Multiplicity dependence of the average transverse momentum in pp, p–Pb, and Pb–Pb collisions at the LHC

The ALICE Collaboration

Abstract

The average transverse momentum $\langle p_T \rangle$ versus the charged-particle multiplicity N_{ch} was measured in p–Pb collisions at a collision energy per nucleon-nucleon pair $\sqrt{s_{NN}} = 5.02$ TeV and in pp collisions at collision energies of $\sqrt{s} = 0.9, 2.76$, and 7 TeV in the kinematic range $0.15 < p_T < 10.0$ GeV/c and $|\eta| < 0.3$ with the ALICE apparatus at the LHC. These data are compared to results in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at similar charged-particle multiplicities. In pp and p–Pb collisions, a strong increase of $\langle p_T \rangle$ with N_{ch} is observed, which is much stronger than that measured in Pb–Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p–Pb and Pb–Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.

See Appendix A for the list of collaboration members
Measurements of particle production in proton-nucleus collisions at the Large Hadron Collider (LHC) energies allow the study of fundamental Quantum Chromodynamics (QCD) properties at low parton fractional momentum x and high gluon densities; see [1] for a recent review. Additionally, they provide an important reference measurement for studies of the properties of the QCD matter created in nucleus-nucleus collisions; see [2] for an overview of results at the LHC.

The first measurements of charged-particle production in p–Pb collisions at the LHC at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\text{NN}}} = 5.02$ TeV [3] exhibited differences compared to pp collisions. These differences were mostly confined to low transverse momentum (p_T), leading to a slightly smaller average multiplicity per number of participating nucleons in p–Pb compared to pp collisions [3], while above a few GeV/c the p_T spectrum in p–Pb collisions exhibits binary collision scaling [4]. The measurements of particle correlations in azimuth and pseudorapidity [5] have raised the question whether collective effects in p–Pb collisions, as modeled for example in hydrodynamical approaches [10][11], are the origin of the observed correlations. Initial state effects, such as gluon saturation described by color glass condensate (CGC) models [12][13], also describe the data. It remains questionable if the small system size created in pp or p–Pb collisions could exhibit collective, fluid-like, features due to early thermalization, as observed in Pb–Pb collisions [14]. A meaningful way to address this issue is to investigate production mechanisms, correlations, and event shapes as a function of the particle multiplicity. Such studies were recently performed in pp collisions at the LHC, e.g. the ALICE measurements of two-pion Bose-Einstein correlations [15], event sphericity [16], J/ψ meson production [17], and anti-baryon to baryon ratios [18], or the measurements by CMS of long-range angular correlations [19] and of π, K, and p production [20].

The first moment, $\langle p_T \rangle$, of the charged-particle transverse momentum spectrum and its correlation with the charged-particle multiplicity N_{ch}, first observed at the Sp\bar{p}S collider [21], carries information about the underlying particle production mechanism. This has been studied by many experiments at hadron colliders in pp(\bar{p}) covering collision energies from $\sqrt{s} = 31$ GeV up to 7 TeV [22–29]. All experiments observed an increase of $\langle p_T \rangle$ with N_{ch} in the central rapidity region, a feature which could be reproduced in the PYTHIA event generator only if a mechanism of hadronization including color correlations (reconnections) is considered [30]. Although a good description of Tevatron data [26] was achieved within the PYTHIA 8 model [31], which also described the early LHC data [32], full consistency of the data description within models is yet to be achieved [33]. The LHC data highlighted the importance of color reconnections [34], see also [33] and the discussion below. Data at LHC energies covering a large momentum range starting at low p_T provide additional input to these models.

In this letter, we present a measurement of the average transverse momentum $\langle p_T \rangle$ versus the charged-particle multiplicity N_{ch} in p–Pb collisions at a collision energy per nucleon-nucleon pair of $\sqrt{s_{\text{NN}}} = 5.02$ TeV for primary particles in the kinematic range $|\eta| < 0.3$. These data are compared to results in pp interactions at collision energies of $\sqrt{s} = 0.9, 2.76$, and 7 TeV and to results obtained in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. The measurements are performed with the ALICE detector [35] at the LHC. The pp data were recorded in the years 2009-2011, details are given in [36]; the Pb–Pb data are from the 2010 run [37]. The p–Pb data were recorded during an LHC run of 4 weeks in January and February 2013. The number of colliding bunches varied between 8 and 288. The proton and Pb bunch intensities ranged from 1.4×10^{10} to 1.9×10^{10} and from 0.8×10^{10} to 1.4×10^{10} particles, respectively. The luminosity at the ALICE interaction point was up to $5 \times 10^{27} \text{cm}^{-2}\text{s}^{-1}$ resulting in a hadronic interaction rate of 10 kHz. The interaction region had an r.m.s. of 6.3 cm along the beam direction and about 60 μm transverse to the beam.

The p–Pb minimum-bias events were triggered by requiring a signal in each of the VZERO detector arrays, VZERO-A located at $2.8 < \eta_{\text{lab}} < 5.1$ and VZERO-C at $-3.7 < \eta_{\text{lab}} < -1.7$, both covering full azimuth. The pseudorapidity of a charged particle in the detector reference-frame η_{lab} is defined as $\eta_{\text{lab}} = -\ln[\tan(\theta/2)]$, with θ the polar angle between the beam axis and the charged particle. The
efficiency of the VZERO trigger was estimated from a control sample of events triggered by signals in two Zero Degree Calorimeters (ZDC) positioned symmetrically at ±112.6 m from the interaction point, with an energy resolution of about 20% for single neutrons of a few TeV.

The offline event and track selection is identical to that used in the measurement of the charged-particle pseudorapidity density $dN_{ch}/d\eta$ [3] and the p_T spectra in p–Pb [4] and Pb–Pb [37] collisions with ALICE. In total, 106 million events for p–Pb collisions, 7, 65, and 150 millions for pp collisions at $\sqrt{s} = 0.9$, 2.76, and 7 TeV, respectively, and 15 millions for Pb–Pb collisions satisfy the trigger and offline event-selection criteria. Primary charged particles are defined as all prompt particles produced in the collision, including all decay products, except those from weak decays of strange hadrons. The efficiency and purity of the primary charged-particle selection are estimated from a Monte Carlo simulation using DPMJET [38] as an event generator with particle transport through the ALICE detector using GEANT3 [39].

Due to the asymmetric beam energies for the proton and lead beam, the nucleon-nucleon center-of-mass system is moving in the laboratory frame with a rapidity of $y_{NN} = -0.465$; the proton beam has negative rapidity. In order to ensure good detector acceptance around midrapidity, tracks are selected for this analysis in the pseudorapidity interval $|\eta| < 0.3$ in the nucleon-nucleon center-of-mass system. In the absence of information on the particle mass, the particle rapidity is unknown. Therefore, we calculate $\eta = \eta_{lab} - y_{NN}$, an approximation which is only accurate for massless particles or relativistic particles. The spectra are corrected based on our knowledge of the pion, kaon, and proton yields measured by ALICE [40]. The average transverse momentum $\langle p_T \rangle$ is then calculated from the corrected spectra as the arithmetic mean in the kinematic range $0.15 < p_T < 10.0$ GeV/c and $|\eta| < 0.3$. The number of accepted charged particles n_{acc} is the sum of all reconstructed charged particles in the same kinematic range. To extract the correlation between $\langle p_T \rangle$ and the number of primary charged particles N_{ch}, counting, for N_{ch}, all particles down to $p_T = 0$, a reweighting procedure is applied to account for the experimental resolution in the measured event multiplicity as described in [27]. This method employs a normalized response matrix from Monte Carlo simulations which contains the probability that an event with multiplicity N_{ch} is reconstructed with multiplicity n_{acc}.

\begin{table*}
<table>
<thead>
<tr>
<th>Source</th>
<th>pp</th>
<th>p–Pb</th>
<th>Pb–Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track selection</td>
<td>0.5-1.8%</td>
<td>0.8-1.0%</td>
<td>1.1-1.2%</td>
</tr>
<tr>
<td>Particle composition</td>
<td>0.2-0.4%</td>
<td>0.7-0.8%</td>
<td>0.2-0.3%</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Monte Carlo generator</td>
<td>≤0.2%</td>
<td>0.1-0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Reweighting procedure</td>
<td>2.3-4.1%</td>
<td>1.3-1.8%</td>
<td>0.5-1.2%</td>
</tr>
<tr>
<td>Total</td>
<td>2.4-4.5%</td>
<td>1.8-2.2%</td>
<td>1.2-3.0%</td>
</tr>
</tbody>
</table>
\end{table*}

The systematic uncertainties of the charged-particle spectrum are evaluated in a similar way as in previous analyses of pp [27], Pb–Pb [37], and p–Pb [4] data and are propagated to $\langle p_T \rangle$. The main contributions and the total uncertainties are listed in Table 1. Other contributions investigated are material budget, trigger and event selection, and secondary particles from weak decays. The uncertainty from each of these contributions is below 0.1%, except the trigger and event selection, which amounts to 0.35% for $N_{ch} = 1$. For p–Pb collisions, the effect of the particle composition on the uncertainty from acceptance due to the shift in rapidity is included in Table 1. In Pb–Pb collisions, an additional source of uncertainty, included in the total uncertainty listed in Table 1, is electromagnetic processes. Those are efficiently rejected by the ALICE detector for 0-90% centrality [41]; their contribution to the systematic uncertainty is of 2.7% for $N_{ch} = 1$ and less than 1% for $N_{ch} > 5$.

The uncertainty from the reweighting method is extracted based on the Monte Carlo events. In this pro-
procedure, the response matrix generated with the HIJING \cite{42} event generator is used for the reweighting procedure with events generated with DPMJET and the outcome distribution $\langle p_T \rangle (N_{ch})$ is compared with the initial distribution from DPMJET. This uncertainty dominates the overall uncertainty at low N_{ch}, and, in pp collisions, also at large N_{ch}. An alternative method, based on the integration and extrapolation of p_T spectra in n_{acc} bins, gives results well within the systematic uncertainties.

The average multiplicity $\langle N_{ch} \rangle$ is for $|\eta| < 0.3$ and extrapolating to $p_T = 0$. The average transverse momentum $\langle p_T \rangle$ is obtained in $|\eta| < 0.3$ and in the range $0.15 < p_T < 10.0 \text{ GeV/c}$. The systematic uncertainties are reported; the statistical uncertainties are negligible. The uncertainties of $\langle N_{ch} \rangle$ are from the tracking efficiency.

<table>
<thead>
<tr>
<th>collision system</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
<th>$\langle N_{ch} \rangle$</th>
<th>$\langle p_T \rangle$ (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>0.9</td>
<td>3.14±0.16</td>
<td>0.485±0.020</td>
</tr>
<tr>
<td>pp</td>
<td>2.76</td>
<td>3.82±0.19</td>
<td>0.527±0.020</td>
</tr>
<tr>
<td>pp</td>
<td>7</td>
<td>4.42±0.22</td>
<td>0.564±0.021</td>
</tr>
<tr>
<td>p–Pb</td>
<td>5.02</td>
<td>11.9±0.5</td>
<td>0.644±0.024</td>
</tr>
<tr>
<td>Pb–Pb</td>
<td>2.76</td>
<td>259.9±5.9</td>
<td>0.678±0.007</td>
</tr>
</tbody>
</table>

The values of $\langle N_{ch} \rangle$ and $\langle p_T \rangle$ for all events with at least one track in $|\eta| < 0.3$ (INEL>0) for pp, p–Pb, and Pb–Pb collisions are presented in Table 2. A small increase in $\langle p_T \rangle$ is observed in pp collisions as a function of energy. An increase is seen from pp to p–Pb and to minimum bias Pb–Pb collisions.

![Fig. 1: Average transverse momentum $\langle p_T \rangle$ in the range $0.15 < p_T < 10.0 \text{ GeV/c}$ as a function of charged-particle multiplicity N_{ch} in pp collisions $\sqrt{s} = 0.9$, 2.76, and 7 TeV, for $|\eta| < 0.3$. The boxes represent the systematic uncertainties on $\langle p_T \rangle$. The statistical errors are negligible.](image)

The average transverse momentum $\langle p_T \rangle$ of charged particles is shown in Fig. 1 as a function of the charged-particle multiplicity N_{ch} for pp collisions $\sqrt{s} = 0.9$, 2.76, and 7 TeV. The multiplicity distributions in pp collisions \cite{43,44} fall off steeply for large N_{ch}. The present measurement extends up to values of N_{ch} where statistical errors for $\langle p_T \rangle$ in the corresponding n_{acc} values are below 5%. An increase in $\langle p_T \rangle$ with N_{ch} is observed for all collision energies and also an increase with the collision energy at fixed values of N_{ch}, which agrees well with measurements reported by ATLAS \cite{29,45} at $\sqrt{s} = 0.9$ and
7 TeV. We note a change in slope for all three collision energies at roughly the same value of $N_{\text{ch}} \approx 10$. This change in slope was also observed at Tevatron [24, 26] and recently at the LHC [27, 29].

In Monte Carlo event generators, high multiplicity events are produced by multiple parton interactions. An incoherent superposition of such interactions would lead to a constant $\langle p_T \rangle$ at high multiplicities. The observed strong correlation of $\langle p_T \rangle$ with N_{ch} has been attributed, within PYTHIA models, to color reconnections (CR) between hadronizing strings [34]. In this mechanism, which can be interpreted as a collective final-state effect, strings from independent parton interactions do not hadronize independently, but fuse prior to hadronization. This leads to fewer hadrons, but more energetic. The CR strength is implemented as a probability parameter in the models. The CR mechanism bears similarity to the mechanism of string fusion [46] advocated early for nucleus-nucleus collisions. A model based on Pomeron exchange was shown to fit the pp data [47]. A mechanism of collective string hadronization is also used in the EPOS model, which was shown recently to describe a wealth LHC data in pp, p–Pb, and Pb–Pb collisions [48].

![Average transverse momentum $\langle p_T \rangle$ versus charged-particle multiplicity N_{ch}](image)

Fig. 2: Average transverse momentum $\langle p_T \rangle$ versus charged-particle multiplicity N_{ch} in pp, p–Pb, and Pb–Pb collisions for $|\eta| < 0.3$. The boxes represent the systematic uncertainties on $\langle p_T \rangle$. The statistical errors are negligible.

Figure 2 shows the average transverse momentum $\langle p_T \rangle$ of charged particles versus the charged-particle multiplicity N_{ch} as measured in pp collisions at $\sqrt{s} = 7$ TeV, in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, and in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. In p–Pb collisions, we observe an increase of $\langle p_T \rangle$ with N_{ch}, with $\langle p_T \rangle$ values similar to the values in pp collisions up to $N_{\text{ch}} \approx 14$. At multiplicities above $N_{\text{ch}} \approx 14$, the measured $\langle p_T \rangle$ is lower in p–Pb collisions than in pp collisions; the difference is more pronounced with increasing N_{ch}. This difference cannot be attributed to the difference in collision energy, as the energy dependence of $\langle p_T \rangle$ is rather weak, see Fig. 1. In contrast, in Pb–Pb collisions, with increasing N_{ch}, there is only a moderate increase in $\langle p_T \rangle$ up to high charged-particle multiplicity with a maximum value of $\langle p_T \rangle = 0.685 \pm 0.016$ (syst.) GeV/c, which is substantially lower than the maximum value in pp. For pp and p–Pb, $N_{\text{ch}} > 14$ corresponds to about 10% and 50% of the INEL > 0 cross section, respectively, while for Pb–Pb collisions this fraction is about 82%; $N_{\text{ch}} > 40$ corresponds to the upper 1% of the cross section in p–Pb and to about 70% most central Pb–Pb collisions. This illustrates that the same N_{ch} value corresponds to a very different collision regime in the three systems.
Fig. 3: Average transverse momentum \(\langle p_T \rangle\) as a function of charged-particle multiplicity \(N_{ch}\) measured in pp (upper panel), p–Pb (middle panel), and Pb–Pb (lower panel) collisions in comparison to model calculations. For pp collisions, calculations with PYTHIA 8 \([50]\) with tune 4C are shown with and without the color reconnection (CR) mechanism. The p–Pb and Pb–Pb data are compared to calculations with the DPMJET, HIJING, AMPT, and EPOS Monte Carlo event generators. The lines show calculations in a Glauber Monte Carlo approach (see text).

In Pb–Pb collisions, substantial rescattering of constituents are thought to lead to a redistribution of the particle spectrum where most particles are part of a locally thermalized medium exhibiting collective, hydrodynamic-type, behavior. The moderate increase of \(\langle p_T \rangle\) seen in Pb–Pb collisions (in Fig. 2 for \(N_{ch} \geq 10\)) is thus usually attributed to collective flow \([49]\). The p–Pb data exhibit features of both pp and Pb–Pb collisions, at low and high multiplicities, respectively. However, the saturation trend of \(\langle p_T \rangle\) versus \(N_{ch}\) is less pronounced in p–Pb than in Pb–Pb collisions and leads to a much higher value of \(\langle p_T \rangle\) at high multiplicities than in Pb–Pb. An increase in \(\langle p_T \rangle\) of a few percent is expected in Pb–Pb from \(\sqrt{s_{NN}} = 2.76\) TeV to 5 TeV, but it appears unlikely that the p–Pb \(\langle p_T \rangle\) values will match those in Pb–Pb at the same energy. While the p–Pb data cannot exclude collective hydrodynamic-type effects for high-multiplicity events, it is clear that such a conclusion requires stronger evidence. The features seen in Fig. 2 do not depend on the kinematic selection; similar trends are found for \(|\eta| < 0.8\) (\(|\eta_{lab}| < 0.8\), for p–Pb collisions) or for \(p_T > 0.5\) GeV/c.

Fig. 3 shows a comparison of the data to model predictions for \(\langle p_T \rangle\) versus \(N_{ch}\) in pp collisions at \(\sqrt{s} = 7\) TeV, p–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV and Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. For pp collisions, calculations using PYTHIA 8 with tune 4C are shown with and without the color reconnection (CR) mechanism. As shown earlier \([26, 29]\), the model only gives a fair description of the data when the CR mechanism is included. Qualitatively, the difference between p–Pb and Pb–Pb collisions seen in Fig. 2 is similar to the difference seen in pp collisions between the cases with CR and without CR. In p–Pb
collisions, none of the three models, DPMJET [38] (v3.0), HIJING [42] (v1.383), or AMPT [51] (v2.25, with the string melting option), describes the data. These models predict values of $\langle p_T \rangle$ significantly below the p–Pb data. The predictions using the EPOS [48] (1.99, v3400) model describe the magnitude of the data but show a different trend than data at moderate multiplicities ($N_{ch} < 20$). In this model collective effects are introduced via parametrizations, for the sake of computation time; a full hydrodynamics treatment is available in other versions of this model, see [48]. In addition to predictions from event generators, results of a calculation in a Glauber approach are shown. In this approach, p–Pb collisions are assumed to be a superposition of independent nucleon-nucleon collisions, each characterized in terms of measured multiplicity distributions in pp collisions [43, 44] and the $\langle p_T \rangle$ values as a function of N_{ch} for $\sqrt{s}=7$ TeV shown in Fig. 3 (for a similar approach, see [52]). This calculation (continuous line in Fig. 3) underpredicts the data, producing, interestingly, results similar to those of event generators. The conclusion that $\langle p_T \rangle$ in p–Pb collisions is not a consequence of an incoherent superposition of nucleon-nucleon collisions invites an analogy to the observation that $\langle p_T \rangle$ in pp collisions cannot be described by an incoherent superposition of multiple parton interactions. Whether initial state effects, as considered for the measurement of the nuclear modification factor of charged-particle production [4], or final state effects analogous to the CR mechanism are responsible for this observation, remains to be further studied.

In Pb–Pb collisions, the DPMJET, HIJING, and AMPT models fail to describe the data, predicting, as in p–Pb collisions, lower values of $\langle p_T \rangle$ than the measurement. The EPOS model overpredicts the data and shows an opposite trend versus N_{ch}; note, however, that the present model [48] includes collective flow via parametrizations and not a full hydrodynamic treatment. Also the Glauber MC model with inputs from $\langle p_T \rangle$ data at 2.76 TeV and the measured multiplicity distribution at 2.36 TeV [43] fails to describe the data.

The data are confronted with the geometrical scaling recently proposed in [53] (and refs. therein) within the color-glass condensate model [54]. In this picture, the $\langle p_T \rangle$ is a universal function of the ratio of the multiplicity density and the transverse area of the collision, S_T, see [53]. A reasonable agreement was found between this model and preliminary CMS data [55]. Following the recipe described in [53] one obtains the scaling plot in Fig. 4. The ALICE pp data as well as the p–Pb data at low and intermediate

![Average transverse momentum $\langle p_T \rangle$ as a function of the scaled charged-particle multiplicity in pp and p–Pb collisions for $|\eta| < 0.3$. The boxes represent the systematic uncertainties on $\langle p_T \rangle$. The statistical errors are negligible.](image)
multiplicities are compatible with the proposed scaling. As already noted above while discussing Fig. 2 and Fig. 3, the behavior of p–Pb data at high multiplicities, \(N_{ch} \gtrsim 14 \), shows a departure from the pp values and cannot be described by a binary collision superposition of pp data. The deviation from scaling visible in Fig. 4 for \((N_{ch}/S_T)^{1/2} \gtrsim 1.2 \) is related to these observations.

In summary, we have presented the average transverse momentum \(\langle p_T \rangle \) in dependence of the charged-particle multiplicity \(N_{ch} \) measured in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, in pp collisions at collision energies of \(\sqrt{s} = 0.9, 2.76 \), and 7 TeV and in peripheral Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV in the kinematic range \(0.15 < p_T < 10.0 \) GeV/c and \(|\eta| < 0.3 \). In pp and p–Pb collisions, a strong increase of \(\langle p_T \rangle \) with \(N_{ch} \), which is understood, in models of pp collisions, as an effect of color reconnections between strings produced in multiple parton interactions. Whether the same mechanism is at work in p–Pb collisions, in particular for incoherent proton-nucleon interactions, is an open question.

The EPOS model describes the p–Pb data assuming collective flow; it remains to be further studied if initial state effects are compatible with the data. The \(\langle p_T \rangle \) values in Pb–Pb collisions, instead, indicate a softer spectrum and with a much weaker dependence on multiplicity. These data pose a challenge to most of the existing models and are an essential input to improve our understanding of particle production as well as the role of initial and final state effects in these systems.

Acknowledgements

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

- State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia,
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);
- Ministry of Education and Youth of the Czech Republic;
- Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;
- The European Research Council under the European Community’s Seventh Framework Programme;
- Helsinki Institute of Physics and the Academy of Finland;
- French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;
- German BMBF and the Helmholtz Association;
- General Secretariat for Research and Technology, Ministry of Development, Greece;
- Hungarian OTKA and National Office for Research and Technology (NKTH);
- Department of Atomic Energy and Department of Science and Technology of the Government of India;
- Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy;
- MEXT Grant-in-Aid for Specially Promoted Research, Japan;
- Joint Institute for Nuclear Research, Dubna;
- National Research Foundation of Korea (NRF);
- CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network);
- Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;
- Research Council of Norway (NFR);
- Polish Ministry of Science and Higher Education;
- National Authority for Scientific Research - NASR (Autoritatea Națională pentru Cercetare Științifică -
ANCS);
Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);
Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council (STFC);
The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

References

[7] ATLAS Collaboration, G. Aad et al., Observation of associated near-side and away-side long-range correlations in $\sqrt{s_{NN}} = 5.02$ TeV proton-lead collisions with the ATLAS detector, 1212.5198, arXiv:1212.5198

[18] ALICE Collaboration, E. Abbas et al., *Mid-rapidity anti-baryon to baryon ratios in pp collisions at \(\sqrt{s} = 0.9, 2.76 \) and 7 TeV measured by ALICE*, submitted (2013), arXiv:1305.1562

[23] UA1 Collaboration, C. Albajar et al., *A Study of the General Characteristics of p\(\bar{p} \) Collisions at \(\sqrt{s} = 0.2\) TeV to 0.9 TeV*, Nucl. Phys. B 335, 261 (1990), doi:10.1016/0550-3213(90)90493-W

The ALICE Collaboration

10

R. Brun et al., *CERN Program Library Long Write-up, W5013, GEANT Detector Description and Simulation Tool*, (1994).

ALICE Collaboration, B. Abelev et al., *Production of pions, kaons, protons and Lambdas in p–Pb collisions at √sNN = 5.02 TeV*, to be published (2013).

doi:10.1103/PhysRevC.72.064901

[52] A. Bzdak and V. Skokov, Average transverse momentum of hadrons in proton-nucleus collisions in the wounded nucleon model, 1306.5442, arXiv:1306.5442

A The ALICE Collaboration

arXiv:nucl-th/0411110

doi:10.1103/PhysRevC.72.064901
Multiplicity dependence of the average transverse momentum \[\ldots \]

- G.S. Pappalardo
- W.J. Park
- A. Passfeld
- D.I. Patalakha
- V. Paticchini
- B. Pauw
- A. Pavlov
- T. Pawlak
- T. Peitzmann
- H. Pereira Da Costa
- E. Pereira De Oliveira Filho
- D. Peresunko
- C.E. Pérez Lara
- D. Perrino
- W. Pery
- A. Pesci
- Y. Pestov
- V. Petráček
- M. Petran
- M. Petrić
- P. Petrovic
- C. Petta
- S. Pian
- M. Pikna
- P. Pillot
- O. Pinazza
- L. Pinsky
- N. Pinti
- D.B. Piyarathna
- M. Planinić
- M. Ploškorić
- J. Pluta
- T. Pocheptsov
- S. Pochybova
- P.L.M. Podesta-Lermontov
- M.G. Poghosyan
- K. Poláčik
- B. Polichtchouk
- N. Poljak
- A. Poggi
- S. Porteboeuf-Houssaini
- V. Pospíšil
- B. Potukuch
- S.K. Prasad
- R. Preghenella
- F. Prino
- C.A. Pruneau
- I. Pshenichnov
- G. Puddu
- V. Pumplin
- J. Putschke
- H. Qvigstad
- A. Rachevsk
- A. Rademakers
- J. Rak
- A. Rakotozafindrabe
- L. Ramello
- S. Ranavala
- R. Raniwala
- S.S. Räisänen
- B.T. Rascande
- D. Rateth
- W. Rauch
- A.W. Rau
- V. Razza
- K.F. Reade
- J.S. Rees
- K. Redlich
- R.J. Reed
- A. Rehma
- P. Reichelt
- M. Reiche
- F. Reid
- R. Renford
- A.R. Reolon
- A. Restetik
- F. Retti
- J.-P. Revol
- K. Reygers
- L. Ricca
- R.A. Ricco
- T. Richer
- P. Riedl
- W. Riegler
- F. Riggi
- A. Rivetti
- M. Rodríguez Cahuantzi
- A. Rodriguez Manso
- K. Rendel
- E. Rognachy
- D. Rohr
- D. Röhrich
- S. Romaní
- F. Ronchetti
- P. Rosne
- S. Rossegger
- A. Ross
- C. Roy
- D. Roy
- A.J. Rubio Montero
- R. Ruíz
- R. Russo
- E. Ryabinin
- G. Rybicki
- S. Sadowski
- K. Safarík
- R. Sahoo
- P.K. Sahajpal
- J. Sainz
- H. Sakaguchi
- S. Sakai
- D. Sakata
- C.A. Salgado
- J. Salzwede
- S. Sambh
- V. Samsonov
- X. Sanchez Castro
- L. Sándor
- A. Sandoval
- M. San à
- S. Santagat
- R. Santor
- D. Sarkar
- E. Scaparone
- F. Scarlassara
- R.P. Scharenberg
- C. Schiarra
- R. Schicker
- H.R. Schmidt
- C. Schmied
- S. Schuchmann
- J. Schuster
- Y. Schutz
- K. Schwab
- K. Schweda
- G. Scofield
- E. Scomparsa
- R. Scott
- F.A. Scott
- G. Segato
- I. Selyuzhenkov
- S. Senyuk
- J. Sertó
- S. Serri
- E. Serradilla
- A. Sevcenco
- A. Shabata
- G. Shabtavi
- R. Shafrohat
- N. Sharma
- S. Sharma
- S. Kohrt
- K. Shigaki
- K. Shitej
- Y. Sibiri
- S. Siddhartha
- T. Siemiarczuk
- D. Silvermyr
- C. Silverstre
- G. Simatovic
- G. Simonetti
- R. Singaraju
- R. Singh
- S. Singh
- V. Singh
- T. Sinha
- B.C. Sinha
- B. Sita
- M. Sitt
- T.B. Skaali
- K. Skaali
- R. Smaka
- N. Smirnov
- R.J.M. Snellings
- C. Sgàgara
- R. Solt
- M. Song
- J. Song
- C. Soos
- F. Soramel
- I. Sputowski
- M. Spyropoulos-Stassinopoulos
- B.K. Srivastav
- J. Stache
- B. Stalin
- G. Stefanel
- M. Stempels
- E.stenlund
- G. Stew
- J.H. Stille
- D. Stocco
- M. Stolpovskiy
- P. Strmeček
- A.P. Suaid
- M.A. Subieta Vásquez
- T. Sugitani
- C. Suzuki
- M. Sulemanov
- R. Sultanov
- M. Sumber
- T. Susa
- T.J.M. Symons
- A. Szanto de Toled
- I. Szark
- A. Szczepankiewicz
- M. Szmytko
- J. Takahashi
- M.A. Tangar
- J.D. Tapia Takaki
- A. Tarantola Pilon
- A. Tarazona Martínez
- G. Tarla
- Tejeda Muñoz
- A. Telesco
- A. Ter Minassian
- C. Terrevo
- J. Thäde
- D. Thoma
- R. Tieu
- A.R. Timmis
- D. Tlustý
- A. Tóia
- H. Torjik
- L. Toscani
- V. Trubnikov
- D. Truesdale
- W.H. Trzaska
- T. Tsui
- A. Tumik
- R. Turrisi
- T.S. Tveten
- J. Uler
- K. Ullaland
- J. Ulrich
- A. Ursu
- G.M. Urciuolo
- G.L.A. Usa
- M. Vajz
- M. Vali
- L. Valencia Palomo
- S. Valder
- P. Vande Vyvre
- J.W. Van Hoorn
- M. van Leeuwen
- L. Vannucci
- A. Varga
- R. Varn
- M. Vasilev
- A. Vasiliev
- V. Vechernin
- M. Veldhoen
- M. Venaruzzo
- E. Vercellin
- S. Vergani
- R. Verse
- M. Verwey
- L. Vickov
- G. Viest
- J. Viničk
- E. Vilička
- Z. Vilakaz
- O. Villalobos Baillie
- Y. Vinogradov
- A. Vinogradov
- L. Vinogradov
- T. Virgil
- Y.P. Viyog
- A. Vodopyanov
- M.A. Völk
- K. Voloshin
- S. Voloshin
- G. Volpino
- B. von Halle
- L. Vorobyev
- D. Vranic
- J. Vlăduț
- B. Velpeșcu
- A. Velyš
- B. Wagner
- V. Wagenknecht
- J. Wagner
- M. Wang
- Y. Wang
- Y. Wang
- K. Watanabe
- D. Watanabe
- M. Wehe
- J.P. Wessels
- U. Westerholm
- J. Wiechert
- J. Wilk
- M. Wildt
- G. Williams
- M.C.S. Williams
- B. Windelband
- M. Wini
- M.C. G. Yalho
- Y. Yamaguchi
- S. Yang
- H. Yang
- P. Yang
- S. Yasnopolski
- J. Yi
- Z. Yin
- I.-K. Yoon
- J. Yoon
- X. Yuan
- I. Yushnov
- V. Zaccoletti
- C. Zach
- C. Zamplo
- Z. Zaporozhets
- A. Zarochentsev
- P. Zavad
- N. Zavialov
- H. Zbroszycki
- P. Zelnicek
- I.S. Zgurd
- M. Zhalov
- X. Zhan
- M. Zhang
- Y. Zhang
- F. Zhou
- A. Zhou
- H. Zhu
- J. Zhu
- X. Zhu
- A. Zichichi
- A. Zimmermann
- G. Zinovjev
- Y. Zozu
cu
- M. Zydzik

Affiliations

- i Deceased
- ii Also at: M.V.Lomonosov Moscow State University, D.V.Skoltsins Institute of Nuclear Physics, Moscow, Russia
Also at: University of Belgrade, Faculty of Physics and "Vinča” Institute of Nuclear Sciences, Belgrade, Serbia
Also at: Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

Collaboration Institutes

1. Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
2. A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
3. Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
4. Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
5. Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
6. Budker Institute for Nuclear Physics, Novosibirsk, Russia
7. California Polytechnic State University, San Luis Obispo, California, United States
8. Central China Normal University, Wuhan, China
9. Centre de Calcul de l’IN2P3, Villeurbanne, France
10. Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
11. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
12. Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
13. Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
14. Chicago State University, Chicago, United States
15. Commissariat à l’Energie Atomique, IRFU, Saclay, France
16. COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17. Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
18. Department of Physics Aligarh Muslim University, Aligarh, India
19. Department of Physics and Technology, University of Bergen, Bergen, Norway
20. Department of Physics, Ohio State University, Columbus, Ohio, United States
21. Department of Physics, Sejong University, Seoul, South Korea
22. Department of Physics, University of Oslo, Oslo, Norway
23. Dipartimento di Fisica dell’Università e Sezione INFN, Trieste, Italy
24. Dipartimento di Fisica dell’Università e Sezione INFN, Cagliari, Italy
25. Dipartimento di Fisica dell’Università e Sezione INFN, Turin, Italy
26. Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
27. Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Catania, Italy
28. Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Bologna, Italy
29. Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Padova, Italy
30. Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31. Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
32. Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
34. European Organization for Nuclear Research (CERN), Geneva, Switzerland
35. Fachhochschule Köln, Köln, Germany
36. Faculty of Engineering, Bergen University College, Bergen, Norway
37. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
38. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
39. Faculty of Science, P.J. Šafářík University, Košice, Slovakia
40. Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
41. Gangneung-Wonju National University, Gangneung, South Korea
42. Gauhati University, Department of Physics, Guwahati, India
43. Helsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland
44. Hiroshima University, Hiroshima, Japan
45. Indian Institute of Technology Bombay (IIT), Mumbai, India
46. Indian Institute of Technology Indore, Indore, India (IITI)
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

Sezione INFN, Catania, Italy

Sezione INFN, Turin, Italy

Sezione INFN, Padova, Italy

Sezione INFN, Bologna, Italy

Sezione INFN, Cagliari, Italy

Sezione INFN, Trieste, Italy

Sezione INFN, Bari, Italy

Sezione INFN, Rome, Italy

Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France

Suranaree University of Technology, Nakhon Ratchasima, Thailand

Technical University of Split FESB, Split, Croatia

Technische Universität München, Munich, Germany

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

The University of Texas at Austin, Physics Department, Austin, TX, United States

Universidad Autónoma de Sinaloa, Culiacán, Mexico

Universidade de São Paulo (USP), São Paulo, Brazil

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

University of Houston, Houston, Texas, United States

University of Technology and Austrian Academy of Sciences, Vienna, Austria

University of Tennessee, Knoxville, Tennessee, United States

University of Tokyo, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Eberhard Karls Universität Tübingen, Tübingen, Germany

Variable Energy Cyclotron Centre, Kolkata, India

Vestfold University College, Tonsberg, Norway

V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

Warsaw University of Technology, Warsaw, Poland

Wayne State University, Detroit, Michigan, United States

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Yale University, New Haven, Connecticut, United States

Yildiz Technical University, Istanbul, Turkey

Yonsei University, Seoul, South Korea

Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany