Search for resonant top plus jet production in $t\bar{t} + \text{jets}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Abstract

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to tq or tq, leading to a resonance within the $t\bar{t} + \text{jets}$ signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.
Search for resonant top plus jet production in $t\bar{t} +$ jets events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to tq or $t\bar{q}$, leading to a resonance within the $t\bar{t} +$ jets signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

PACS numbers: 14.80.-j

In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is one important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments [1, 2] are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process [3-5]. In these models, a new heavy particle R would be produced at the LHC in association with a top or anti-top quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W'$ or $R = \phi$ (see below). As shown in Ref. [6], the production mechanism in pp collisions mainly involves quarks rather than anti-quarks at $\sqrt{s} = 7$ TeV, even for relatively low mass particles.

The larger number of quarks relative to anti-quarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t+\text{jet}$ or $\bar{t}+\text{jet}$ final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W') mostly in the tq system, and a di-quark color triplet model with a resonance (ϕ) in the $t\bar{q}$ system. In both cases a $t\bar{t}$+jet final state is produced, but a peak will be present in only one of the $t+\text{jet}$ or $\bar{t}+\text{jet}$ invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them [7,9], and to have only right-handed couplings. The t or \bar{t} then decays to W^+b or $W^-\bar{b}$, respectively. This paper considers the decays signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF [10], which excluded color triplet resonances with masses below 200 GeV and W' resonances with masses below 300 GeV, for particles with unit right-handed coupling (g_R) to tq. As is done in this paper, CDF used the formalism in Ref. [3] to define g_R. CMS recently performed a search that excluded a new W' with a mass less than 840 GeV [11] for particles with $g_R = 2$ [12].

The analysis presented here uses the full ATLAS 7 TeV pp collision dataset collected in 2011, corresponding to 4.7±0.2 fb$^{-1}$ of integrated luminosity [13, 14] delivered by the LHC. ATLAS [15] is a multi-purpose particle physics detector with cylindrical geometry [16]. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon micro-strip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field, and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2-8 Tm, generated by three superconducting air-core toroids. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to ~300 Hz.

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy $E_T > 20$ GeV (transverse momentum

FIG. 1: Example production and decay Feynman diagrams for the (a) W' and (b) ϕ models.
$p_T > 18 \text{ GeV}$), ensuring that the trigger is fully efficient for the off-line selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with $E_T > 25 \text{ GeV}$ are required to pass the “tight” electron quality criteria [17], to fall inside a well-instrumented region of the detector ($|\eta| < 2.47$, excluding 1.37 < $|\eta| < 1.52$), and to be isolated from other objects in the event. Muons with transverse momentum $p_T > 20 \text{ GeV}$ are required to pass muon quality criteria [18], to be well measured in both the ID and the muon spectrometer, to fall within $|\eta| < 2.5$, and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-k_T [19] algorithm with a radius parameter of 0.4. Jets are required to satisfy $p_T > 25 \text{ GeV}$ and $|\eta| < 2.5$. Events with jets arising from electronic noise bursts and beam backgrounds are rejected [20]. Jets are calibrated to the hadronic energy scale using p_T and η-dependent corrections derived from simulation, as well as from test-beam and collision data [21]. Jets from the decay of heavy flavor hadrons are selected by a multivariate b-tagging algorithm [22] at an operating point with 70% efficiency for b-jets and a mistag rate for light quark jets of less than 1% in simulated $t\bar{t}$ events. Neutrinos are inferred from the magnitude of the missing transverse momentum (E_T^{miss}) in the event [23].

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, including at least one b-tagged jet. To select events with a leptonically decaying W boson, events are required to have $E_T^{\text{miss}} > 30 \text{ GeV}$ ($E_T > 20 \text{ GeV}$) in the electron (muon) channel. Additionally, the event must have a transverse mass of the leptonically-decaying W boson $m_W \times E_T^{\text{miss}} > 30 \text{ GeV}$ in the electron channel, or scalar sum $E_T^{\text{miss}} + m_W > 60 \text{ GeV}$ in the muon channel [24]. Here, $(m_W^2 - E_T^2) / (2E_T^{\text{miss}} E_T^l (1 - \cos \phi))$, where E_T^l is the magnitude of the transverse momentum of the lepton, and ϕ is the angle between the lepton and the missing transverse momentum in the event.

A variety of Monte Carlo generators are used to study and estimate backgrounds. The generated events are processed through full detector simulation [25], based on GEANT4 [26], and include the effect of multiple pp interactions per bunch crossing. To predict the event yield, the simulation is given an event-by-event weight such that the distribution of the number of pp collisions matches that in data.

The $t\bar{t}$ background is modeled with MC@NLO v4.01 [27] interfaced to HERWIG v6.520 [28] and JIMMY v4.31 [29]. An additional $t\bar{t}$ sample modeled with MC@NLO interfaced to PYTHIA v6.425 [30] is used to study potential systematic uncertainties. Other $t\bar{t}$ samples use POWHEG [31] interfaced either to PYTHIA or HERWIG, as well as AcerMC v3.8 [32]. The background from the production of single W bosons in association with extra jets is modeled by the ALPGEN v2.13 [33] generator interfaced to HERWIG. The MLM matching scheme [34] is used to form inclusive W boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [35] using the full 2011 LHC dataset. Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced with HERWIG for the parton showering, in the s-channel and Wt channel, and by AcerMC v3.8 in the t-channel. The small background in which multi-jet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [36]. In determining the expected event yields, the $t\bar{t}$ cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of $167^{+17}_{-18} \text{ pb}$ for a top quark mass of 172.5 GeV [37] [38], and the total W+jets background is normalized to inclusive next-to-next-to-leading-order predictions [39]. Signal events are produced, for a range of W' and ϕ masses, with MadGraph v5.1.3.16 [40] and interfaced to PYTHIA v6.425. Next-to-leading-order (NLO) cross sections are used for the predicted W' boson signal normalization [6], and leading-order (LO) cross sections using MSTW2008 are used for the ϕ-resonance normalization [3].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the over-constrained $t\bar{t}$ system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to 172.5 GeV by a penalty in the likelihood, computed from variations from this nominal value and the natural top quark width of 1.5 GeV. The two W boson masses are similarly constrained to 80.4 GeV within a width of 2.1 GeV. This allows the z-component of the momentum of the neutrino from the leptonically decaying W boson to be computed. Both solutions from the quadratic ambiguity of this computation are tested when computing the likelihood. Charged lepton, neutrino and jet four-momenta are constrained in the fit by resolution transfer functions derived from simulated $t\bar{t}$ events that relate the measured momenta in the detector to true particle momenta. The full shapes of these transfer functions are used in the likelihood computation. All assignments of any four jets to partons from the $t\bar{t}$ decay are tested and the assignment with the largest likelihood output for the $t\bar{t}$ hypothesis is selected. After the assignment is selected, the originally measured jet and lepton momenta and E_T^{miss} are used. The remaining jets not associated with the $t\bar{t}$ partons are included to form m_{ij} and m_{ij} masses, where the charge of the lepton is used to infer which is the top candidate and which is the anti-top candidate. All combinations of extra jets with the top and anti-top quark candidates are considered, and the pairings that give the largest m_{ij} and m_{ij} masses are used. In this way, the same extra jet can (but does not necessarily have to) be used to form m_{ij} and m_{ij}. These two masses are used as observables for the search.

Several control regions are used to ensure good model-
ing and understanding of the backgrounds before the signal region is examined. The preselection control region requires at least four jets, but does not require a b-tag. The dominant tt background is tested in a control region with exactly four jets (including at least one b-tagged jet). The rejection of events with more than four jets reduces signal contamination. A second tt control region is defined by events with exactly four jets with p_T above 25 GeV, one of which must be b-tagged, and exactly one additional jet with p_T between 20 GeV and 25 GeV. Signal contamination is further reduced by requiring that the \(\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \) between the fifth jet and both the reconstructed top and anti-top quarks is greater than $\pi/2$. Figure 2 shows distributions in the two tt control regions, where good agreement is observed between data and the prediction. The second major background, production of single W bosons in association with extra jets, is tested in a control region with five or more jets, vetoing events with b-tagged jets. The requirement of zero b-tagged jets reduces both signal and tt contamination. The distribution in Figure 3 shows good agreement between data and the prediction within uncertainties. Table 4 summarizes the expected and observed yields in the control regions.

Figure 1 shows the expected and observed m_{tj} and m_{tj} distributions in the signal region. The data are found to be consistent with the SM expectation. A variety of potential systematic effects are evaluated for the predicted signal and the background rates and shapes. The dominant systematic effects of the jet energy scale [21] lead to uncertainties of up to 10% on the total background rate and up to 21% on the total signal expectation, depending on the mass of the new particle. The other dominant systematic uncertainty from the difference in b-tagging efficiency between simulation and data leads to uncertainties of roughly 16% on both the signal and background rates. Effects due to lepton trigger uncertainties and ID efficiency as well as the energy scale and resolution are assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ data, which lead to systematic uncertainties of a few percent. Other potential systematic effects considered are the size of the small multi-jet background (assigned 100% uncertainty); tt generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%); tt showering and fragmentation uncertainties (evaluated by comparing samples using both PYTHIA and HERWIG, 1–6%); an uncertainty on the total integrated luminosity (3.9%) [13, 14]; and the amount of QCD radiation for the signal and the tt background (approximately 10%, evaluated using AcerMC). Total cross section uncertainties of 10% (55%) are used for the tt ($W+$jets) backgrounds.

Expected and observed upper limits on the signal cross section are computed at discrete mass points as follows. For each benchmark signal mass point under consideration, a signal region is defined in the m_{tj}-m_{tj} plane. When setting limits for the W' (ϕ) model, the m_{tj} (m_{tj}) window is significantly wider than the m_{tj} (m_{tj}) window.

FIG. 2: The leading jet p_T in the four-jet tt control region (a), and m_{tj} in the five-jet tt control region (b). The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.
to account for the fact that the resonance is predominantly in the \(m_{\ell_j} (m_{\ell_i}) \) system. The windows are optimized to maximize sensitivity, accounting for the full effect of systematic uncertainties. Typical mass windows are shown in Table I. For each mass window, 95% confidence level (C.L.) upper limits on the signal cross section are computed using a single bin frequentist CLs method [42]. No shape information is used within the mass windows. Table II shows the expected and observed event yields in several of the signal region windows. Expected and observed 95% C.L. lower limits on the signal cross section are derived, assuming a coupling of \(g_R = 2 \) and \(g_R = 2 \), and are shown in Figure 5. Assuming that the cross section scales as \(g_R \), the exclusion in the mass-coupling plane is shown in Figure 6. As shown, most of the parameter space in this model, which was favored by the Tevatron forward-backward asymmetry and \(t\bar{t} \) cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DFG, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF

Table I: Expected and observed yields in the four control regions (CR). Total refers to the total expected background, including \(t\bar{t} \), \(W+jets \) and the other smaller backgrounds: single top production, diboson production and multi-jet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties.

<table>
<thead>
<tr>
<th>Signal region yield</th>
<th>Preselection CR</th>
<th>W+jets CR</th>
<th>four-(t\bar{t}) CR</th>
<th>five-(t\bar{t}) CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\bar{t})</td>
<td>50000 ± 4700</td>
<td>2000 ± 400</td>
<td>19000 ± 600</td>
<td>2100 ± 200</td>
</tr>
<tr>
<td>(W+jets)</td>
<td>46000 ± 14000</td>
<td>7000 ± 2900</td>
<td>3800 ± 800</td>
<td>360 ± 170</td>
</tr>
<tr>
<td>Total</td>
<td>116000 ± 21000</td>
<td>12000 ± 3600</td>
<td>26000 ± 1300</td>
<td>2900 ± 440</td>
</tr>
<tr>
<td>Observed</td>
<td>110933</td>
<td>11858</td>
<td>26197</td>
<td>2736</td>
</tr>
<tr>
<td>300 GeV (W \prime)</td>
<td>13900 ± 670</td>
<td>930 ± 110</td>
<td>3000 ± 400</td>
<td>400 ± 80</td>
</tr>
<tr>
<td>400 GeV (\phi)</td>
<td>6100 ± 200</td>
<td>430 ± 60</td>
<td>1100 ± 100</td>
<td>200 ± 20</td>
</tr>
</tbody>
</table>

Table II: Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the total expected background, including \(t\bar{t} \), \(W+jets \) and the other smaller backgrounds: single top production, diboson production and multi-jet events, which are not tabulated separately here. Signal window eff. refers to the efficiency for the signal to fall inside the optimized two-dimensional mass window. The signal region yield is calculated in the mass window at each benchmark signal point. Signal \(\sigma \) refers to the total expected signal cross section, not taking into account the total expected signal cross section, not taking into account the

In conclusion, this paper presents a search for a new heavy particle \(R \) in the \(t\bar{t} \) or \(\ell_j \) system of \(t\bar{t} \) plus extra jet events with the ATLAS detector. Such new particles have been proposed as a potential explanation of the difference from the SM values of the forward-backward asymmetries measured in top quark pair production at the Tevatron. The full 2011 ATLAS pp dataset (4.7 fb\(^{-1}\)) is used in the search. Assuming unit coupling, the expected 95% C.L. lower limit on the mass of the new particle is 500 (700) GeV in the \(W' (\phi) \) model. No significant excess of data above SM expectation is observed, and 95% C.L. lower limits of 430 GeV for both the \(W' \) and \(\phi \) models are set. At \(g_R = 2 \), the limits are 1.10 (1.45) TeV for the \(W' (\phi) \) model, with expected limits of 0.93 (1.30) TeV. These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and \(t\bar{t} \) cross section measurements than the SM are excluded at 95% C.L. by these results.
FIG. 3: Expected and observed distribution of m_{tj} in the $W + \text{jets}$ control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.

FIG. 4: Expected and observed distributions of (a) m_{tj} and (b) $m_{\bar{t}j}$ in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.
FIG. 5: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections. The CDF result is documented in Ref. [10]. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations.

FIG. 6: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections assuming a cross section which scales with g_R^2. The hatched area shows the region of parameter space excluded by this search at 95% C.L. The CDF result is documented in Ref. [10]. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations. The region favored by the Tevatron A_{FB} and σ_{tt} measurements is shown as the dark band [43].
There are several differences between the models in Refs. [3] and [4]. The Lagrangian in the former (used in this paper) includes a factor of 1/\sqrt{2}, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional non-resonant diagrams with cross section that scale as g_k^4. Such diagrams are not included in Ref. [3].

The center of the detector and the origin at the nominal interaction point (IP) in the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse (x, y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$.

ATLAS Collaboration, EURTHROU, arXiv:0804.1476

This region simultaneously satisfies the observed high- \(m_t \) AR, low- \(m_t \) AR, and \(\sigma t \) observed at the Tevatron. Mathematically it is defined as the region with $\chi^2 < 2.8$, where χ^2 is defined in Equation 22 in M. Gresham et al., Phys. Rev. D 85 (2012) 014022, arXiv:1107.4364. The χ^2 for the Standard Model is 2.8.
<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. School of Chemistry and Physics, University of Adelaide, Adelaide, Australia</td>
</tr>
<tr>
<td>2. Physics Department, SUNY Albany, Albany NY, United States of America</td>
</tr>
<tr>
<td>3. Department of Physics, University of Alberta, Edmonton AB, Canada</td>
</tr>
<tr>
<td>4. (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kütahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey</td>
</tr>
<tr>
<td>5. LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France</td>
</tr>
<tr>
<td>6. High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America</td>
</tr>
<tr>
<td>7. Department of Physics, University of Arizona, Tucson AZ, United States of America</td>
</tr>
<tr>
<td>8. Physics Department, The University of Texas at Arlington, Arlington TX, United States of America</td>
</tr>
<tr>
<td>9. Physics Department, University of Athens, Athens, Greece</td>
</tr>
<tr>
<td>10. Physics Department, National Technical University of Athens, Zografou, Greece</td>
</tr>
<tr>
<td>11. Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan</td>
</tr>
<tr>
<td>12. Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain</td>
</tr>
<tr>
<td>13. (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia</td>
</tr>
<tr>
<td>14. Department for Physics and Technology, University of Bergen, Bergen, Norway</td>
</tr>
<tr>
<td>15. Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America</td>
</tr>
<tr>
<td>16. Department of Physics, Humboldt University, Berlin, Germany</td>
</tr>
<tr>
<td>17. Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland</td>
</tr>
<tr>
<td>18. School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom</td>
</tr>
<tr>
<td>19. (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey</td>
</tr>
<tr>
<td>20. (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy</td>
</tr>
<tr>
<td>21. Physikalisches Institut, University of Bonn, Bonn, Germany</td>
</tr>
<tr>
<td>22. Department of Physics, Boston University, Boston MA, United States of America</td>
</tr>
<tr>
<td>23. Department of Physics, Brandeis University, Waltham MA, United States of America</td>
</tr>
<tr>
<td>24. (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil</td>
</tr>
<tr>
<td>25. Physics Department, Brookhaven National Laboratory, Upton NY, United States of America</td>
</tr>
<tr>
<td>26. (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania</td>
</tr>
<tr>
<td>27. Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina</td>
</tr>
<tr>
<td>28. Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom</td>
</tr>
<tr>
<td>29. Department of Physics, Carleton University, Ottawa ON, Canada</td>
</tr>
<tr>
<td>30. CERN, Geneva, Switzerland</td>
</tr>
<tr>
<td>31. Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America</td>
</tr>
</tbody>
</table>
| 32. (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, }
Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China.
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France.
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America.
36 Niels Bohr Institute, University of Copenhagen, København, Denmark.
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy.
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland.
40 Physics and Astronomy Department, Southern Methodist University, Dallas TX, United States of America.
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America.
42 DESY, Hamburg and Zeuthen, Germany.
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany.
44 Institut für Kern-und Teilchenphysik, Technical University Dresden, Dresden, Germany.
45 Department of Physics, Duke University, Durham NC, United States of America.
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy.
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
49 Section de Physique, Université de Genève, Geneva, Switzerland.
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy.
51 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia.
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany.
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom.
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France.
56 Department of Physics, Hampton University, Hampton VA, United States of America.
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America.
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany.
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan.
60 Department of Physics, Indiana University, Bloomington IN, United States of America.
61 Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria.
62 University of Iowa, Iowa City IA, United States of America.
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America.
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia.
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan.
66 Graduate School of Science, Kobe University, Kobe, Japan.
67 Faculty of Science, Kyoto University, Kyoto, Japan.
68 Kyoto University of Education, Kyoto, Japan.
69 Department of Physics, Kyushu University, Fukuoka, Japan.
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina.
71 Physics Department, Lancaster University, Lancaster, United Kingdom.
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy.
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom.
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia.
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom.
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom.
77 Department of Physics and Astronomy, University College London, London, United Kingdom.
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
79 Fysiska institutionen, Lunds universitet, Lund, Sweden.
80 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain.
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
(a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II,
Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Department of Physics and Astronomy, University of Toronto, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNМ), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
 Also at TRIUMF, Vancouver BC, Canada
 Also at Department of Physics, California State University, Fresno CA, United States of America
 Also at Novosibirsk State University, Novosibirsk, Russia
 Also at Fermilab, Batavia IL, United States of America
 Also at Department of Physics, University of Coimbra, Coimbra, Portugal
 Also at Department of Physics, UASLP, San Luis Potosí, Mexico
 Also at Università di Napoli Parthenope, Napoli, Italy
 Also at Institute of Particle Physics (IPP), Canada
 Also at Department of Physics, Middle East Technical University, Ankara, Turkey
 Also at Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
 Also at Department of Physics and Astronomy, University College London, London, United Kingdom
 Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
 Also at Department of Physics, University of Cape Town, Cape Town, South Africa
 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
 Also at Manhattan College, New York NY, United States of America
 Also at School of Physics, Shandong University, Shandong, China
 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
 Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
 Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
 Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
 Also at Section de Physique, Université de Genève, Geneva, Switzerland
 Also at Departamento de Física, Universidade de Minho, Braga, Portugal
 Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
 Also at California Institute of Technology, Pasadena CA, United States of America
 Also at Institute of Physics, Jagiellonian University, Krakow, Poland
 Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
 Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
 Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
 Also at Department of Physics, Oxford University, Oxford, United Kingdom
 Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
 Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
 Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased