Circular Higgs Factories & Possible Long-Term Strategy

Zimmermann, F (CERN)

29 June 2013

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 4: AccNet: Accelerator Science Networks.

The electronic version of this EuCARD Publication is available via the EuCARD web site <http://cern.ch/eucard> or on the CERN Document Server at the following URL: <http://cds.cern.ch/record/1558693>
possible future circular colliders

• LHeC & SAPPHiRE
• HE-LHC or VHE-LHC
• LEP3 or TLEP
• even higher-energy pp collider?
• ultimate limits
Large Hadron electron Collider (LHeC)

ERL LHeC:
recirculating linac with energy recovery
LHeC Conceptual Design Report

LHeC CDR published in

http://cern.ch/lhec

LHeC Study Group

About 150 Experimentalists and Theorists from 50 institutes

Thanks to all and to
CERN, ECFA, NuPECC

~600 pages
L-R LHeC road map to $\geq 10^{33}$ cm$^{-2}$s$^{-1}$

luminosity of LR collider:

(round beams)

$$L = \frac{1}{4\pi \epsilon} \frac{N_{b,p}}{\epsilon_p \beta_p^*}$$

- highest proton beam brightness “permitted” (ultimate LHC values)
 - $\gamma \epsilon = 3.75 \ \mu$m
 - $N_b = 1.7 \times 10^{11}$

- smallest conceivable proton β^* function:
 - reduced l^* (23 m \to 10 m)
 - squeeze only one p beam
 - new magnet technology Nb_3Sn

- $\beta_p^* = 0.1 \ m$

- average e$^-$ current limited by energy recovery efficiency
 - $I_e = 6.4 \ mA$

- maximize geometric overlap factor
 - head-on collision
 - small e$^-$ emittance
 - $\theta_c = 0$
 - $H_{hg} \geq 0.9$

- $H_D \approx 1.3$

D. Schulte
LHeC2010
LHeC ERL layout
two SC linacs, 3-pass up, 3-pass down; 6.4-mA 60-GeV e⁻’s collide w. LHC p/ions, e⁻ RF grad ~20 MV/m, 800 MHz

tune-up dump
10-GeV linac
comp. RF
injector

10-GeV linac
comp. RF
dump
IP
e⁻ final focus

total circumference ~ 8.9 km

(C=1/3 LHC allows for ion clearing gaps)

A. Bogacz, O. Brüning, M. Klein, D. Schulte, F. Zimmermann, et al
LHeC: 3 passes, flexible momentum compaction arc lattice building block: 52 m long cell with 2 (10) dipoles & 4 quadrupoles

LHeC flexible momentum compaction cell; tuned for small beam size (low energy) or low $\Delta \varepsilon$ (high energy)

Arc 1, Arc 2

Imaginary γ_t
Optics

$\langle H \rangle = 8.8 \times 10^{-3} \text{ m}$

limit chamber size
(>12 σ at 25 mm diameter)

Arc 3, Arc 4

DBA-like Optics

$\langle H \rangle = 2.2 \times 10^{-3} \text{ m}$

Arc 5, Arc 6

TEM-like Optics

$\langle H \rangle = 1.2 \times 10^{-3} \text{ m}$

factor of 18 smaller than FODO

limit emittance growth

Alex Bogacz
prototype arc magnets

eRHIC dipole model (BNL)

5 mm gap
max. field 0.43 T (30 GeV)

LHeC dipole models (BINP & CERN)

25 mm gap
max. field 0.264 T (60 GeV)
LHeC test facility @ CERN

being designed by oPAC fellow Alessandra Valloni
LHeC baseline & Higgs factory parameters

<table>
<thead>
<tr>
<th>parameter [unit]</th>
<th>LHeC baseline</th>
<th>LHeC Higgs factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>species</td>
<td>e^-</td>
<td>e^-</td>
</tr>
<tr>
<td>beam energy (/nucleon) [GeV]</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>$25 (50)$</td>
<td>$25 (50)$</td>
</tr>
<tr>
<td>bunch intensity (nucleon) [10^{10}]</td>
<td>0.1 (0.2)</td>
<td>0.4 (0.8)</td>
</tr>
<tr>
<td>beam current [mA]</td>
<td>6.4</td>
<td>25.6</td>
</tr>
<tr>
<td>rms bunch length [mm]</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>polarization [%]</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>normalized rms emittance [μm]</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>geometric rms emittance [nm]</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>IP beta function $\beta_{x,y}$ [m]</td>
<td>0.12</td>
<td>0.039</td>
</tr>
<tr>
<td>IP spot size [μm]</td>
<td>7.2</td>
<td>4.1</td>
</tr>
<tr>
<td>synchrotron tune Q_s</td>
<td>—</td>
<td>1.9×10^{-3}</td>
</tr>
<tr>
<td>hadron beam-beam parameter</td>
<td>0.0001 (0.0002)</td>
<td>0.0004 (0.0008)</td>
</tr>
<tr>
<td>lepton disruption parameter D</td>
<td>6</td>
<td>23 (31)</td>
</tr>
<tr>
<td>crossing angle</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hourglass reduction factor H_{hg}</td>
<td>0.91</td>
<td>0.70 (0.73)</td>
</tr>
<tr>
<td>pinch enhancement factor H_D</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>c.m. energy [GeV]</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>luminosity / nucleon [$10^{33} \text{ cm}^{-2}\text{s}^{-1}$]</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

$L_{\text{ep}} \sim 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
a different type of collider

s-channel production;
lower energy;
no e^+ source

another advantage:
no beamstrahlung
\rightarrow higher energy reach
than e^+e^- colliders

$\gamma\gamma$ collider Higgs factory
\(\gamma \gamma \) collider based on \(e^- \)

Combining photon science & particle physics!

K.-J. Kim, A. Sessler
Beam Line
Spring/Summer 1996

Few \(J \) pulse energy with \(\lambda \sim 350 \text{ nm} \)
which beam & photon energy / wavelength?

\[E_{\gamma,max} = \frac{x}{1 + x} E_{beam} \]

\[x = \frac{4E_e \omega_L}{m_e^2} \cos^2 \frac{\theta}{2} \]

example \(x \approx 4.3 \)
(for \(x > 4.83 \) coherent pair production occurs)

with \(E_{beam} \approx 80 \text{ GeV} \): \(E_{\gamma,max} \approx 66 \text{ GeV} \)
\(E_{CM,max} \approx 132 \text{ GeV} \)

\(E_{photon} \approx 3.53 \text{ eV} \), \(\lambda \approx 351 \text{ nm} \)
SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

Reconfigured LHeC

total circumference ~ 9 km

scale ~ European XFEL, about 10-20k Higgs per year

10, 30, 50, 70 GeV for e^\pm (8 arcs!)

500 MeV e- injector

11-GeV linac

dump
tune-up dump

$\gamma\gamma$ Higgs Factory

~0, 20, 40, 60 GeV for e^\pm (8 arcs!)

IP

final focus
dump
tune-up dump

11-GeV linac

80 GeV

2.0 km
laser progress: example fiber lasers

power evolution of cw double-clad fiber lasers with diffraction limited beam quality over the past decade: factor 100 increase!

passive optical cavity

→

relaxed laser parameters

K. Moenig et al, DESY Zeuthen
laser options for SAPPHiRE

Cavity enhancement

\[Q = 1000 \]

- 5 J, 10 MW circulating

SAPPHiRE laser

- Amplifier + Compressor
 - THG

LIFE beam line:
- Pulses at 16 Hz
- 8.125 kJ / pulse
- 130 kW average power
- ns pulse width

J. Gronberg, LLNL

Y. Zaouter, Amplitude Systems

G. Mourou, LOA;
M. Velasco,
Northwestern U.

Figure 2: Principle of a coherent amplifier network (CAN) based on fiber laser technology. An initial pulse from a seed laser (1) is stretched (2), and split into many fibre channels (3). Each channel is amplified in several stages, with the final stages producing pulses of ~1 mJ at a high repetition rate (4). All the channels are combined coherently, compressed (5) and focused (6) to produce a pulse with an energy of >10 J at a repetition rate of 10 kHz (7). [3]
LHeC Higgs factory comparison

(1 year = 10^7 s at design luminosity).

<table>
<thead>
<tr>
<th>machine</th>
<th>LHeC</th>
<th>LHeC-HF</th>
<th>SAPPHiRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>luminosity</td>
<td>0.1 (ep)</td>
<td>2 (ep)</td>
<td>0.06 $(\gamma\gamma > 125 \text{ GeV})$</td>
</tr>
<tr>
<td>$[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross section</td>
<td>$\sim 200 \text{ fb}$</td>
<td>$\sim 200 \text{ fb}$</td>
<td>$>1.7 \text{ pb}$</td>
</tr>
<tr>
<td>no. Higgs/yr</td>
<td>2k</td>
<td>40k</td>
<td>$>10k$</td>
</tr>
</tbody>
</table>
HFITT – HF in Tevatron tunnel

γγ collider inspired by SAPPHIRE

HFITT – Higgs Factory in Tevatron Tunnel

Goal: 10,000 Higgs/year

Tunnel Cross Section
(16 permanent magnet beam lines,
B = 0.05 – 3.3 kG)

RF (1.3 GHz, 8 sets, 5 cryomodules 1.25 GV /set)

E = 80 GeV
ρ = 800 m
U = 4.53 GeV/turn

I = 0.15 mA x 2
P(rf) = 27 MW

Weiren Chou, Gerard Mourou, Nikolay Solyak, Toshiki Tajima, Mayda Velasco, 20 May 2013
higher-energy pp colliders
20-T dipole magnet

E. Todesco, L. Rossi, P. McIntyre
80-km tunnel for VHE-LHC – “best” option

even better 100 km?
HE-LHC & VHE-LHC parameters – 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>HE-LHC</th>
<th>VHE-LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m. energy [TeV]</td>
<td>14</td>
<td>14</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>circumference C [km]</td>
<td>26.7</td>
<td>26.7</td>
<td>26.7</td>
<td>80</td>
</tr>
<tr>
<td>dipole field [T]</td>
<td>8.33</td>
<td>8.33</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>dipole coil aperture [mm]</td>
<td>56</td>
<td>56</td>
<td>40</td>
<td>\leq 40</td>
</tr>
<tr>
<td>beam half aperture [cm]</td>
<td>\sim 2</td>
<td>\sim 2</td>
<td>1.3</td>
<td>\leq 1.3</td>
</tr>
<tr>
<td>injection energy [TeV]</td>
<td>0.45</td>
<td>0.45</td>
<td>>1.0</td>
<td>>3.0</td>
</tr>
<tr>
<td>no. of bunches n_b</td>
<td>2808</td>
<td>2808</td>
<td>2808</td>
<td>8420</td>
</tr>
<tr>
<td>bunch population N_b [10^{11}]</td>
<td>1.15</td>
<td>2.2</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td>init. transv. norm. emit. [µm]</td>
<td>3.75</td>
<td>2.5</td>
<td>1.38</td>
<td>2.15</td>
</tr>
<tr>
<td>initial longitudinal emit. [eVs]</td>
<td>2.5</td>
<td>2.5</td>
<td>3.8</td>
<td>13.5</td>
</tr>
<tr>
<td>no. IPs contributing to tune shift</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>max. total beam-beam tune shift</td>
<td>0.01</td>
<td>0.015</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>beam circulating current [A]</td>
<td>0.584</td>
<td>1.12</td>
<td>0.478</td>
<td>0.492</td>
</tr>
<tr>
<td>rms bunch length [cm]</td>
<td>7.55</td>
<td>7.55</td>
<td>7.55</td>
<td>7.55</td>
</tr>
<tr>
<td>IP beta function [m]</td>
<td>0.55</td>
<td>0.15 (min.)</td>
<td>0.35</td>
<td>1.1</td>
</tr>
<tr>
<td>rms IP spot size [µm]</td>
<td>16.7</td>
<td>7.1 (min.)</td>
<td>5.2</td>
<td>6.7</td>
</tr>
<tr>
<td>full crossing angle [µrad]</td>
<td>285</td>
<td>590</td>
<td>185</td>
<td>72</td>
</tr>
<tr>
<td>stored beam energy [MJ]</td>
<td>362</td>
<td>694</td>
<td>701</td>
<td>6610</td>
</tr>
</tbody>
</table>
HE-LHC & VHE-LHC luminosities could greatly improve for bunch spacings < 25 ns, e.g. by factor 5 for 5 ns, and make better use of strong radiation damping!

are 5 ns spacing & $2.5 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}$ acceptable for detectors?

O. Dominguez, L. Rossi, F.Z.
pp Higgs factories

LHC is the 1st Higgs factory!
\(E_{CM} = 8-14 \text{ TeV}, \hat{L} \sim 10^{34}\text{cm}^{-2}\text{s}^{-1}\)
1 M Higgs produced so far – more to come!
15 H bosons / min – and more to come

HL-LHC (~2022-2030):
\(E_{CM} = 14 \text{ TeV}, L \sim 5 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}\) (leveled)
10x more Higgs

HE-LHC: in LHC tunnel (2035-?)
\(E_{CM} = 33 \text{ TeV}, L = 5 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}\)
6x higher cross section for \(H\) self coupling

VHE-LHC in new 80-100 km tunnel (2040?)
\(E_{CM} = 84-104 \text{ TeV}, L = 5 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}\)
42x higher cross section for \(H\) self coupling
circular e^+e^-
Higgs factories
circular e^+e^- colliders to study the «Higgs boson» X(126)

a relatively young concept (2011)
proposed circular e^+e^- Higgs factories

SuperTRISTAN in Tsukuba: 40 (& 60 or 80) km

SLAC/LBNL design: 27 km

Chinese Higgs Factory + Super pp Collider

50 or 70 km

TLEP: 80 or 100 km near Geneva or HF in 27-km LHC tunnel (LEP3)

FNAL site filler, 16 km

FNAL Snowmass proposal: 100 km
circular e^+e^- Higgs factories LEP3 & TLEP

option 1: installation in the LHC tunnel “LEP3”
- inexpensive (only pay for new accelerator -- $\sim2B$ CHF)
- tunnel exists
- reusing ATLAS and CMS detectors
- reusing LHC cryoplants
- interference with LHC and HL-LHC

option 2: in new 80 or 100-km tunnel “TLEP”
- higher energy reach, 5-10x higher luminosity
- decoupled from LHC/HL-LHC operation & construction
- tunnel can later serve for VHE-LHC 100 TeV machine

long term vision
- more expensive because of tunnel
LEP3, TLEP

\((e^+e^- \to ZH, \; e^+e^- \to W^+W^-, \; e^+e^- \to Z, \; [e^+e^- \to t\bar{t}]\))

Key Parameters

<table>
<thead>
<tr>
<th></th>
<th>LEP3</th>
<th>TLEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>26.7 km</td>
<td>80 km</td>
</tr>
<tr>
<td>Max beam energy</td>
<td>120 GeV</td>
<td>175 GeV</td>
</tr>
<tr>
<td>Max no. of IPs</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Luminosity/IP at 350 GeV c.m.</td>
<td>-</td>
<td>(1.3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1})</td>
</tr>
<tr>
<td>Luminosity/IP at 240 GeV c.m.</td>
<td>(10^{34} \text{ cm}^{-2}\text{s}^{-1})</td>
<td>(4.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1})</td>
</tr>
<tr>
<td>Luminosity/IP at 160 GeV c.m.</td>
<td>(5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1})</td>
<td>(1.6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1})</td>
</tr>
<tr>
<td>Luminosity/IP at 90 GeV c.m.</td>
<td>(2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1})</td>
<td>(5.6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1})</td>
</tr>
</tbody>
</table>

At the Z pole repeat the LEP physics programme in a few minutes...
<table>
<thead>
<tr>
<th></th>
<th>TLEP Z</th>
<th>TLEP W</th>
<th>TLEP H</th>
<th>TLEP t</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{beam} [GeV]</td>
<td>45</td>
<td>80</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>circumf. [km]</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>beam current [mA]</td>
<td>1180</td>
<td>124</td>
<td>24.3</td>
<td>5.4</td>
</tr>
<tr>
<td>#bunches/beam</td>
<td>4400</td>
<td>600</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>#e−/beam [10^{12}]</td>
<td>1960</td>
<td>200</td>
<td>40.8</td>
<td>9.0</td>
</tr>
<tr>
<td>horiz. emit. [nm]</td>
<td>30.8</td>
<td>9.4</td>
<td>9.4</td>
<td>10</td>
</tr>
<tr>
<td>vert. emit. [nm]</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>bending rad. [km]</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>κ_{ε}</td>
<td>440</td>
<td>470</td>
<td>470</td>
<td>1000</td>
</tr>
<tr>
<td>mom. c. α_{ε} [10^{-5}]</td>
<td>9.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$P_{loss,SR}$/beam [MW]</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>β^*_{x} [m]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>β^*_{y} [cm]</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ^*_{x} [μm]</td>
<td>124</td>
<td>78</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>σ^*_{y} [μm]</td>
<td>0.27</td>
<td>0.14</td>
<td>0.14</td>
<td>0.10</td>
</tr>
</tbody>
</table>
TLEP parameters – 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TLEP Z</th>
<th>TLEP W</th>
<th>TLEP H</th>
<th>TLEP t</th>
</tr>
</thead>
<tbody>
<tr>
<td>hourglass F_{hg}</td>
<td>0.71</td>
<td>0.75</td>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>$E_{SR,\text{loss/turn}}$ [GeV]</td>
<td>0.04</td>
<td>0.4</td>
<td>2.0</td>
<td>9.2</td>
</tr>
<tr>
<td>$V_{RF,\text{tot}}$ [GV]</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>$\delta_{max,RF}$ [%]</td>
<td>4.0</td>
<td>5.5</td>
<td>9.4</td>
<td>4.9</td>
</tr>
<tr>
<td>ξ_x/IP</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>ξ_y/IP</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>f_s [kHz]</td>
<td>1.29</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td>E_{acc} [MV/m]</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>eff. RF length [m]</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>f_{RF} [MHz]</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>$\delta_{SR,\text{rms}}$ [%]</td>
<td>0.06</td>
<td>0.10</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>$\sigma_{SR,z,\text{rms}}$ [cm]</td>
<td>0.19</td>
<td>0.22</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>\mathcal{L}/IP$[10^{32}\text{cm}^{-2}\text{s}^{-1}]$</td>
<td>5600</td>
<td>1600</td>
<td>480</td>
<td>130</td>
</tr>
<tr>
<td>number of IPs</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>beam lifet. [min]</td>
<td>67</td>
<td>25</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
circular HFs: synchrotron-radiation heat load

<table>
<thead>
<tr>
<th></th>
<th>PEP-II</th>
<th>SPEAR3</th>
<th>LEP3</th>
<th>TLEP-Z</th>
<th>TLEP-H</th>
<th>TLEP-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (GeV)</td>
<td>9</td>
<td>3</td>
<td>120</td>
<td>45.5</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>I (A)</td>
<td>3</td>
<td>0.5</td>
<td>0.0072</td>
<td>1.18</td>
<td>0.0243</td>
<td>0.0054</td>
</tr>
<tr>
<td>rho (m)</td>
<td>165</td>
<td>7.86</td>
<td>2625</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
</tr>
<tr>
<td>Linear Power (W/cm)</td>
<td>101.8</td>
<td>92.3</td>
<td>30.5</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
</tr>
</tbody>
</table>

TLEP has >10 times less SR heat load per meter than PEP-II or SPEAR! (though higher photon energy)

N. Kurita, U. Wienands, SLAC
synchrotron radiation - activation

A. Fasso
3rd TLEP3 Day

see talk by A. Ferrari

Original LEP design

Fig. 2. Synchrotron Radiation Spectrum from LEP

$E = 130 \text{ GeV}$

$i = 1.0 \text{ mA}$

$R = 3544.5 \text{ m}$
beamstrahlung lifetime

- simulation w 360M macroparticles (guinea-pig)
- τ varies exponentially with momentum acceptance η

TLEP at 240 GeV post-collision
E tail \rightarrow lifetime τ

M. Zanetti (MIT)

R-HF beamstrahlung more benign than for linear collider

luminosity E spectrum

![Graph showing luminosity spectrum for different scenarios.](image-url)
beamstrahlung lifetime

- simulation with 360M macroparticles
- τ varies exponentially with energy acceptance η
- post-collision E tail \rightarrow lifetime τ

beam lifetime versus acceptance δ_{max} for 4 IPs:

SuperKEKB: $\epsilon_y/\epsilon_x < 0.25\%$!
circular HFs - momentum acceptance

KEK design before optics correction ±1.1%

KEK design after optics correction ±1.3%

SLAC/LBNL design ±2.0%

FNAL site filler ±1.6%

T. Sen, E. Gianfelice-Wendt, Y. Alexahin
Next Collider: SuperKEKB

SuperKEKB is TLEP demonstrator!

$\beta_y^* = 300 \, \mu\text{m} \ (\text{TLEP}: \ 1 \, \text{mm})$

Lifetime 5 min (TLEP: \sim15 min)

$\varepsilon_y/\varepsilon_x = 0.25\% \ (\sim\text{TLEP})$

Off momentum acceptance

e^+ production rate

Beam commissioning will start early 2015
Luminosity Performance of e^+e^- colliders

Circular colliders have several IP’s

- Lumi upgrade ($\times 3$) now envisioned at ILC: luminosity is key at low energy!
- Crossing point between circular and linear colliders ~ 400 GeV
- With fewer IP’s expect total luminosity of facility to scale approx as $(N_{IP})^{0.5}$
Higgs factory performances

Precision on couplings, cross sections, mass, width, Summary of the ICFA HF2012 workshop (FNAL, Nov. 2012) arxiv1302:3318

The Circular Higgs Factory really goes to precision at few permil level.

Table 2.1: Expected performance on the Higgs boson couplings from the LHC and e^+e^- colliders, as compiled from the Higgs Factory 2012 workshop.

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>ILC</th>
<th>Full ILC</th>
<th>CLIC</th>
<th>TLEP, 4 IP</th>
<th>TLEP, 4 IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_H</td>
<td>1.7×10^7</td>
<td>1.7×10^8</td>
<td>$6 \times 10^4 ZH$</td>
<td>$10^5 ZH$</td>
<td>$7.5 \times 10^4 ZH$</td>
<td>~$2 \times 10^5 ZH$</td>
<td>$2 \times 10^5 ZH$</td>
</tr>
<tr>
<td>m_H (MeV)</td>
<td>100</td>
<td>50</td>
<td>35</td>
<td>35</td>
<td>100</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>$\Delta \Gamma_H$</td>
<td>10%</td>
<td>3%</td>
<td></td>
<td></td>
<td>ongoing</td>
<td>4%</td>
<td>1.3%</td>
</tr>
<tr>
<td>$\Delta \Gamma_{inv}/\Gamma_H$</td>
<td>Indirect (30%?)</td>
<td>Indirect (10%?)</td>
<td>Indirect (30%?)</td>
<td>Indirect (10%?)</td>
<td>Indirect (30%?)</td>
<td>Indirect (30%?)</td>
<td>Indirect (30%?)</td>
</tr>
<tr>
<td>$\Delta \theta_{H\gamma}/\theta_{H\gamma}$</td>
<td>6.5 – 5.1%</td>
<td>5.4 – 1.5%</td>
<td>--</td>
<td>--</td>
<td>ongoing</td>
<td>3.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>$\Delta \theta_{HH\gamma}/\theta_{HH\gamma}$</td>
<td>11 – 5.7%</td>
<td>7.5 – 2.7%</td>
<td>4.5%</td>
<td>2.5%</td>
<td>< 3%</td>
<td>2.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>$\Delta \theta_{HHV}/\theta_{HHV}$</td>
<td>5.7 – 2.7%</td>
<td>4.5 – 1.0%</td>
<td>4.3%</td>
<td>1%</td>
<td>~1%</td>
<td>1.5%</td>
<td>0.25%</td>
</tr>
<tr>
<td>$\Delta \theta_{HHH}/\theta_{HHH}$</td>
<td>5.7 – 2.7%</td>
<td>4.5 – 1.0%</td>
<td>1.3%</td>
<td>1.5%</td>
<td>~1%</td>
<td>0.65%</td>
<td>0.2%</td>
</tr>
<tr>
<td>$\Delta \theta_{HH\gamma}/\theta_{HH\gamma}$</td>
<td>< 30% (2 expts)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>~22% (~11% at 3 TeV)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>$\Delta \theta_{HHH}/\theta_{HHH}$</td>
<td>< 30%</td>
<td>< 10%</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>14%</td>
<td>7%</td>
</tr>
<tr>
<td>$\Delta \theta_{H\gamma\gamma}/\theta_{H\gamma\gamma}$</td>
<td>8.5 – 5.1%</td>
<td>5.4 – 2.0%</td>
<td>3.5%</td>
<td>2.5%</td>
<td>~3%</td>
<td>1.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>$\Delta \theta_{H\gamma\gamma}/\theta_{H\gamma\gamma}$</td>
<td>--</td>
<td>--</td>
<td>3.7%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0.65%</td>
</tr>
<tr>
<td>$\Delta \theta_{H\gamma\gamma}/\theta_{H\gamma\gamma}$</td>
<td>15 – 6.9%</td>
<td>11 – 2.7%</td>
<td>1.4%</td>
<td>1%</td>
<td>1%</td>
<td>0.7%</td>
<td>0.22%</td>
</tr>
<tr>
<td>$\Delta \theta_{H\gamma\gamma}/\theta_{H\gamma\gamma}$</td>
<td>14 – 8.7%</td>
<td>8.0 – 3.9%</td>
<td>--</td>
<td>--</td>
<td>5%</td>
<td>3%</td>
<td>--</td>
</tr>
</tbody>
</table>

(*) The total luminosity is the sum of the integrated luminosity at each energy.
Need sub-percent precision for sensitivity to multi-TeV New Physics

- Compare (LHC), HL-LHC, ILC, TLEP

- TLEP reaches the needed sub-percent accuracy
- much theoretical work also needed
TLEP TeraZ, Oku-W & Mega-Top

Precision tests of EWSB

<table>
<thead>
<tr>
<th></th>
<th>LEP</th>
<th>ILC</th>
<th>TLEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} \sim m_Z$</td>
<td>Mega-Z</td>
<td>Giga-Z</td>
<td>Tera-Z</td>
</tr>
<tr>
<td>#Z / year</td>
<td>2x10^7</td>
<td>Few 10^9</td>
<td>10^{12} (>10^{11} b,c,\tau)</td>
</tr>
<tr>
<td>Polarization</td>
<td>Yes (T)</td>
<td>Easy</td>
<td>Yes (T,L)</td>
</tr>
<tr>
<td>Precision vs LEP1</td>
<td>1/5 to 1/10</td>
<td>~1/100</td>
<td>~1/100</td>
</tr>
<tr>
<td>Error on m_Z, Γ_Z</td>
<td>2 MeV</td>
<td>0.5 MeV</td>
<td>< 0.1 MeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LEP</th>
<th>ILC</th>
<th>TLEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} = 240$ GeV</td>
<td>Oku-W</td>
<td></td>
<td></td>
</tr>
<tr>
<td># W pairs / 5 years</td>
<td>4x10^4</td>
<td>4x10^6</td>
<td>2x10^8</td>
</tr>
<tr>
<td>Polarization</td>
<td>No</td>
<td>Easy</td>
<td>Yes (T)</td>
</tr>
<tr>
<td>Error on m_W</td>
<td>33 MeV</td>
<td>3 MeV</td>
<td>0.5 MeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LEP</th>
<th>ILC</th>
<th>TLEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} \sim 350$ GeV</td>
<td></td>
<td></td>
<td>Mega-Top</td>
</tr>
<tr>
<td># top pairs / 5 years</td>
<td>-</td>
<td>100,000</td>
<td>500,000</td>
</tr>
</tbody>
</table>

- measure m_Z, Γ_Z to < 0.1 MeV, m_W to < 1 MeV, $\sin^2 \theta_W$ to 2.10^{-6} from A_{LR}
- TLEP beam polarization up to W threshold, for energy calibration
other TLEP challenges

• **Efficient RF system**
 – Need 12 GeV/turn at 350 GeV
 • ~600 m of SC RF cavities @ 20 MV/m
 – LEP2 had 600 m at 7 MV/m
 – Very high power: up to 200 kW/cavity in collider ring
 • Power couplers similar to ESS –
 700-800 MHz preferred

• **Operation at the Z pole**
 – 4400 bunches: e^+ source, impedance effects, parasitic collisions
 • May need two rings designed to separate e^+ and e^- beams
TLEP design study: http://cern.ch/tlep

where you can subscribe for work, information, newsletter , etc...

Global endeavour: collaborators from Europe, US, Japan, China ,...

Next events: TLEP workshops 25-26 July 2013, Fermilab
16-18 October, CERN
Joint VHE-LHC+ TLEP kick-off meeting in February 2014
First 200 subscribers:

Distribution of countries of origin reflects the youth of the TLEP project and the very different levels of awareness in the different countries.

* * *

distribution of countries

A **iidience is remarkably well balanced between Accelerator, Experiment, and Phenomenology** -- the agreement with the three colour model is too good to be a statistical fluctuation!
VHE-LHC + TLEP

HE-LHC-LER (0.17→1.5 T)
TLEP collider (0.07 or 0.05T)
TLEP injector (0.007→0.05/7 T)

20 mm thick shield around cable
Gaps: 2 x V30xH60 mm

transmission line magnet
(B. Foster, H. Piekarz)

super-resistive cable

based on MgB$_2$ SC
only 12 MEuro/100 km!

HE-LHC (20 T)

Cable:
inner core of 40 mm Cu (700 mm2)
+ outer core : 2 layers, 150 strands of MgB$_2$, 1 kA each; Outer size 45 mm.
120 kA =>120 k€/km !

For electrons: Cu water cooled,
J_{ov} 2.5 A/mm2

For protons: 800 A/strands
120 kA (for >2.1 T); central copper acts as stabilizer

multipurpose tunnel
possible long-term strategy

(CERN implementation)

TLEP (80-100 km, e^+e^-, up to \sim350 GeV c.m.)

VHE-LHC (pp, up to 100 TeV c.m.)

& e^\pm (120 GeV) – p (7, 16 & 50 TeV) collisions ([V]HE-)TLHeC

≥50 years of e^+e^-, pp, ep/A physics at highest energies

BUT - what if 100 TeV pp collider is not enough ?!?
how to go beyond VHE-LHC?

the really grand challenge!
one possibility – crystal: world’s strongest magnets

\[\lambda = 2\pi \beta = 2\pi \left(\frac{E}{\phi} \right)^{1/2} \]

straight crystal

\(\phi \approx 20-60 \text{ eV/Å}^2 \)

bent crystal

\(B_{\text{max}} \approx 2000 \text{ T}! \)

W. Scandale, MPL A (2012)

S.A. Bogacz, D. Cline, 1997
since 1978 crystals are used for extracting high-energy protons or ions from storage rings; can they also be used for a circular collider?!
channeling condition: angle of incidence < Lindhard critical angle \(\sim 5 \mu \text{rad} \)

\(\frac{Z}{p} \left(\frac{\text{TeV}}{c} \right)^{1/2} \)

thermal vibrations, discreteness of lattice, electrons \(\rightarrow \) dechanneling (exponential decrease of channeled protons)

dechanneling length \(L_0 \sim 0.9 \text{ m } p[\text{TeV/c}] \)

cooling of crystal increases \(L_0 \)

minimum bending radius for channeling \(R_c \sim 0.4 \text{ m } p[\text{TeV/c}] \)
Nuclear loss rate seen by a scintillator telescope downstream of the crystal

Channeling peak

Reflection range

Amorphous orientation

x 5 reduction rate

Counts

Nuclear loss rate (including diffractive) strongly depressed

W. Scandale
profile of “beam” deflected by crystal

- 256×256 square pixels
- 1 pixel size = 55 µm
- 1 frame integration time 1 s
staging of crystal deflectors

6 strip crystals in series (each 2 mm long):
400 GeV/c protons reflected by 40±2 μrad
[effective field 16 T]
with efficiency 0.93±0.04

W. Scandale et al, Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals, Phys.Rev.Lett. 102 (2009) 084801
possible longer-term strategy

(CERN implementation)

TLEP (80-100 km, \(e^+e^-,\) up to \(~350\) GeV c.m.)

VHE-LHC (\(pp,\) up to 100 TeV c.m.)

CCC, > 1 PeV

& \(e^\pm (120\) GeV) – \(p (7, 16 \& 50\) TeV\) collisions ([V)HE-]TLHeC)

\(\geq50\) years of \(e^+e^- , pp, ep/A\) physics at highest energies followed by >1 PeV circular crystal collider (CCC)!!?
circular crystal collider?

cryogenic? crystal bending stage

tunnel mostly empty

proton beam

a dream or our future?

energy ramp using induction acceleration?
highest-energy particles

4 July 2012 CERN, Geneva, Switzerland
Higgs boson – “God particle”? – mass 1.25×10^{11} eV, neither matter nor force!

15 October 1991 Dugway Proving Ground, Utah, U.S.A.
“Oh-my-God-particle”!
(kinetic) energy 3×10^{20} eV
($=3 \times 10^{11}$ GeV $= 300$ EeV)!
$10^{45} \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{GeV}^{1.5}!$

cosmic-ray energy spectrum

P. Blasi, UHECR2012
The ultimate limit of electromagnetic acceleration is $E_{cr} \approx 10^{18} \text{ V/m}$, which is the critical field for e^+e^- pair creation. The Planck scale of 10^{28} eV would require a 10^{10} m long accelerator, which is not an inconceivable task for an advanced technological society.

P. Chen, R. Noble, SLAC-PUB-7402, April 1998
summary

• proposed circular Higgs factories:
 LHeC (ep), SAPPHiRE (γγ) as intermediate HF’s & TLEP [or LEP3] as highest-luminosity e⁺e⁻
Higgs factory - staged: LHeC/SAPPHiRE concurrent with HL-LHC; TLEP after HL-LHC; note: LHeC/SAPPHiRE’s RF system identical to TLEP’s – can be recycled

• HL-LHC is developing technology (Nb₃Sn magnets, 20-kA HTS cables) for & TLEP shares tunnel with VHE-LHC pp collider (100 TeV c.m.); VHE-TLHeC

• coherent long-term strategy emerging, based on sharing, staging & synergies (high performance, minimum total cost)

• next next next machine: circular crystal collider?
possible long-term time line

- **LHC**
 - 1980: Design, R&D
 - 1990: Proto.
 - 2000: Constr.
 - 2010: Physics

- **HL-LHC**
 - Design, R&D
 - Constr.
 - Physics

- **LHeC/SAPPHiRE?**
 - Design, R&D
 - Constr.
 - Physics

- **TLEP**
 - Design, R&D
 - Constr.
 - Physics

- **VHE-LHC**
 - Design, R&D
 - Constr.
 - Physics

- **CCC**
 - Design, R&D
short LHC history

1983 *LEP Note 440* - S. Myers and W. Schnell propose twin-ring pp collider in LEP tunnel with 9-T dipoles

1991 CERN Council: LHC approval in principle
1992 EoI, Lol of experiments
1993 SSC termination
1994 CERN Council: LHC approval
1995-98 cooperation w. Japan, India, Russia, Canada, & US
2000 LEP completion
2006 last s.c. dipole delivered
2008 first beam
2010 first collisions at 3.5 TeV beam energy
2015 collisions at ~design energy (plan)

we are already very late if we want to get a new machine by ~2040!
oPAC help urgently needed!

• SAPPHiRE laser & optical cavity system
• IR designs for $\gamma\gamma$, ep, and e^+e^- colliders
• highly efficient RF system for TLEP
• TLEP polarization up to 350 GeV?
• economical 20-T dipole
• >100-T magnets?
• efficient crystal channeling
• path to the Planck scale (10^{16} TeV)?

thank you for your attention