Searches for Higgs bosons in pp collisions at $\sqrt{s} = 7$ and 8 TeV in the context of four-generation and fermiophobic models

The CMS Collaboration

Abstract

Searches are reported for Higgs bosons in the context of either the standard model extended to include a fourth generation of fermions (SM4) with masses of up to 600 GeV or fermiophobic models. For the former, results from three decay modes ($\tau\tau$, WW, and ZZ) are combined, whilst for the latter the diphoton decay is exploited. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1 fb$^{-1}$ at 7 TeV and up to 5.3 fb$^{-1}$ at 8 TeV. The observed results exclude the SM4 Higgs boson in the mass range 110–600 GeV at 99% confidence level (CL), and in the mass range 110–560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110–147 GeV at 95% CL, and in the range 110–133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV is not consistent with either an SM4 or a fermiophobic Higgs boson.

Published in Physics Letters B as doi:10.1016/j.physletb.2013.06.043.
1 Introduction

In the standard model (SM) [1–3], electroweak symmetry breaking is achieved by introducing a complex scalar doublet, leading to the prediction of the Higgs boson (H) [4–9]. Precision electroweak measurements indirectly constrain the SM Higgs boson mass \(m_H \) to be less than 158 GeV [10]. The direct experimental searches exclude at 95% confidence level (CL) the SM Higgs boson in the mass range up to 600 GeV, except for the mass window 122–128 GeV [11–14], where a new particle with a mass near 125 GeV was recently observed in a combination of searches targeting SM Higgs boson decay modes [13, 14].

Various extensions of the standard model have been proposed, such as the inclusion of a fourth generation of fermions (the SM4 model) [15–19] or models with multiple Higgs bosons and modified couplings such that one of the Higgs bosons couples only to vector bosons at tree level (the fermiophobic, FP, benchmark model) [20–25]. Both types of model have a major impact on Higgs phenomenology. In the SM4 context for example, constraints from electroweak data become less restrictive, allowing the mass range 115–750 GeV at 95% CL, as long as the mass splitting in the fourth generation is \(\mathcal{O}(50) \) GeV [17]. Likewise Higgs boson production cross sections and decay branching fractions are strongly affected in both scenarios. Therefore, the conclusions regarding the existence (or not) of a Higgs boson based on direct searches that assume the SM are not valid in SM4 or FP scenarios without a proper re-interpretation. Given that the nature of the new boson near 125 GeV has yet to be determined definitively, it is appropriate to test alternative interpretations beyond the standard model.

To date, the direct searches for the SM4 Higgs boson have excluded at 95% CL the mass range 121–232 GeV [26–28]. Previous searches using the diphoton decay at the LEP collider [29], the Tevatron collider [26], and the Large Hadron Collider (LHC) [30] exclude a fermiophobic Higgs boson lighter than 121 GeV at 95% CL. Using a combination of decay modes, searches at the LHC [31] have ruled out a fermiophobic Higgs boson in the mass range 110–194 GeV at 95% CL; the range 110–188 GeV is excluded at 99% CL, with the exception of two gaps from 124.5–127 GeV and from 147.5–155 GeV.

In this paper, we re-interpret and combine the SM Higgs boson searches [13, 32–34], carried out by the Compact Muon Solenoid (CMS) experiment [35] at the LHC, in the SM4 context. The search is performed in the mass range 110–600 GeV. We also report on a search for a fermiophobic Higgs boson in the mass range 110–150 GeV, in the \(\gamma \gamma \) decay mode. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1 fb\(^{-1}\) at 7 TeV and up to 5.3 fb\(^{-1}\) at 8 TeV.

2 The SM4 and FP models

The presence of fourth-generation fermions would have a significant impact on the effective couplings of the Higgs boson to the SM particles and, thus, directly affect the Higgs boson production cross sections and decay branching fractions. Since the couplings of the Higgs boson to fermions are proportional to their masses, the electroweak loop corrections with fourth-generation fermions have a non-vanishing effect even for arbitrarily heavy fermions, although perturbative calculations become unreliable for fermion masses larger than 600 GeV.

In this analysis, we use the SM4 benchmark recommended by the LHC Higgs cross section group in Ref. [35]: \(m_{\ell_4} = m_{\nu_4} = m_{d_4} = 600 \) GeV and \(m_{u_4} - m_{d_4} = (50 + 10 \cdot \ln(m_{H}/115)) \) GeV. Here \(m_{\ell_4} \) and \(m_{\nu_4} \) are the masses of the 4th generation charged lepton and neutrino, while \(m_{u_4} \) and \(m_{d_4} \) are the masses of the 4th generation “up” and “down” quarks. These masses are not
excluded by the direct searches for heavy fermions [37-40] and still allow for perturbative calculations. The SM4 Higgs boson cross sections and decay branching fractions used in this analysis include electroweak next-to-leading order (NLO) corrections [41, 42]. The next-to-NLO order QCD corrections are taken from Ref. [43]. Below we summarise the effect of the fourth generation fermions, with the specified masses, on the production and decay of an SM4 Higgs boson compared with the SM Higgs boson of the same mass.

The square of the effective coupling of an SM4 Higgs boson to gluons \(g \) is increased by a factor \(K_{gg}(m_H) \) that ranges between nine and four for a Higgs boson mass that ranges from 110 to 600 GeV. This enhancement results from the inclusion of \(u_4 \) and \(d_4 \) quarks in the quark loop diagrams associated with the \(H \rightarrow gg \) and \(gg \rightarrow H \) processes. The square of the effective coupling of an SM4 Higgs boson to W and Z vector bosons (henceforth referred to collectively as V bosons) becomes about three times smaller, \(K_{VV}(m_H) \sim 0.3 \), as the amplitudes of the NLO and leading order (LO) contributions are of opposite signs in this case. A coincidental cancellation of the contributions from W bosons and heavy fermions (top, \(u_4 \), \(d_4 \), \(\ell_4 \)) to the loop diagrams responsible for the \(H \rightarrow \gamma\gamma \) decay suppresses the square of the effective coupling to photons by \(\mathcal{O}(100) \). The squares of the fermionic (f) couplings are enhanced by a factor \(K_{ff}(m_H) \sim 1.6 \).

The enhancement in the effective couplings to gluons and the suppression of couplings to vector bosons causes gluon fusion production to dominate over the vector boson fusion (VBF) and associated (VH) production mechanisms. Hence, the last two processes can be neglected in searches for SM4 Higgs bosons, and are ignored in the search presented in this paper. The contribution from gluon fusion is rescaled by the SM4/SM \(m_H \)-dependent factor \(K_{gg}(m_H) \) mentioned above. The \(H \rightarrow bb \) search channel that fully relies on associated production is not included in this combination. For simplicity, \(H \rightarrow bb \) is denoted as \(H \rightarrow bb \), \(H \rightarrow \tau^+\tau^- \) as \(H \rightarrow \tau\tau \), etc. Following Ref. [36], the uncertainties on the gluon fusion cross section for the SM4 model are assumed to be the same as for the SM Higgs boson and are taken from Ref. [44]. The change in the Higgs boson decay partial widths modifies the decay branching fractions as follows. The branching fraction \(B(H \rightarrow \gamma\gamma) \) is suppressed by \(\mathcal{O}(100) \) with respect to the standard model. The branching fractions \(B(H \rightarrow WW) \) and \(B(H \rightarrow ZZ) \) are suppressed by approximately a factor of five for low Higgs boson masses for which the WW and ZZ partial widths are not dominant. They remain almost unchanged in the mid-range around \(m_H \sim 200 \) GeV, where vector boson partial widths are the main contributors to the total width \(\Gamma_{\text{tot}} \), and are about 60% of the SM Higgs boson values above \(m_H \sim 350 \) GeV after the \(H \rightarrow tt \) decay channel opens up. The branching fraction \(B(H \rightarrow \tau\tau) \) is affected only slightly, \(\mathcal{O}(20\%) \), in the mass range where this decay mode is used. The total width of the SM4 Higgs boson at high masses, where it is relevant for the \(H \rightarrow ZZ \rightarrow 4\ell \) (where \(\ell \) denotes an electron or a muon) search, is about 30–50% of the SM Higgs width, depending on the Higgs boson mass.

Since the \(H \rightarrow \gamma\gamma \) channel is so strongly suppressed, it has nearly no sensitivity for the SM4 Higgs boson and is therefore not included in the combination. We explicitly checked that including or omitting this channel has no effect on the combined SM4 Higgs boson search results even in the presence of the significant excess near 125 GeV observed in the standalone search for \(H \rightarrow \gamma\gamma \) [13].

The theoretical uncertainties on the SM4 Higgs boson decay branching fractions are derived from three independent sources of relative uncertainty on the partial widths, which amount to approximately 50%, 10%, and 5% for \(\Gamma_{VV}, \Gamma_{ff} \), and \(\Gamma_{gg} \), respectively [36]. Any given decay channel \(H \rightarrow xx \) is affected by each of these three uncertainties. Using the equation \(B_{xx} = \Gamma_{xx}/\Gamma_{\text{tot}} \) and standard error propagation, we translate the uncertainties on the partial widths
into uncertainties on the branching fractions of the decay modes ($\tau\tau$, WW, ZZ) used in this combination. The signal acceptance for each exclusive final state is assumed to be the same as reported in previous SM Higgs boson searches [13, 32–34].

As a fermiophobic Higgs boson does not couple to fermions, gluon fusion production becomes negligible, while the VBF and VH production cross sections remain unchanged. Direct decays to fermion pairs become impossible, which significantly increases the branching fractions $B(H \rightarrow \gamma\gamma)$, $B(H \rightarrow WW)$ and $B(H \rightarrow ZZ)$. The diphoton decays are enhanced further as the negative interference between the W and top loops responsible for this decay in the SM is no longer present. For a low mass FP Higgs boson ($m_H \approx 125$ GeV) the decay to two photons is enhanced by an order of magnitude with respect to the SM [23–25], and this compensates for the reduced production cross section, keeping the overall diphoton signal rate very similar to that in the SM. Production cross sections and decay branching fractions, together with their uncertainties, are taken from Ref. [44] and are derived from Refs. [45–50].

3 The CMS detector and event reconstruction

The CMS apparatus [35] consists of a barrel assembly and two endcaps, comprising, in successive layers outwards from the collision region, the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter (ECAL), the brass/scintillator hadron calorimeter, the superconducting solenoid, and gas-ionization chambers embedded in the steel flux return yoke for the detection of muons. The polar coordinate system (θ, ϕ) is used to describe the direction of particles and jets emerging from the pp collisions, where θ is the polar angle measured from the positive z axis (along the anticlockwise beam direction) and ϕ is the azimuthal angle. The pseudorapidity, defined as $\eta = -\ln \tan(\theta/2)$, is commonly used in place of θ.

Particles are reconstructed with the CMS “particle-flow” event description [51, 52] using an optimized combination of all subdetector information to form “particle-flow objects”: electrons, muons, photons, charged and neutral hadrons. Jets are formed by clustering these objects with the anti-k_T algorithm [53] using a distance parameter $\Delta R = 0.5$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ and $\Delta \eta$ and $\Delta \phi$ are the pseudorapidity and azimuthal angle differences between the jet axis and the particle direction. The missing transverse energy vector, E_T^{miss}, is taken as the negative vector sum of all particle transverse momenta, and its magnitude is referred to as E_T^{miss}.

4 Search channels

4.1 The SM4 search channels

The SM4 results presented are obtained by combining searches in the individual Higgs boson decay channels listed in Table 1. The table summarizes the main characteristics of these searches, namely: the mass range of the search, the integrated luminosity used, the number of exclusive sub-channels, and the approximate instrumental mass resolution.

Below we give a brief summary of the individual searches. More detailed descriptions of all analyses can be found in Refs. [13, 32–34]. In the combination presented here, Higgs boson production via VBF is neglected, and thus sub-channels in the $H \rightarrow \tau\tau$ and $H \rightarrow WW$ decay channels that explicitly target VBF production are also dropped.

The $H \rightarrow \tau\tau$ search [13] is performed using the final-state signatures $e\mu$, $\mu\mu$, $e\tau_h$, and $\mu\tau_h$, where electrons and muons arise from leptonic τ decays and τ_h denotes hadronic τ decays. Each of
Table 1: Summary of the analyses included in the SM4 combination.

<table>
<thead>
<tr>
<th>Channel</th>
<th>m_H range (GeV)</th>
<th>Int. lumi. (fb$^{-1}$)</th>
<th>Sub-channels</th>
<th>m_H resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \tau\tau \rightarrow e\tau_h/e\mu_h/\mu\mu$</td>
<td>110–145</td>
<td>4.9</td>
<td>5.1</td>
<td>16</td>
</tr>
<tr>
<td>$H \rightarrow WW \rightarrow 2\ell 2\nu$</td>
<td>110–600</td>
<td>4.9</td>
<td>5.1</td>
<td>4</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 4\ell$</td>
<td>110–600</td>
<td>5.0</td>
<td>5.3</td>
<td>3</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2\ell 2\nu$</td>
<td>250–600</td>
<td>4.9</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2\ell 2q$</td>
<td>130–164</td>
<td>4.9</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200–600</td>
<td>4.9</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

These categories are further divided into 4 exclusive sub-categories based on the jet multiplicity and transverse momentum (p_T) of the visible tau lepton decay. In each category, we search for a broad excess in the reconstructed $\tau\tau$ mass distribution. The main irreducible background, $Z \rightarrow \tau\tau$ production, and the largest reducible backgrounds ($W +$ jets, multijet production, $Z \rightarrow ee$) are evaluated from various control samples in data.

The $H \rightarrow WW \rightarrow 2\ell 2\nu$ analysis [13, 32] searches for an excess of events with two leptons of opposite charge, large missing transverse energy E_T^{miss}, and less than two jets. Events are divided into four categories, with different background compositions and signal-to-background ratios, according to the number of jets and whether the leptons are of the same or different flavour. For events with no jets, the main background stems from non-resonant WW production; for events with one jet, the dominant backgrounds are from WW and top-quark production. The events are split into same-flavour and different-flavour dilepton sub-channels, since there are differences in the four-lepton mass resolutions and the background rates arising from jets misidentified as leptons. The dominant irreducible background in this channel is from non-resonant ZZ production with both Z bosons decaying to either $2e, 2\mu, \text{or } 2\tau$ (with the tau leptons decaying leptonically) and is estimated from simulation. In the 7 TeV analysis, multivariate analysis classifiers are trained for a number of Higgs boson masses, and a search is made for an excess of events in the output distributions of the classifiers. All background rates, except for small expected contributions from $WZ, ZZ, \text{and } W\gamma$, are evaluated from data.

In the $H \rightarrow ZZ \rightarrow 4\ell$ channel [13], we search for a four-lepton mass peak over a small continuum background. To separate signal and background, we use a discriminant calculated for each event as the ratio of the respective probability densities for signal and background to form an event with the observed kinematic configuration of four leptons. The $4e, 4\mu, \text{and } 2e2\mu$ sub-channels are analysed separately since there are differences in the four-lepton mass resolutions and the background rates arising from jets misidentified as leptons. The dominant irreducible background in this channel is from non-resonant ZZ production with both Z bosons decaying to either $2e, 2\mu, \text{or } 2\tau$ (with the tau leptons decaying leptonically) and is estimated from simulation. The smaller reducible backgrounds with jets misidentified as leptons, e.g. $Z +$ jets, are estimated from data.

In the $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ search [33], we select events with a lepton pair (e^+e^- or $\mu^+\mu^-$), with invariant mass consistent with that of an on-shell Z boson, and a large missing transverse energy. We then define a transverse invariant mass m_T from the dilepton momenta and E_T^{miss}, which is assumed to originate from neutrinos in the $Z \rightarrow \nu\nu$ decays, and search for a broad excess of events in the m_T distribution. The ZZ and WZ backgrounds are taken from simulation, while all other backgrounds, $Z +$ jets and a cumulative sum of the rest, are evaluated from control samples in data.

In the $H \rightarrow ZZ \rightarrow 2\ell 2q$ search [34], we select events with two oppositely-charged leptons (e^+e^- or $\mu^+\mu^-$), and two jets. The two leptons and the two jets are required to have invariant masses consistent with that of on-shell Z bosons. The events are categorized by the lepton flavour and
4.2 The FP search channels

In this section, we describe the FP Higgs boson search with the 8 TeV dataset. We use the $H \rightarrow \gamma\gamma$ decay mode and exploit the characteristic signatures associated with the VBF and VH processes: namely, the two forward jets produced by the scattered quarks in VBF production and charged leptons (electrons or muons) or large missing transverse energy induced by neutrinos, both coming from vector boson decays in VH production. The FP Higgs boson search in the diphoton decay mode with the 7 TeV dataset is described elsewhere [31].

The simulated VBF signal samples are generated with POWHEG [54]. The difference in the event selection acceptance for samples generated with POWHEG at NLO and with PYTHIA [55] at LO is taken as a systematic uncertainty, which is found to have a negligible impact on the final results. The simulated VH samples are generated with PYTHIA.

Nine exclusive classes are defined. All require two, isolated, high p_T photons. Five of the nine require an additional tag: either a pair of jets (subdivided into two sub-classes with low and high dijet invariant masses, m_{jj}), or an isolated lepton (subdivided into e and μ sub-classes), or a large missing transverse energy. The remaining diphoton events failing to pass VBF and VH production tags form an untagged category, which is divided into four sub-classes according to the photon shower shape and position in the detector [13]. The selection criteria for the photon candidates are the same as in the SM search [13] except for the modifications noted below. A Higgs boson produced via the VBF or VH mechanisms typically has a larger p_T than a Higgs boson produced via gluon fusion (which dominates SM Higgs production) and hence the photon p_T thresholds are increased. Furthermore, such photons also have a harder transverse momentum spectrum than those of photons produced by background processes [56] and thus significant separation of signal and background can be achieved. The transverse momentum of the photon pair ($p_T^{\gamma\gamma}$) together with their invariant mass ($m_{\gamma\gamma}$) are included in a two-dimensional unbinned maximum likelihood. The signal and background models, which are used to extract limits on the signal cross section, are described in detail in Ref. [31]. The dijet-tagged class has the greatest sensitivity; here the background model is derived from data, by fitting the diphoton mass distributions over the range $100 < m_{\gamma\gamma} < 180$ GeV.

In the dijet-tagged channel, the photon p_T thresholds are raised (compared with the SM search [13]) to $p_T^{\gamma 1}(1) > m_{\gamma\gamma}/2$, and $p_T^{\gamma 2}(2) > 25$ GeV, where $p_T^{\gamma 1}(1)$ and $p_T^{\gamma 2}(2)$ are the transverse momenta of the leading and sub-leading photons respectively. The p_T thresholds for the two jets are 30 GeV and 20 GeV, and their separation in η must be greater than 3.0. The dijet mass is required to be greater than 250 GeV. The selected events are subdivided into two regions $250 < m_{jj} < 500$ GeV and $m_{jj} > 500$ GeV, based on the amount of background contamination as a function of dijet mass. In addition, for events with $m_{jj} > 500$ GeV, the p_T threshold for the subleading jet is raised to 30 GeV. Two additional selection criteria, relating the dijet and diphoton systems, are applied to all selected events. The difference between the average η of the two jets and the η of the diphoton system is required to be less than 2.5 [57]. The difference in ϕ between the diphoton and dijet systems is required to be greater than 2.6 radians.

In the lepton-tagged channel, which targets VH production, the p_T thresholds are again altered; values of $p_T^{\gamma 1}(1) > 3 \times m_{\gamma\gamma}/8$, and $p_T^{\gamma 2}(2) > 25$ GeV are set. Separate muon and electron sub-classes are defined, with at least one muon (electron) with $p_T > 20$ GeV and within $|\eta| < 2.4$ ($|\eta| < 2.5$) required. The leptons must be isolated, using isolation criteria similar to those used

the number of jets identified as coming from the decay of a b-quark, thus defining six exclusive final states. We search for a peak in the invariant mass distribution of the dilepton-dijet system, with the background rate and shape estimated using control regions in data.
for photons, and separated from the photons by $\Delta R > 1$. To protect against background events that arise from an electron misidentified as a photon in the $Z \to ee$ process, the mass of the photon-electron system must differ from the Z boson mass by at least 5 GeV.

A significant fraction of events from VH production contains large missing transverse energy due to the neutrinos from $Z \to \nu\nu$ decays. Events that passed the requirements of the lepton-tag channel are excluded to form a statistically independent E_T^{miss}-tag class. The E_T^{miss} is required to be larger than 70 GeV. The photon p_T threshold requirements are the same as for the lepton-tag class. Due to the negligible contribution of photons at large pseudorapidity to the expected exclusion limit, only photons falling within the ECAL barrel are kept ($|\eta| < 1.48$).

A substantial fraction of the FP signal events are not expected to pass any of the previous tags, and so the remaining untagged events are also exploited. Photon p_T requirements of $p_T^\gamma(1) > m_{\gamma\gamma}/3$, $p_T^\gamma(2) > m_{\gamma\gamma}/4$ and $p_T^{\gamma\gamma}/m_{\gamma\gamma} > 0.1$ are applied. The selected events are divided into four classes according to the expected mass resolution and amount of background contamination [13]. Two classifiers are used: the minimum R_9 of the two photons, R_9^{min}, and the maximum absolute pseudorapidity of the two photons. The quantity R_9 is defined as the sum of the energy in the 3×3 crystal array centred on the crystal with the maximum energy deposit divided by the total clustered energy, and is designed to identify photons undergoing a conversion. The untagged diphoton event classes are: (a) both photons in the barrel and $R_9^{\text{min}} > 0.94$, (b) both photons in the barrel and $R_9^{\text{min}} < 0.94$, (c) one or both photons in the endcaps and $R_9^{\text{min}} > 0.94$, and (d) one or both photons in the endcaps and $R_9^{\text{min}} < 0.94$.

Table 2: Number of selected events in the $\gamma\gamma$ event classes, for data in the mass range 100–180 GeV and for a fermiophobic Higgs boson signal ($m_H = 125$ GeV). The expected number of background events in the signal region 120–130 GeV obtained from the fit of the data in the full mass range 100–180 GeV and the mass resolution for the 125 GeV FP Higgs boson signal in each event class are also given. All numbers are for the 8 TeV dataset.

<table>
<thead>
<tr>
<th>E_T^{miss}</th>
<th>Dijet</th>
<th>Dijet</th>
<th>Lepton</th>
<th>Untagged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high m_{jj}</td>
<td>low m_{jj}</td>
<td>tag (e, μ)</td>
<td>(a)</td>
</tr>
<tr>
<td>Data</td>
<td>41</td>
<td>84</td>
<td>271</td>
<td>30</td>
</tr>
<tr>
<td>Signal ($m_H = 125$ GeV)</td>
<td>2.3</td>
<td>14</td>
<td>10</td>
<td>3.5</td>
</tr>
<tr>
<td>Expected background</td>
<td>5.8</td>
<td>17</td>
<td>40</td>
<td>4.1</td>
</tr>
<tr>
<td>σ_{eff} (GeV)</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

The numbers of events in the $\gamma\gamma$ event classes are shown in Table 2 for simulated signal events and for data. A Higgs boson with $m_H = 125$ GeV is chosen for the signal, and the data are counted in the mass range 100–180 GeV. The table also shows the mass resolution, σ_{eff}, defined as half the width of the narrowest window containing 68.3% of the distribution.

5 Combination method

The combination of the Higgs boson searches, be it across different sub-channels within a given decay mode or across different decay modes, requires simultaneous analysis of the data selected by all individual analyses, accounting for all statistical and systematic uncertainties and their correlations. The overall statistical methodology used in this combination was developed by the ATLAS and CMS Collaborations in the context of the LHC Higgs Combination Group. The description of the general methodology can be found in Refs. [58, 59]. Below we give concise definitions of statistical quantities we use for characterizing the outcome of the search.
Results presented in this paper are obtained using asymptotic formulae [60], including a few updates recently introduced in the ROOSTATS package [61].

For calculations of exclusion limits, we adopt the modified frequentist criterion CL_s [62, 63]. The chosen test statistic, q_μ, used to determine how signal- or background-like the data are, is based on the profile likelihood ratio. Systematic uncertainties are incorporated in the analysis via nuisance parameters and are treated according to the frequentist paradigm. The profile likelihood ratio is defined as

$$q_\mu = -2 \ln \frac{\mathcal{L}(\text{obs} | \mu \cdot s + b, \hat{\theta}_\mu)}{\mathcal{L}(\text{obs} | \hat{\mu} \cdot s + b, \hat{\theta})},$$

where s stands for the expected number of signal events under the SM4/FP Higgs boson hypothesis, μ is a signal strength modifier introduced to accommodate deviations from SM4/FP Higgs boson predictions, b stands for backgrounds, and θ are nuisance parameters describing systematic uncertainties. The likelihood in the numerator reaches its maximum, for a given μ, at $\hat{\theta}_\mu$; while $\hat{\mu}$ and $\hat{\theta}$ define the point at which the likelihood reaches its global maximum. The quantity $\hat{\mu}$ is constrained to be between 0 and μ.

The ratio of probabilities to observe a value of the test statistic at least as large as the one observed in data, q_μ^{obs}, under the signal+background (s+b) and background-only (b) hypotheses,

$$\text{CL}_s = \frac{P(q_\mu \geq q_\mu^{\text{obs}} | \mu \cdot s + b)}{P(q_\mu \geq q_\mu^{\text{obs}} | b)} \leq \alpha,$$

is used as the criterion for excluding the signal at the $1 - \alpha$ confidence level.

To quantify the presence of an excess of events over what is expected for the background, we use another test statistic where the likelihood appearing in the numerator is for the background-only hypothesis:

$$q_0 = -2 \ln \frac{\mathcal{L}(\text{obs} | b, \hat{\theta}_0)}{\mathcal{L}(\text{obs} | \hat{\mu} \cdot s + b, \hat{\theta})}.$$

The statistical significance Z of a signal-like excess is computed from the probability p_0

$$p_0 = P(q_0 \geq q_0^{\text{obs}} | b),$$

henceforth referred to as the p-value, using the one-sided Gaussian tail convention:

$$p_0 = \int_{Z}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-x^2/2\right) \, dx.$$

In the Higgs boson search, we scan over Higgs boson mass hypotheses and look for the one giving the minimum local p-value $p_{\text{local}}^{\text{min}}$, which describes the probability of a background fluctuation for that particular Higgs boson mass hypothesis. The probability to find a fluctuation with a local p-value lower or equal to the observed $p_{\text{local}}^{\text{min}}$ anywhere in the explored mass range is referred to as the global p-value, p_{global}.

The fact that p_{global} can be significantly larger than $p_{\text{local}}^{\text{min}}$ is often referred to as the look-elsewhere effect. The global significance (and global p-value) of the observed excess can be evaluated in
this case by generating pseudo-datasets, which, however, becomes too computationally intensive and not practical for very small \(p \)-values. Therefore, we use the method suggested in Ref. [64]. The relationship between global and local \(p \)-values is given by:

\[
p_{\text{global}} = p_{\text{local}}^{\text{min}} + C \cdot e^{-Z_{\text{local}}^2/2}
\]

When the look-elsewhere effect is very large, as in this search, the constant \(C \) can be evaluated directly from data [58] by counting upcrossings \(N_{\text{up}} \) of \(\hat{\mu}(m_H) \) with the line \(\hat{\mu} = 0 \) and setting \(C = N_{\text{up}} \). The best-fit signal strength \(\hat{\mu} \) in this case is obtained from maximizing the likelihood \(\mathcal{L}(\text{obs} | \hat{\mu} \cdot s + b, \hat{\theta}) \) with no constraints on \(\hat{\mu} \).

6 Results

The following conventions are used. The observed values are shown in the plots by a solid line. A dashed line is used to indicate the median of the expected results for the background-only hypothesis. The green (dark) and yellow (light) bands show the ranges in which the measured values are expected to reside in at least 68% and 95% of all experiments under the background-only hypothesis.

6.1 The SM4 results

The CLs value for the SM4 Higgs boson hypothesis as a function of its mass is shown in Fig. 1. CLs values of 0.05, 0.01, and 0.001 are indicated by horizontal thick red lines. The mass regions where the observed CLs values are below these lines are excluded with the corresponding \((1 - \text{CLs}) \) confidence levels of 95%, 99%, and 99.9%. We exclude an SM4 Higgs boson in the range 110–600 GeV at 99% CL, and in the range 110–560 GeV at 99.9% CL. Figure 2 shows the 95% CL upper limits on the signal strength modifier, \(\mu = \sigma / \sigma_{\text{SM4 H}} \), as a function of \(m_H \). The ordinate on this plot shows the Higgs boson cross section that is excluded at 95% CL, expressed as a multiple of the SM4 Higgs boson cross section.

Figure 3 shows the observed and expected limits for the three individual decay channels that have been considered, and their combination. The \(H \rightarrow \tau \tau \) search is the most sensitive channel in the mass range below 135 GeV. In the mass range 135–150 GeV, the best sensitivity is shared between \(H \rightarrow ZZ \) and \(H \rightarrow WW \). In the mass range 150–190 GeV, the \(H \rightarrow WW \) channel has the best sensitivity. For masses above 190 GeV, the sensitivity is driven mostly by the \(H \rightarrow ZZ \) decay channels.

To quantify the consistency of the observed excesses with the background-only hypothesis, we show in Fig. 4 a scan of the combined local \(p \)-value \(p_0 \), together with the results observed in the individual Higgs boson decay channels. The minimum combined local \(p \)-value \(p_{\text{local}}^{\text{min}} = 1.5 \times 10^{-3} \) at \(m_H \approx 126 \text{ GeV} \) corresponds to a local significance \(Z_{\text{local}} \) of 3\(\sigma \). The global probability of observing at least as large an excess somewhere in the entire search range 110–600 GeV is estimated directly from the data using Eq.(6). The best-fit value \(\hat{\mu}(m_H) \), shown in Fig. 5, has four upcrossings with \(\hat{\mu} = 0 \). This can be better seen as upcrossings of the solid line above the dashed line in Fig. 2. Taking into account the number of observed upcrossings, the global \(p \)-value of observing a local 3\(\sigma \) excess anywhere in the search region for the background-only hypothesis is 0.05.

Figure 5 also illustrates why the SM4 Higgs boson is excluded even though a 3\(\sigma \) excess is observed at a mass near 126 GeV. The band shown in Fig. 5 corresponds to the ±1 standard deviation uncertainty (statistical+systematic) on the \(\hat{\mu} \) value. Given these uncertainties, the
best-fit values of signal strength $\hat{\mu}(m_{H^+})$ are significantly smaller than expected for the SM4 Higgs boson ($\mu = 1$) in the entire explored mass range.

Although the SM4 combination is not optimal for searching for the SM Higgs boson, the presence of such a boson would still produce an excess in the SM4 combination. The expected significance for a SM Higgs boson with a mass near 125 GeV is 3.5σ, which is very close to the observed value of 3σ. For reference, the expected significance at 125 GeV with the dedicated SM Higgs boson combination is 5.8σ.

Figure 1: The observed and expected CL$_S$ values for the SM4 Higgs boson hypothesis as a function of the Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right). The three horizontal lines show confidence levels of 90%, 95%, and 99%, defined as $(1 - \text{CL}_S)$.

6.2 The FP results

The CL$_S$ value for the FP Higgs boson hypothesis as a function of its mass is shown in Fig. 6 (left). The CL$_S$ values of 0.05, 0.01, and 0.001 are indicated by thick red horizontal lines. The mass regions where the observed CL$_S$ values are below these lines are excluded with the corresponding $(1 - \text{CL}_S)$ confidence levels of 95%, 99%, and 99.9%. The fermiophobic Higgs boson is excluded at 95% CL in the mass range 110–147 GeV and at 99% CL in the range 110–133 GeV.

Figure 6 (right) shows the 95% CL upper limits on the signal strength modifier, $\mu = \sigma / \sigma_{FP H}$, as a function of m_{H^+}. The ordinate on this plot shows the Higgs boson cross section that is excluded at 95% CL, expressed as a multiple of the FP Higgs boson cross section.

Figure 7 (left) shows the local p-value as a function of the FP Higgs boson mass for each run period and for their combination. The largest upwards fluctuation of events over the expected background is observed at 125.5 GeV, and is computed to have a local significance of 3.2σ. This deviation from the expected limit is too weak to be consistent with the fermiophobic Higgs boson signal, as can be seen in Fig. 7 (right), which shows that the observed signal strength for a fermiophobic Higgs boson at 125.5 GeV is 0.49 ± 0.18, as obtained from the fit of signal plus background on data. The excess of events at 125.5 GeV is present in the SM Higgs boson search reported in Ref. [13] and corresponds to the discovery of the new boson around 125 GeV. This recently observed boson is not consistent with a fermiophobic Higgs boson at 99% confidence level.

As in the SM4 case, the FP analysis is not optimal for searching for the SM Higgs boson, but
Figure 2: The observed and expected 95% CL upper limits on the signal strength modifier, \(\mu = \sigma / \sigma_{\text{SM4H}} \), for the SM4 Higgs boson hypothesis as a function of the Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right).

Figure 3: The observed (solid lines) and expected (dashed lines) 95% CL upper limits on the signal strength modifier, \(\mu = \sigma / \sigma_{\text{SM4H}} \), as a function of the SM4 Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right) for the four explored Higgs boson decay modes and their combination.
6.2 The FP results

Figure 4: The observed local p-value p_0 as a function of the SM4 Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right). The dashed line shows the expected local p-values should an SM4 Higgs boson with a mass m_H exist. The expected p-value is obtained with nuisance parameters constrained by the data, giving it some dependence on the observed data, and hence the small modulations on top of the overall smooth trend as a function of m_H.

Figure 5: The best-fit $\hat{\mu} = \sigma / \sigma_{SM4H}$ as a function of the SM4 Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right). The band corresponds to the ± 1 standard deviation uncertainty on the $\hat{\mu}$ values.
still has some sensitivity. The expected sensitivity to a SM Higgs boson with a mass of 125 GeV is 1.3σ we observe 3.2σ. For reference, in the dedicated SM Higgs boson diphoton analysis, using the same dataset as the FP combination here, the observed significance of the excess near 125 GeV is 4.1σ, with an expected sensitivity of 2.8σ [13]. In both the SM and FP diphoton analyses the observed significances for the SM Higgs boson are greater than the expected, but statistically compatible at the $O(10\%)$ level.

7 Summary

Searches are reported for Higgs bosons in the context of either the standard model extended to include a fourth generation of fermions with masses of up to 600 GeV or fermiophobic models. For the former, results from three decay modes ($\tau\tau$, WW, and ZZ) are combined, whilst for the latter the diphoton decay is exploited. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1fb^{-1} at 7 TeV and up to 5.3fb^{-1} at 8 TeV. The observed results exclude the SM4 Higgs boson in the mass range 110–600 GeV at 99% CL, and in the mass range 110–560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110–147 GeV at 95% CL, and in the range 110–133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV is not consistent with either an SM4 or a fermiophobic Higgs boson.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS
Figure 7: (left) The observed local p-value p_0 as a function of the FP Higgs boson mass in the range 110–150 GeV. The dashed-dotted line shows the expected local p-values should a fermiophobic Higgs boson with a mass m_H exist. The contributions to the expected limit for each run period are shown. (right) The best-fit $\hat{\mu} = \sigma / \sigma_{FP H}$ as a function of the FP Higgs boson mass in the range 110–150 GeV. The band corresponds to the ±1 standard deviation uncertainty on the $\hat{\mu}$ values.

detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP-Center, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguiló, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, D. Liko, I. Mikulec, M. Pernicka³, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
T.S. Anjos⁴, C.A. Bernardes⁵, F.A. Dias⁵, T.R. Fernandez Perez Tomei⁶, E.M. Gregores⁶, C. Lagana⁵, F. Marinho⁵, P.G. Mercadante⁵, S.F. Novaes⁴, Sandra S. Padula⁴

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev⁴, P. Iaydjiev⁴, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgamal, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Münzel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza,
N. De Filippisa,c,4, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c, M. Maggia, B. Marangellib, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Vendittia,b, G. Zitoa.

INFN Sezione di Bologna a, **Università di Bologna** b, Bologna, Italy

G. Abbondia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavolloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandib, L. Guiduccib, S. Marcellinia, G. Masettia, M. Meneghellia,b,4, A. Montanarib, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, R. Travaglinia,b.

INFN Sezione di Catania a, **Università di Catania** b, Catania, Italy

S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b.

INFN Sezione di Firenze a, **Università di Firenze** b, Firenze, Italy

G. Barbaglia, V. Ciullia,b,4, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolottia,b, G. Sguazzonia, A. Tropianoa.

INFN Laboratori Nazionali di Frascati, **Frascati, Italy**

L. Benussi, S. Bianco, S. Colafranceschi24, F. Fabbri, D. Piccolo.

INFN Sezione di Genova a, **Università di Genova** b, Genova, Italy

P. Fabbricatorea, R. Musenicha, S. Tosia,b.

INFN Sezione di Milano-Bicocca a, **Università di Milano-Bicocca** b, Milano, Italy

A. Benagliaa,b,4, F. De Guioa,b, L. Di Matteoa,b,4, S. Fiorendia,b, S. Gennaia,c,4, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martell|a,b, A. Massironia,b,4, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b.

INFN Sezione di Napoli a, **Università di Napoli ‘Federico II’** b, **Università della Basilicata (Potenza)** c, **Università G. Marconi (Roma)** d, **Università di Napoli ‘Federico II’** b, **Università della Basilicata (Potenza)** c, **Università G. Marconi (Roma)** d, Napoli, Italy

S. Buontempoa, C.A. Carrillo Montoyaa,b,4, N. Cavalloa,c, A. De Cosoa,b,4, O. Doganguna,b, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,d,25, M. Merolaa, P. Paoluccia,b,4.

INFN Sezione di Padova a, **Università di Padova** b, **Università di Trento (Trento)** c, Padova, Italy

P. Azzia, N. Bacchettaa,b, D. Biselloa,b, A. Brancaa,b,4, R. Carlina,b, P. Checchiaa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa,b, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzera,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzia,b, M. Pegoraroa,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, P. Zottoa,b, G. Zumerlea,b.

INFN Sezione di Pavia a, **Università di Pavia** b, Pavia, Italy

M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b.

INFN Sezione di Perugia a, **Università di Perugia** b, Perugia, Italy

M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, A. Lucaronia,b,4, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b, S. Taronia,b,4.

INFN Sezione di Pisa a, **Università di Pisa** b, **Scuola Normale Superiore di Pisa** c, **Pisa, Italy**

P. Azzurria,c, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fioria,b,4, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martina,c,26, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A.T. Serbana,c, P. Spagnoloa, P. Squillaciottia,b, R. Tenchinia,b, G. Tonellia,b,4, A. Venturia,b,4, P.G. Verdinia.
INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallarib, D. Del Rea,b,4, M. Diemoza, M. Grassia,b,4, E. Longoa,b, P. Meridiania,b,4, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, G. Dellacasaa, N. Demariaa, C. Mariottia,4, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,4, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,4, D. Montaninoa,b,4, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti
National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak42, M. Kaya43, O. Kaya43, S. Ozkorucuklu44, N. Sonmez45

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough
The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlé, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, V. Azzolini, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA
Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright
University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Blysma, L.S. Durkin, C. Hill, R. Hughes, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzwieg, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at California Institute of Technology, Pasadena, USA
4: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Zewail City of Science and Technology, Zewail, Egypt
8: Also at Cairo University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at National Centre for Nuclear Research, Swierk, Poland
13: Also at Université de Haute Alsace, Mulhouse, France
14: Now at Joint Institute for Nuclear Research, Dubna, Russia
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Sharif University of Technology, Tehran, Iran
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
24: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
25: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
28: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
29: Also at University of California, Los Angeles, USA
30: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
31: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
32: Also at University of Athens, Athens, Greece
33: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
34: Also at The University of Kansas, Lawrence, USA
35: Also at Paul Scherrer Institut, Villigen, Switzerland
36: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
37: Also at Gaziosmanpasa University, Tokat, Turkey
38: Also at Adiyaman University, Adiyaman, Turkey
39: Also at Izmir Institute of Technology, Izmir, Turkey
40: Also at The University of Iowa, Iowa City, USA
41: Also at Mersin University, Mersin, Turkey
42: Also at Ozyegin University, Istanbul, Turkey
43: Also at Kafkas University, Kars, Turkey
44: Also at Suleyman Demirel University, Isparta, Turkey
45: Also at Ege University, Izmir, Turkey
46: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
47: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
48: Also at University of Sydney, Sydney, Australia
49: Also at Utah Valley University, Orem, USA
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
52: Also at Argonne National Laboratory, Argonne, USA
53: Also at Erzincan University, Erzincan, Turkey
54: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
55: Also at Kyungpook National University, Daegu, Korea