60}, G. Wooden\textsuperscript{67}, B.K. Wosiek\textsuperscript{38}, J. Wotchtack\textsuperscript{29}, M.J. Woudstra\textsuperscript{82}, K.W. Wozniak\textsuperscript{38}, K. Wraith\textsuperscript{53}, C. Wright\textsuperscript{53}, M. Wright\textsuperscript{51}, B. Wrone\textsuperscript{73}, S.L. Wu\textsuperscript{73}, X. Wu\textsuperscript{49}, Y. Wu\textsuperscript{12b,at}, E. Wulf\textsuperscript{34}, B.M. Wynne\textsuperscript{45}, S. Xella\textsuperscript{35}, M. Xiao\textsuperscript{136}, S. Xie\textsuperscript{48}, C. Xu\textsuperscript{12b,2}, D. Xu\textsuperscript{139}, B. Yabsea\textsuperscript{150}, S. Yacobi\textsuperscript{145b}, M. Yamada\textsuperscript{65}, H. Yamaguchi\textsuperscript{155}, A. Yamamoto\textsuperscript{65}, K. Yamamoto\textsuperscript{63}, S. Yamamoto\textsuperscript{155}, T. Yamamura\textsuperscript{155}, T. Yamaoka\textsuperscript{144}, T. Yamazaki\textsuperscript{155}, Y. Yamazaki\textsuperscript{66}, Z. Yan\textsuperscript{21}, H. Yang\textsuperscript{87}, U.K. Yang\textsuperscript{66}, Y. Yang\textsuperscript{60}, Z. Yang\textsuperscript{146a,146b}, S. Yanush\textsuperscript{61}, L. Yao\textsuperscript{24a}, Y. Yao\textsuperscript{14}, Y. Yasu\textsuperscript{65}, G.V. Ybeles Smit\textsuperscript{130}, J. Ye\textsuperscript{39}, S. Ye\textsuperscript{24}, M. Yilmaz\textsuperscript{63}, R. Yoosooftiya\textsuperscript{123}, K. Yorita\textsuperscript{171}, R. Yoshida\textsuperscript{5}, C. Young\textsuperscript{143}, C.J. Young\textsuperscript{118}, S. Youssef\textsuperscript{41}, D. Yu\textsuperscript{23}, J. Yu\textsuperscript{7}, J. Yu\textsuperscript{112}, L. Yuan\textsuperscript{66}, A. Yurkewicz\textsuperscript{106}, M. Byszewski\textsuperscript{29}, B. Bzabinski\textsuperscript{38}, R. Zaidan\textsuperscript{62}, A.M. Zaitsev\textsuperscript{128}, Z. Zajacova\textsuperscript{29}, L. Zanello\textsuperscript{132a,132b}, A. Zaytsev\textsuperscript{107}, C. Zeitnitz\textsuperscript{75}, M. Zeman\textsuperscript{125}, A. Zemla\textsuperscript{38}, C. Zendler\textsuperscript{20}, O. Zenin\textsuperscript{128}, T. Zeni\textsuperscript{144a}, Z. Zinonos\textsuperscript{122a,122b}, S. Zenz\textsuperscript{14}, D. Zerwas\textsuperscript{115}, G. Zevi della Porta\textsuperscript{57}, Z. Zhan\textsuperscript{32d}, D. Zhang\textsuperscript{32b,at}, H. Zhang\textsuperscript{88}, J. Zhang\textsuperscript{1}, X. Zhang\textsuperscript{32a}, Z. Zhang\textsuperscript{115}, L. Zhao\textsuperscript{108}, T. Zhao\textsuperscript{38}, Z. Zhao\textsuperscript{32b}, A. Zhemchugov\textsuperscript{64}, J. Zhong\textsuperscript{118}, B. Zhou\textsuperscript{47}, N. Zhou\textsuperscript{163}, Y. Zhou\textsuperscript{151}, C.G. Zhu\textsuperscript{29}, J. Zhu\textsuperscript{1}, L. Zhou\textsuperscript{66}, Y. Zhu\textsuperscript{87}, Z. Zhu\textsuperscript{126}, X. Zhuang\textsuperscript{98}, V. Zhuravlov\textsuperscript{39}, D. Ziemińska\textsuperscript{40}, N.I. Zimin\textsuperscript{64}, R. Zimmermann\textsuperscript{20}, S. Zimmermann\textsuperscript{48}, M. Ziolkowski\textsuperscript{141}, R. Zitoun\textsuperscript{4}, L. Živković\textsuperscript{42}, V.V. Zmouchko\textsuperscript{128a}, G. Zobernig\textsuperscript{173}, A. Zoccoli\textsuperscript{19a,19b}, M. zur Nedden\textsuperscript{13}, V. Zutshi\textsuperscript{106}, L. Zwalinski\textsuperscript{29}.

1 Physics Department, SUNY Albany, Albany NY, United States of America
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kutahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS-IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, Universität Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a)Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFJSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 21
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Department, Brookhaven National Laboratory, Upton NY, United States of America</td>
<td></td>
</tr>
<tr>
<td>National Institute of Physics and Nuclear Engineering, Bucharest; University Politehnica Bucharest, Bucharest; West University in Timisoara, Timisoara, Romania</td>
<td></td>
</tr>
<tr>
<td>Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina</td>
<td></td>
</tr>
<tr>
<td>Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Carleton University, Ottawa ON, Canada</td>
<td></td>
</tr>
<tr>
<td>CERN, Geneva, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America</td>
<td></td>
</tr>
<tr>
<td>Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile</td>
<td></td>
</tr>
<tr>
<td>Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Modern Physics, University of Science and Technology of China, Anhui; Department of Physics, Nanjing University, Jiangsu; School of Physics, Shandong University, Shandong, China</td>
<td></td>
</tr>
<tr>
<td>Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France</td>
<td></td>
</tr>
<tr>
<td>Nevis Laboratory, Columbia University, Irvington NY, United States of America</td>
<td></td>
</tr>
<tr>
<td>Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark</td>
<td></td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Cosenza; Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy</td>
<td></td>
</tr>
<tr>
<td>AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland</td>
<td></td>
</tr>
<tr>
<td>The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland</td>
<td></td>
</tr>
<tr>
<td>Physics Department, Southern Methodist University, Dallas TX, United States of America</td>
<td></td>
</tr>
<tr>
<td>Physics Department, University of Texas at Dallas, Richardson TX, United States of America</td>
<td></td>
</tr>
<tr>
<td>DESY, Hamburg and Zeuthen, Germany</td>
<td></td>
</tr>
<tr>
<td>Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany</td>
<td></td>
</tr>
<tr>
<td>Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Duke University, Durham NC, United States of America</td>
<td></td>
</tr>
<tr>
<td>SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>INFN Laboratori Nazionali di Frascati, Frascati, Italy</td>
<td></td>
</tr>
<tr>
<td>Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany</td>
<td></td>
</tr>
<tr>
<td>Section de Physique, Université de Genève, Geneva, Switzerland</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia</td>
<td></td>
</tr>
<tr>
<td>II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany</td>
<td></td>
</tr>
<tr>
<td>II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany</td>
<td></td>
</tr>
<tr>
<td>Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Hampton University, Hampton VA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany</td>
<td></td>
</tr>
<tr>
<td>Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Indiana University, Bloomington IN, United States of America</td>
<td></td>
</tr>
<tr>
<td>Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria</td>
<td></td>
</tr>
<tr>
<td>University of Iowa, Iowa City IA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia</td>
<td></td>
</tr>
</tbody>
</table>
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal;
(b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat;
(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay
(Commissariat à l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Department of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
161 Science and Technology Center, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelecctrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison WI, United States of America
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven CT, United States of America
177 Yerevan Physics Institute, Yerevan, Armenia
178 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
179 a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Department of Physics, UASLP, San Luis Potosi, Mexico
j Also at Università di Napoli Parthenope, Napoli, Italy
k Also at Institute of Particle Physics (IPP), Canada
l Also at Department of Physics, Middle East Technical University, Ankara, Turkey
m Also at Louisiana Tech University, Ruston LA, United States of America
n Also at Dep Fisica and CEFITEC de Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
o Also at Department of Physics and Astronomy, University College London, London, United Kingdom
p Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
q Also at Department of Physics, University of Cape Town, Cape Town, South Africa
r Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
\* Deceased