D meson elliptic flow in non-central Pb–Pb collisions at √s_{NN} = 2.76 TeV

ALICE Collaboration

Abstract

Azimuthally anisotropic distributions of D⁰, D⁺, and D^{++} mesons were studied in the central rapidity region (|y| < 0.8) in Pb–Pb collisions at a centre-of-mass energy √s_{NN} = 2.76 TeV per nucleon–nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient v₂ (commonly denoted elliptic flow) was measured in the centrality class 30–50% as a function of the D meson transverse momentum p_T, in the range 2–16 GeV/c. The measured v₂ of D mesons is comparable in magnitude to that of light-flavour hadrons. It is positive in the range 2 < p_T < 6 GeV/c with 5.7 σ significance, based on the combination of statistical and systematic uncertainties.

*See Appendix A for the list of collaboration members
Heavy-ion collisions at ultra-relativistic energies are aimed at exploring the structure of nuclear matter at extremely high temperatures and energy densities. Under these conditions, according to Quantum-Chromodynamics (QCD) calculations on the lattice, the confinement of quarks and gluons inside hadrons is no longer effective and a phase transition to a Quark-Gluon Plasma (QGP) occurs [1].

The measurement of anisotropy in the azimuthal distribution of particle momenta provides insight into the properties of the QGP medium. Anisotropy in particle momenta originates from the initial anisotropy in the spatial distribution of the nucleons participating in the collision. The anisotropy of produced particles is characterized by the Fourier coefficients \(v_n = \langle \cos[n(\phi - \Psi_n)] \rangle \), where \(\phi \) is the azimuthal angle of the particle, and \(\Psi_n \) is the azimuthal angle of the initial state symmetry plane for the \(n \)-th harmonic. For non-central collisions the overlap region of the colliding nuclei has a lenticular shape and the anisotropy is dominated by the second coefficient \(v_2 \), commonly denoted elliptic flow [2,3].

The \(v_2 \) values measured at RHIC and LHC can be described by the combination of two mechanisms [2,4,12]. The first one, dominant at low \(p_T < 3 \text{ GeV}/c \) and intermediate \((3–6 \text{ GeV}/c) \) transverse momentum, is the build-up of a collective expansion through interactions among the medium constituents. Elliptic flow develops mainly in the early stages of this collective expansion, when the spatial anisotropy is large [13–15]. The second mechanism is the path-length dependence of in-medium parton energy loss, due to medium-induced gluon radiation and elastic collisions. This is predicted to give rise to a positive \(v_2 \) for hadrons up to large \(p_T \) [16,17].

The measurement of the elliptic flow of charmed hadrons provides further insight into the transport properties of the medium. In contrast to light quarks and gluons that can be produced or annihilated during the entire evolution of the medium, heavy quarks are produced predominantly in initial hard scattering processes and their annihilation rate is expected to be small [18]. Hence, the final state heavy-flavour hadrons at all transverse momenta originate from heavy quarks that experienced all stages of the system evolution. At low \(p_T \), charmed hadron \(v_2 \) offers a unique opportunity to test whether also quarks with large mass \((m_c \approx 1.5 \text{ GeV}/c^2) \) participate in the collective expansion dynamics and possibly thermalize in the medium [19,20]. Because of their large mass, charm quarks are expected to have a longer relaxation time, i.e. time scale for approaching equilibrium with the medium, with respect to light quarks [21]. At low and intermediate \(p_T \), the D meson elliptic flow is expected to be sensitive to the heavy-quark hadronization mechanism. In case of substantial interactions with the medium, a significant fraction of low- and intermediate-momentum heavy quarks could hadronize via recombination with other quarks from the bulk of thermalized partons [22,23], thus enhancing the \(v_2 \) of D mesons with respect to that of charm quarks [20]. In this context, the measurement of D meson \(v_2 \) is also relevant for the interpretation of the results on J/ψ anisotropy [24], because J/ψ’s from \(c\bar{c} \) (re)combination would inherit the anisotropy of their constituent quarks [25,26]. At high \(p_T \), the D meson \(v_2 \) can constrain the path-length dependence of parton energy loss, complementing the measurement of the nuclear modification factor \(R_{AA} \) [27], defined as the ratio of the yield in nucleus–nucleus to that observed in pp collisions scaled by the number of binary nucleon–nucleon collisions. A large suppression of the inclusive D meson yield (\(R_{AA} \approx 0.25 \)) is observed in central Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) for \(p_T > 5 \text{ GeV}/c \) [28].

Theoretical models of heavy-quark interactions with the medium constituents predict, for semi-central collisions at the LHC, a large \(v_2 \) (0.1–0.2) for D mesons at \(p_T \approx 2–3 \text{ GeV}/c \) and a decrease to about 0.05 at high \(p_T \) [29,33]. The elliptic flow of electrons from heavy-flavour decays was measured to be as large as 0.13 in Au–Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) [34,35].

In this Letter we present the measurement of \(v_2 \) for \(D^0, D^+, \) and \(D^{±} \) mesons and their anti-particles reconstructed from their hadronic decays at mid-rapidity \((|y| < 0.8) \) in non-central Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \).

The measurement was carried out with the ALICE detector at the LHC [36]. Particle reconstruction and identification were based on the detectors of the central barrel, located inside a solenoid magnet, which
generates a 0.5 T field parallel to the beam direction.

The detectors used for the reconstruction of the trajectories of candidate D meson decay particles are the Inner Tracking System (ITS), composed of six cylindrical layers of silicon detectors [37], and the Time Projection Chamber (TPC) [38]. The reconstructed particles are identified on the basis of their specific energy deposition dE/dx in the TPC gas and of their time-of-flight from the interaction point to the Time Of Flight (TOF) detector. The ITS, TPC and TOF detectors provide full azimuthal coverage in the pseudorapidity interval $|\eta| < 0.9$.

The analysis was performed on a sample of Pb–Pb collisions collected in 2011 with an interaction trigger that required coincident signals in both scintillator arrays of the VZERO detector, covering the full azimuth in the regions $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$. Events were further selected offline to remove background from beam-gas interactions, using the time information provided by the VZERO and the neutron Zero-Degree Calorimeters (ZDC). Only events with a vertex reconstructed within ±10 cm from the centre of the detector along the beam line were considered in the analysis. Collisions were classified according to their centrality, determined from the VZERO summed amplitudes and defined in terms of percentiles of the total hadronic Pb–Pb cross section [39].

The D meson v_2 was measured for events in the centrality range 30–50%, where the initial geometrical anisotropy and the medium density are large. In this range, the trigger and event selection are fully efficient for hadronic interactions. The number of selected events in the 30–50% centrality class was 9.5×10^6, corresponding to an integrated luminosity of $(6.2 \pm 0.2) \mu b^{-1}$.

The decays $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$ and $D^{*+} \to D^0\pi^+$, and their charge conjugates, were reconstructed as described in [28, 40]. D^0 and D^+ candidates were formed using pairs and triplets of tracks with $|\eta| < 0.8$, $p_T > 0.4$ GeV/c, at least 70 associated space points in the TPC, and at least two hits in the ITS, of which at least one should be in either of the two innermost layers. D^{*+} candidates were formed by combining D^0 candidates with tracks with $|\eta| < 0.8$, $p_T > 0.1$ GeV/c, and at least three associated hits in the ITS. The selection of tracks with $|\eta| < 0.8$ limits the D meson acceptance in rapidity, which, depending on p_T, varies from $|y| < 0.7$ for $p_T = 2$ GeV/c to $|y| < 0.8$ for $p_T > 5$ GeV/c.

D meson candidates were selected with the same strategy as used in [28], in order to increase the statistical significance of the signal with respect to the large background of all possible track combinations. The selection of the decay topology was based on the displacement of the decay tracks from the interaction vertex, the separation between the secondary and primary vertices, and the pointing of the reconstructed D meson momentum to the primary vertex. The pion and kaon identification in the TPC and TOF detectors was utilized by applying cuts in units of resolution (at $|\eta| < 0.8$) corresponding to an integrated luminosity of $(6.2 \pm 0.2) \mu b^{-1}$.

D meson candidates were selected with the same strategy as used in [28], in order to increase the statistical significance of the signal with respect to the large background of all possible track combinations. The selection of the decay topology was based on the displacement of the decay tracks from the interaction vertex, the separation between the secondary and primary vertices, and the pointing of the reconstructed D meson momentum to the primary vertex. The pion and kaon identification in the TPC and TOF detectors was utilized by applying cuts in units of resolution (at $|\eta| < 0.8$) corresponding to an integrated luminosity of $(6.2 \pm 0.2) \mu b^{-1}$.

The measurement of v_2 was performed by correlating the candidate D meson azimuthal angle, ϕ_D, with the angle ψ_2 of the so-called event plane [41], which is an estimator of the direction Ψ_2 of the second-order initial-state symmetry plane. The event plane angle ψ_2 was determined from the second harmonic of the azimuthal distribution of the detected charged particles: $\psi_2 = \frac{1}{2} \tan^{-1} (Q_{2,0}/Q_{2,2})$, where $Q_{2,0}$ and $Q_{2,2}$ are the transverse components of the second order flow vector, \vec{Q}_2, defined event-by-event from the azimuthal angles ϕ_i of a sample of N tracks, $\vec{Q}_2 = (\sum_{i=1}^{N} w_i \cos 2\phi_i, \sum_{i=1}^{N} w_i \sin 2\phi_i)$. The weights w_i correct for non-uniformities in the acceptance and efficiency of the detector, and optimize the event-plane resolution [41]. They are defined as the product of the track p_T and the inverse of the probability of reconstructing a particle with azimuthal angle ϕ_i. The tracks used to compute \vec{Q}_2 were required to have at least 50 associated space points in the TPC, $0 < \eta < 0.8$, $p_T > 150$ MeV/c, and a distance of closest approach to the primary vertex smaller than 3.2 cm along the beam direction and 2.4 cm in the transverse plane. To avoid auto-correlations between the D mesons and the event plane, the angle ψ_2 was recalculated for each candidate after subtracting from the \vec{Q}_2 vector the contribution from the tracks used to form that particular candidate. A correlation of D mesons with the tracks used to determine the
event plane could also originate from other sources, commonly denoted non-flow, which are not related to the correlation with the initial geometry symmetry plane, such as higher-mass particle decays or jets. Their effect was estimated to be small with respect to the other uncertainties by repeating the analysis using the event plane determined in a different η region with the VZERO detector.

D meson candidates were classified in two groups according to their azimuthal angle relative to the event plane ($\Delta \phi = \phi_D - \phi_2$): in-plane ($[-\frac{\pi}{4}, \frac{\pi}{4}]$ and $[\frac{3\pi}{4}, \frac{5\pi}{4}]$) and out-of-plane ($[-\frac{\pi}{4}, \frac{\pi}{4}]$ and $[\frac{5\pi}{4}, \frac{7\pi}{4}]$).

The raw signal yields were extracted in each $\Delta \phi$ and p_T interval by means of a fit to the candidate invariant mass distributions (mass difference $M(K\pi\pi) - M(K\pi)$ for D^{*+}). The fitting function was the sum of a Gaussian function to describe the signal and an exponential (for D^0 and D^+) or a power-law (for D^{*+}) function for the background. An example fit is shown in Fig. 1 for D^0 candidates. For each meson and in each p_T interval, the mean and the width of the Gaussian were fixed to those obtained from a fit to the invariant mass distribution integrated over $\Delta \phi$, whose signal peak has larger statistical significance. The raw yields in the two $\Delta \phi$ intervals, $N_{in-plane}$ and $N_{out-plane}$ were obtained as the integrals over the corresponding Gaussian signal functions. v_2 was computed as:

$$v_2 = \frac{1}{R_2} \frac{\pi N_{in-plane} - N_{out-plane}}{4 N_{in-plane} + N_{out-plane}}.$$

The factor $\pi/4$ results from the integration of the second term, $2v_2 \cos(2\Delta \phi)$, of the $dN/d\phi$ distribution in the considered $\Delta \phi$ intervals and the factor $1/R_2$ is the correction for the finite resolution in the estimation of the symmetry plane Ψ_2 via the event plane Ψ_2 \cite{41}. R_2 was determined from the correlation between the event plane angles calculated from tracks reconstructed in the two sides of the TPC, namely $-0.8 < \eta < 0$ and $0 < \eta < 0.8$. The resulting value is $R_2 = 0.8059 \pm 0.0001$ (stat) ± 0.024 (syst).

The measured D meson yield has a contribution from feed-down from B meson decays, which amounts to about 10–20% \cite{28,40}, depending on the selection cuts and p_T. Indeed, the B feed-down contribution is enhanced by the selection criteria that are more efficient for feed-down D mesons, because their decay vertices are more displaced from the primary vertex. Thus, the measured v_2 is a combination of those of promptly produced and of feed-down D mesons. Considering that the elliptic flow is additive, the value for promptly produced D mesons, v_2^{prompt}, can be obtained from the measured v_2^{all} as:

$$v_2^{prompt} = \frac{v_2^{all}}{f_{prompt}} - \frac{1 - f_{prompt}}{f_{prompt}} v_2^{feed-down},$$

where f_{prompt} is the fraction of promptly produced D mesons in the measured raw yield and $v_2^{feed-down}$ is the elliptic flow of D mesons from B decays, which depends on the dynamics of beauty quarks in

Figure 1: Invariant mass distributions for D^0 candidates and their charge conjugates with $3 < p_T < 4$ GeV/c for 9.5×10^6 Pb–Pb collisions in the 30–50% centrality class. The distributions are shown separately for the in-plane (open symbols) and out-of-plane (closed symbols) intervals of azimuthal angle. The curves show the fit functions as described in the text.
D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

Figure 2: v_2 as a function of p_T for prompt D^0, D^+ and D^{*+} mesons for Pb–Pb collisions in the centrality range 30–50%. The central value was obtained with the assumption $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$. Vertical error bars represent the statistical uncertainty, empty boxes the systematic uncertainty due to the D meson anisotropy measurement and the event-plane resolution, and shaded boxes show the uncertainty from the contribution of D mesons from B feed-down.

The contributions to the systematic uncertainty on the measured v_2 originate from:

- determination of D meson yields and their anisotropy relative to the event plane (e.g. 10–30% in $4 < p_T < 6 \text{ GeV}/c$ depending on the meson species);
- non-flow effects and centrality dependence in the event plane resolution (3%);
- B feed-down contribution (typically $+45\% - 0\%$).

The first contribution was estimated from the maximum deviation from the central v_2 value obtained by repeating the yield extraction in each p_T and $\Delta\phi$ interval when varying the fit configuration: different fit functions were used for the background; the Gaussian width and mean were left as free parameters in the fit; the yield was defined by counting the histogram entries in the invariant mass region of the signal, after subtracting the background contribution estimated from a fit to the side bands.

The v_2 result obtained with Eq. (1) was cross checked by using an independent technique based on fits to the measured v_2 of candidates as a function of their invariant mass, M [42]. Here $v_2(M)$ was obtained with methods based on two-particle correlations, namely the scalar product [43] and the Q-cumulants [44].

It was checked that the results were stable against variations of the cuts applied for the selection of D meson candidates, and that the reconstruction and selection efficiencies from Monte Carlo simulations were compatible for the in-plane and out-of-plane D mesons.

The uncertainty on the correction factor R_2 for the event plane resolution has two contributions. The first one is due to the centrality dependence of R_2. The average R_2 in the 30-50% centrality interval was computed assuming that the D meson yield is uniformly distributed as a function of centrality. A systematic uncertainty of 2% was assigned by comparing this value with an alternative estimation of the average where the R_2 values in narrow centrality intervals were weighted with the D meson yields measured in the same intervals. The second contribution to the R_2 uncertainty arises from the presence of non-flow correlations between the two sub-events used to compute the resolution. The systematic uncertainty was estimated to be of 2.3% on the basis of the difference to the R_2 value obtained using
three sub-events with a wider pseudorapidity gap, namely TPC tracks and the signals in the two VZERO detectors.

The systematic uncertainty related to the contribution of D mesons from B decays was assigned by varying the assumption on the elliptic flow of feed-down D mesons in Eq. (2) in the range $0 \leq v_{2}^{\text{feed-down}} \leq v_{2}^{\text{prompt}}$, which includes all model predictions [29–32]. The maximum variation corresponds to the case $v_{2}^{\text{feed-down}} = 0$, which gives $v_{2}^{\text{prompt}} = v_{2}^{\text{all}} / f_{\text{prompt}}$. Hence, the magnitude of the systematic uncertainty due to B feed-down is inversely proportional to f_{prompt}. We estimated f_{prompt} as described in [28] using: (i) FONLL [45] predictions for prompt D and B mesons; (ii) $B \to D^{+}X$ decay kinematics from EvtGen [46]; (iii) reconstruction and selection efficiencies for prompt and feed-down D mesons from simulations; and (iv) a hypothesis on the nuclear modification factor of the feed-down D mesons, $R_{AA}^{\text{feed-down}}$. The latter factor accounts for the medium-induced modification of the p_{T} distribution of B mesons. Its contribution was determined by varying the ratio $R_{AA}^{\text{feed-down}} / R_{AA}^{\text{prompt}}$ in the range 1–3, motivated by the lower value of R_{AA} of prompt D mesons measured by ALICE [28] with respect to preliminary results from the CMS experiment on the R_{AA} of J/ψ from B decays [47]. The B feed-down uncertainty was defined by the lower limit of the resulting f_{prompt} range, which depends on the D meson species and p_{T}. A typical value for this lower limit is 0.68, corresponding to a relative uncertainty on v_{2}^{prompt} of $^{+45}_{-0.092}$ (B feed-down), which is larger than zero with 5.7σ significance. This result indicates that the interactions with the medium constituents transfer to charm quarks information on the azimuthal anisotropy of the system, suggesting that low momentum charm quarks take part in the collective motion of the system. A positive v_{2} is also observed for $p_{T} > 6$ GeV/c, which most likely originates from the path-length dependence of the partonic energy loss, although the large uncertainties do not allow for a firm conclusion.

![Figure 3](image.png)

Figure 3: Average of D^{0}, D^{+} and D^{*+} v_{2} as a function of p_{T}, compared to charged-particle v_{2} measured with the event plane (EP) method. The symbols are positioned horizontally at the average p_{T} of the three D meson species.
In summary, we have presented the first measurement of the D meson elliptic flow coefficient v_2 for semi-central Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. A positive elliptic flow, with 5.7σ significance in $2 < p_T < 6$ GeV/c, is observed. This v_2 measurement, together with the observed large suppression of D mesons in central collisions [28], provides a stringent constraint to theoretical models describing the interaction of heavy quarks with the medium.

Acknowledgements

The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration would like to thank M. Cacciari for providing the pQCD predictions used for the feed-down correction. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

- State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia;
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);
- Ministry of Education and Youth of the Czech Republic;
- Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;
- The European Research Council under the European Community’s Seventh Framework Programme;
- Helsinki Institute of Physics and the Academy of Finland;
- French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;
- German BMBF and the Helmholtz Association;
- General Secretariat for Research and Technology, Ministry of Development, Greece;
- Hungarian OTKA and National Office for Research and Technology (NKTH);
- Department of Atomic Energy and Department of Science and Technology of the Government of India;
- Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy;
- MEXT Grant-in-Aid for Specially Promoted Research, Japan;
- Joint Institute for Nuclear Research, Dubna;
- National Research Foundation of Korea (NRF);
- CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network);
- Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;
- Research Council of Norway (NFR);
- Polish Ministry of Science and Higher Education;
- National Authority for Scientific Research - NASR (Autoritatea Națională pentru Cercetare Științifică - ANCS);
- Ministry of Education of Slovakia;
- Department of Science and Technology, South Africa;
- CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia
D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

(Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);
Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council (STFC);
The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

References

S. Borsanyi et al. [Wuppertal-Budapest Collaboration], JHEP 09 (2010) 073;
S. Borsanyi, arXiv:1210.6901 [hep-lat];

D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration
D meson elliptic flow in non-central Pb–Pb collisions at √s_{NN} = 2.76 TeV

ALICE Collaboration

61 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
62 Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
63 Joint Institute for Nuclear Research (JINR), Dubna, Russia
64 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
65 Korea Institute of Science and Technology Information, Daejeon, South Korea
66 KTO Karatay University, Konya, Turkey
67 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France
68 Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
69 Laboratori Nazionali di Frascati, INFN, Frascati, Italy
70 Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
71 Lawrence Berkeley National Laboratory, Berkeley, California, United States
72 Lawrence Livermore National Laboratory, Livermore, California, United States
73 Moscow Engineering Physics Institute, Moscow, Russia
74 National Centre for Nuclear Studies, Warsaw, Poland
75 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
76 National Institute of Science Education and Research, Bhubaneswar, India
77 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
78 Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
79 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
80 Petersburg Nuclear Physics Institute, Gatchina, Russia
81 Physics Department, Creighton University, Omaha, Nebraska, United States
82 Physics Department, Panjab University, Chandigarh, India
83 Physics Department, University of Athens, Athens, Greece
84 Physics Department, University of Cape Town and iThemba LABS, National Research Foundation, Somerset West, South Africa
85 Physics Department, University of Jammu, Jammu, India
86 Physics Department, University of Rajasthan, Jaipur, India
87 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
88 Politecnico di Torino, Turin, Italy
89 Purdue University, West Lafayette, Indiana, United States
90 Pusan National University, Pusan, South Korea
91 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
92 Rudjer Bošković Institute, Zagreb, Croatia
93 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
94 Russian Research Centre Kurchatov Institute, Moscow, Russia
95 Sahajinstitute of Nuclear Physics, Kolkata, India
96 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
97 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
98 Sezione INFN, Catania, Italy
99 Sezione INFN, Catania, Italy
100 Sezione INFN, Padova, Italy
101 Sezione INFN, Padova, Italy
102 Sezione INFN, Piacenza, Italy
103 Sezione INFN, Trieste, Italy
104 Sezione INFN, Trieste, Italy
105 Sezione INFN, Trieste, Italy
106 Sezione INFN, Trieste, Italy
107 Sezione INFN, Rome, Italy
108 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
109 SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
110 Suranaree University of Technology, Nakhon Ratchasima, Thailand
111 Technical University of Split FESB, Split, Croatia
112 Technische Universität München, Munich, Germany
D meson elliptic flow in non-central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

The University of Texas at Austin, Physics Department, Austin, TX, United States

Universidad Autónoma de Sinaloa, Culiacán, Mexico

Universidade de São Paulo (USP), São Paulo, Brazil

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

University of Houston, Houston, Texas, United States

University of Technology and Austrian Academy of Sciences, Vienna, Austria

University of Tennessee, Knoxville, Tennessee, United States

University of Tokyo, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Eberhard Karls Universität Tübingen, Tübingen, Germany

Variable Energy Cyclotron Centre, Kolkata, India

Vestfold University College, Tonsberg, Norway

V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

Warsaw University of Technology, Warsaw, Poland

Wayne State University, Detroit, Michigan, United States

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Yale University, New Haven, Connecticut, United States

Yıldız Technical University, Istanbul, Turkey

Yonsei University, Seoul, South Korea

Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany