Measurement of ϕ_s at LHCb

Sebastian Wandernoth
Physikalisches Institut Heidelberg University

On behalf of the LHCb collaboration

EPSHEP 2013
\(B_s^0\) mixing

Phenomenological Schroedinger equation describing oscillation and decay

\[i \frac{d}{dt} \left(\frac{B_s^0}{B_s^0} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\frac{B_s^0}{B_s^0} \right)\]

\[M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}; \Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}\]
The mixing of B_S^0 states is described by the phenomenological Schrödinger equation:

\[
i \frac{d}{dt} \begin{pmatrix} B_S^0 \\ \bar{B}_S^0 \end{pmatrix} = \left(M - \frac{i}{2} \Gamma \right) \begin{pmatrix} B_S^0 \\ \bar{B}_S^0 \end{pmatrix}
\]

where

\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} \quad \text{and} \quad \Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}
\]

Mass eigenstates are not the same as flavour eigenstates, leading to a mass difference:

\[
\Delta m_s = m_H - m_L = 2|M_{12}|
\]

Decay rates are given by:

\[
\Delta \Gamma_s = \Gamma_L - \Gamma_H
\]

The phase of the mixing matrix is:

\[
\phi_M = \text{arg}(M_{12})
\]
B_S^0 mixing

Phenomenological Schroedinger equation describing oscillation and decay

$$i \frac{d}{dt} \begin{pmatrix} B_S^0 \\ \overline{B}_S^0 \end{pmatrix} = \left(M - \frac{i}{2} \Gamma \right) \begin{pmatrix} B_S^0 \\ \overline{B}_S^0 \end{pmatrix}$$

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}; \Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$

Mass eigenstates ≠ flavour eigenstates → mass difference \propto osc. frequency

$$|B_L\rangle = p|B_S^0\rangle + q|\overline{B}_S^0\rangle$$

$$|B_H\rangle = p|B_S^0\rangle - q|\overline{B}_S^0\rangle$$

$\Delta m_S = m_H - m_L = 2|M_{12}|$

$\Delta \Gamma_S = \Gamma_L - \Gamma_H$

$\phi_M = \text{arg}(M_{12})$

Dominant Feynman diagrams
(Standard Model)

EPS-HEP 2013 Stockholm
Sebastian Wandernoth

20/07/2013
Interference between mixing and decay:
→ measure relative phase ϕ_s

$$\phi_s = \phi_M - 2\phi_D$$

CP asymmetry (for CP eigenstates):

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_s^0 (t) \to f_{CP}) - \Gamma(B_s^0 (t) \to f_{CP})}{\Gamma(\overline{B}_s^0 (t) \to f_{CP}) + \Gamma(B_s^0 (t) \to f_{CP})} = -\eta_{CP}\sin(\phi_s)\sin(\Delta m_s t)$$

Standard Model prediction: $\phi_s^{SM} = -0.036 \pm 0.002$ rad

B^0_S mixing phase ϕ_s

Interference between mixing and decay:
→ measure relative phase ϕ_s

$\phi_s = \phi_M - 2\phi_D$

CP asymmetry (for CP eigenstates):

$$A_{CP}(t) = \frac{\Gamma(B^0_S(t) \rightarrow f_{CP}) - \Gamma(B^0_S(t) \rightarrow f_{CP})}{\Gamma(B^0_S(t) \rightarrow f_{CP}) + \Gamma(B^0_S(t) \rightarrow f_{CP})} = -\eta_{CP}\sin(\phi_s)\sin(\Delta m_s t)$$

Need excellent Flavour tagging
→ tagging power $\varepsilon D^2 \approx 3.1\%$

Need excellent Flavour tagging

time-dependent analysis
& fast $B^0_S - B^0_S$ oscillation
→ need excellent decay time resolution (45 fs)
\(B_s^0 \) mixing phase \(\phi_s \)

Interference between mixing and decay:
→ measure relative phase \(\phi_s \)

\[\phi_s = \phi_M - 2\phi_D \]

CP asymmetry (for CP eigenstates):

\[
A_{CP}(t) = \frac{\Gamma(B_s^0(t) \to f_{CP}) - \Gamma(B_s^0(t) \to f_{\overline{CP}})}{\Gamma(B_s^0(t) \to f_{CP}) + \Gamma(B_s^0(t) \to f_{\overline{CP}})} = -\eta_{CP}\sin(\phi_s)\sin(\Delta m_s t)
\]

New Physics: \(\phi_s = \phi_{s}^{SM} + \phi_{s}^{NP} \)
\[\Delta m_s \text{ from } B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \]

- High statistics (~34k signal candidates)
- Fit to 5 different \(D_s^- \) decay modes
- Very low background

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th># candidates</th>
<th>Signal fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_s^- \rightarrow \phi \pi^-)</td>
<td>14691</td>
<td>0.8337 ± 0.0081</td>
</tr>
<tr>
<td>(D_s^- \rightarrow K^* K^-)</td>
<td>10866</td>
<td>0.8573 ± 0.0088</td>
</tr>
<tr>
<td>(D_s^- \rightarrow K^- K^+ \pi^- \text{n.r.})</td>
<td>11262</td>
<td>0.5952 ± 0.0093</td>
</tr>
<tr>
<td>(D_s^- \rightarrow K^- \pi^+ \pi^-)</td>
<td>4288</td>
<td>0.4366 ± 0.0137</td>
</tr>
<tr>
<td>(D_s^- \rightarrow \pi^- \pi^+ \pi^-)</td>
<td>6674</td>
<td>0.5990 ± 0.0081</td>
</tr>
<tr>
<td>Total</td>
<td>47781</td>
<td>0.7144 ± 0.0040</td>
</tr>
</tbody>
</table>

\(\Delta m_s \) is a measure of the difference in the mass of the \(B_s^0 \) and \(B_s^- \) mesons, which is used to extract the CKM matrix elements and test the unitarity of the quark mixing matrix.
\[\Delta m_s \text{ from } B_s^0 \rightarrow D_s^- \pi^+ \]

- High statistics (~34k signal candidates)
- Fit to 5 different \(D_s^- \) decay modes
- Very low background

Uses flavour tagging:
- same side (LHCb-CONF-2012-033)

\[\Delta m_s = 17.768 \pm 0.023(\text{stat}) \pm 0.006(\text{syst}) \text{ ps}^{-1} \]

World’s most precise measurement

EPS-HEP 2013 Stockholm
Sebastian Wandernoth
Measuring ϕ_s

- $B_s^0 \rightarrow J/\Psi \phi$

- $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$

- $B_s^0 \rightarrow \phi \phi$
Measuring ϕ_s

- $B_s^0 \rightarrow J/\Psi \phi$
- $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$
- $B_s^0 \rightarrow \phi \phi$
$B_s^0 \rightarrow J/\psi \phi$

High statistics (≈27k signal events)
Low bkg (narrow J/ψ resonance + cut on B_s^0 decay time)
$B_s^0 \rightarrow J/\psi \phi$

No CP eigenstate
→ need angular analysis
in three decay angles

High statistics (~27k signal events)
Low bkg (narrow J/ψ resonance + cut on B_s^0 decay time)
\[B_s^0 \to J/\psi \phi \]

High statistics (~27k signal events)
Low bkg (narrow \(J/\psi \) resonance + cut on \(B_s^0 \) decay time)

No CP eigenstate
→ need angular analysis in three decay angles

This way we can fit for \(\Delta \Gamma_s \)
Unbinned maximum likelihood fit in 6 dimensions
- Invariant mass
- Three decay angles
- Decay time
- Tagging decision

Take Δm_s from $B_s^0 \to D_s^- \pi^+$

Allow for direct CP-violation

Use opposite and same side flavour tagger
- $\varepsilon D_{OST}^2 = 2.29 \pm 0.06\%$
- $\varepsilon D_{SST}^2 = 0.89 \pm 0.17\%$

Data
- Total fit
- CP-even
- CP-odd
- S-wave
Ambiguity

2-fold ambiguity \((\phi_s, \Delta \Gamma_s) \leftrightarrow (\pi - \phi_s, -\Delta \Gamma_s)\)

Resolve ambiguity:
Look at strong phase difference between p- and s-wave in bins of \(K^+K^-\) mass

only \(\Delta \Gamma_s > 0\) fits expectation

\(1\text{fb}^{-1}\)

\(\Delta \Gamma_s < 0\)
\(\Delta \Gamma_s > 0\)

\(1\text{fb}^{-1}\)

\(EPS-HEP 2013 Stockholm\)
Sebastian Wandernoth
Fit results

\[\phi_s = 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad} \]
\[\Gamma_s = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1} \]
\[\Delta \Gamma_s = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst) ps}^{-1} \]

Dominant systematics:
angular and decay time acceptance

Measuring ϕ_s

- $B_s^0 \rightarrow J/\Psi \phi$
- $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$
- $B_s^0 \rightarrow \phi \phi$
$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

- Final state is purely CP-odd (> 98% see Phys.Rev D 86, 052006 (2012))
 → no angular analysis needed
- Γ_s and $\Delta \Gamma_s$ constrained to values from $B_s^0 \rightarrow J/\psi \phi$
- Signal yield is $\sim 1/3$ of $B_s^0 \rightarrow J/\psi \phi$

$f_0(980)$
$f_2(1270)$
$f_0(1370)$

1 fb$^{-1}$
\[B_s^0 \rightarrow J/\psi \pi^+ \pi^- \]

- Final state is purely CP-odd (> 98% see Phys.Rev D 86, 052006 (2012)) → no angular analysis needed
- \(\Gamma_s \) and \(\Delta \Gamma_s \) constrained to values from \(B_s^0 \rightarrow J/\psi \phi \)
- Signal yield is \(\sim 1/3 \) of \(B_s^0 \rightarrow J/\psi \phi \)

\[\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01 \text{ rad} \]
Measuring ϕ_s

- $B_s^0 \rightarrow J/\Psi \phi$
- $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$
- $B_s^0 \rightarrow \phi \phi$
Simultaneous fit to $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

$\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad}$
$\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$
$\Delta\Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}$
Measuring ϕ_s

- $B_s^0 \rightarrow J/\Psi \phi$

- $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$

- $B_s^0 \rightarrow \phi \phi$
\[
B_s^0 \rightarrow \phi \phi
\]

- Pure penguin mode \(\rightarrow \) small statistics
- Similar CKM phases as \(B_s^0 \rightarrow J/\psi \phi \)
- SM expectation for CPV phase very small: \(|\phi_s^{\bar{s}s}| < 0.02 \)
- Requires also tagged, time-dependent, angular analysis
$B_s^0 \rightarrow \phi \phi$

- Pure penguin mode \rightarrow small statistics
- Similar CKM phases as $B_s^0 \rightarrow J/\psi \phi$
- SM expectation for CPV phase very small: $|\phi_s^{\bar{s}s\bar{s}}| < 0.02$
- Requires also tagged, time-dependent, angular analysis

880 \pm 31 signal candidates

1fb^{-1}

ϕ-wave

CP-even
CP-odd
S-wave

$B_{s}^{0} \rightarrow \phi\phi$

Phys. Rev. Lett. 110, 241802 (2013)

- Pure penguin mode \rightarrow small statistics
- Similar CKM phases as $B_{s}^{0} \rightarrow J/\psi\phi$
- SM expectation for CPV phase very small: $|\phi_{s}^{s\bar{s}s}| < 0.02$
- Requires also tagged, time-dependent, angular analysis

- Likelihood shows non-parabolic behaviour
- Use Feldman Cousins method to provide 68% C.L. interval
- P-value of SM hypothesis is 16%

$\phi_{s}^{s\bar{s}s} \in [-2.46, -0.76]$ rad

First constraints on ϕ_{s} from a pure penguin mode
• LHCb showed the most accurate measurements of the CP violating phase ϕ_s
• A combination of the modes $B_s^0 \rightarrow J/\psi\phi$ and $B_s^0 \rightarrow J/\psi\pi^+\pi^-$ gives:

\[
\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ rad}
\]
\[
\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst)} \text{ ps}^{-1}
\]
\[
\Delta\Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst)} \text{ ps}^{-1}
\]

• First constraints on ϕ_s from a pure penguin mode ($B_s^0 \rightarrow \phi\phi$)

\[
\phi^s_s^s \in [-2.46, -0.76] \text{ rad, at 68\% C.L.}
\]

• Future
 – Analysis of 2012 data in progress (soon 3x statistics)
 – Improvements of flavour tagging algorithms
Backup
Flavour Tagging

Tagging efficiency

\[\varepsilon = \frac{\text{# tagged candidates}}{\text{# all candidates}} \]

Mistag probability

\[\omega = \frac{\text{# tagged wrong}}{\text{# tagged}} \]

Dilution

\[D = (1 - 2\omega) \]

- **Opposite side taggers**
 - exploits \(b\bar{b} \) pair production by partially reconstructing the second B-hadron in the event
- **Same side kaon tagger**
 - exploits hadronization of signal \(B_s \)-meson
- **Combined tagging power (in \(B_s^0 \rightarrow D_s^-\pi^+ \))**
 - \(\varepsilon D^2 = 3.5 \pm 0.5\% \)
$B_s^0 \rightarrow J/\psi\phi$ mass plots

Figure 4: Invariant mass distribution of the selected $B_s^0 \rightarrow J/\psi K^+K^-$ candidates. The mass of the $\mu^+\mu^-$ pair is constrained to the J/ψ mass [7]. Curves for the fitted contributions from signal (dotted red), background (dotted green) and their combination (solid blue) are overlaid.

Figure 5: Background subtracted invariant mass distributions of the (a) $\mu^+\mu^-$ and (b) K^+K^- systems in the selected sample of $B_s^0 \rightarrow J/\psi K^+K^-$ candidates. The solid blue line represents the fit to the data points described in the text.
$B_s^0 \rightarrow J/\psi \phi$ decay time resolution

Figure 6: Decay time resolution, σ_t, for selected $B_s^0 \rightarrow J/\psi K^+K^-$ signal events. The curve shows a fit to the data of the sum of two gamma distributions with a common mean.

Figure 7: Decay time distribution of prompt $J/\psi K^+K^-$ candidates. The curve (solid blue) is the decay time model convolved with a Gaussian resolution model. The decay time model consists of a delta function for the prompt component and two exponential functions with different decay constants, which represent the $B_s^0 \rightarrow J/\psi K^+K^-$ signal and long-lived background, respectively. The decay constants are determined from the fit. The same dataset is shown in both plots, on different scales.

- Use per-event error estimate
- Calibrated on data
- Effective resolution $\approx 45 \text{ fb}^{-1}$
$B_s^0 \rightarrow J/\psi\phi$ acceptances

Figure 8: B_s^0 decay time trigger-acceptance functions obtained from data. The unbiased trigger category is shown on (a) an absolute scale and (b) the biased trigger category on an arbitrary scale.

Figure 9: Angular acceptance function evaluated with simulated $B_s^0 \rightarrow J/\psi\phi$ events, scaled by the mean acceptance. The acceptance is shown as a function of (a) $\cos\theta_K$, (b) $\cos\theta_\mu$ and (c) φ_h, where in all cases the acceptance is integrated over the other two angles. The points are obtained by summing the inverse values of the underlying physics PDF for simulated events and the curves represent a polynomial parameterisation of the acceptance.
Use per event mistag probability estimate η

$$
\omega = p_0 + \frac{\Delta p_0}{2} + p_1 \cdot (\eta - \langle \eta \rangle) \\
\bar{\omega} = p_0 - \frac{\Delta p_0}{2} + p_1 \cdot (\eta - \langle \eta \rangle)
$$

Calibrated on data separately for B and \bar{B}

Figure 10: Average measured wrong-tag probability (ω) versus estimated wrong-tag probability (η) calibrated on $B^+ \to J/\psi K^+$ signal events for the OS tagging combinations for the background subtracted events in the signal mass window. Points with errors are data, the red curve represents the result of the wrong-tag probability calibration, corresponding to the parameters of Table 3.
$B^0_s \rightarrow J/\psi \phi$ Flavour Tagging

Use per event mistag probability estimate η

![Graph showing distributions of the estimated wrong-tag probability, η, for $B^0_s \rightarrow J/\psi K^+ K^-$ signal events obtained using the sPlot method on the $J/\psi K^+ K^-$ invariant mass distribution. Both the (a) OS-only and (b) SSK-only tagging categories are shown.]

Tagging power

$\varepsilon D^2_{OST} = 2.29 \pm 0.06\%$

$\varepsilon D^2_{SSST} = 0.89 \pm 0.17\%$
$B_s^0 \rightarrow J/\psi\phi$ fit results

Table 6: Results of the maximum likelihood fit for the principal physics parameters. The first uncertainty is statistical and the second is systematic. The value of Δm_s was constrained to the measurement reported in Ref. [38]. The evaluation of the systematic uncertainties is described in Sect. 10.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_s [ps$^{-1}$]</td>
<td>0.663 ± 0.005 ± 0.006</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ [ps$^{-1}$]</td>
<td>0.100 ± 0.016 ± 0.003</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>δ_\parallel [rad]</td>
<td>3.30 ± 0.13 ± 0.08</td>
</tr>
<tr>
<td>δ_\perp [rad]</td>
<td>3.07 ± 0.22 ± 0.07</td>
</tr>
<tr>
<td>ϕ_s [rad]</td>
<td>0.07 ± 0.09 ± 0.01</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
</tbody>
</table>

Table 7: Correlation matrix for the principal physics parameters.

| | Γ_s [ps$^{-1}$] | $\Delta \Gamma_s$ [ps$^{-1}$] | $|A_\perp|^2$ | $|A_0|^2$ | δ_\parallel [rad] | δ_\perp [rad] | ϕ_s [rad] | $|\lambda|$ |
|----------|-------------------------|-------------------------|-----------|--------|-------------------------|-------------------------|---------------|------------|
| Γ_s [ps$^{-1}$] | 1.00 | -0.39 | 0.37 | -0.27 | -0.09 | -0.03 | 0.06 | 0.03 |
| $\Delta \Gamma_s$ [ps$^{-1}$] | -0.39 | 1.00 | -0.68 | 0.63 | 0.03 | 0.04 | -0.04 | 0.00 |
| $|A_\perp|^2$ | 0.37 | -0.68 | 1.00 | -0.58 | -0.28 | -0.09 | -0.04 | -0.04 |
| $|A_0|^2$ | -0.27 | 0.63 | -0.58 | 1.00 | -0.02 | -0.00 | 0.8 | -0.04 |
| δ_\parallel [rad] | -0.09 | 0.03 | -0.28 | -0.02 | 1.00 | 0.32 | -0.03 | 0.05 |
| δ_\perp [rad] | -0.03 | 0.04 | -0.09 | 1.00 | 0.28 | 1.00 | 0.04 | 0.00 |
| ϕ_s [rad] | 0.06 | -0.04 | -0.04 | 0.28 | 1.00 | 0.04 | 1.00 | 1.00 |
| $|\lambda|$ | 0.03 | 0.00 | 0.04 | 0.00 | 1.00 | 1.00 | | |
$B_s^0 \rightarrow J/\psi\phi$ fit results

S-wave fraction in bins of the K^+K^- invariant mass

<table>
<thead>
<tr>
<th>$m(K^+K^-)$ bin [MeV/c^2]</th>
<th>Parameter</th>
<th>Value</th>
<th>σ_{stat} (asymmetric)</th>
<th>σ_{syst}</th>
</tr>
</thead>
<tbody>
<tr>
<td>990 - 1008</td>
<td>F_S</td>
<td>0.227</td>
<td>+0.081, −0.073</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>1.31</td>
<td>+0.78, −0.49</td>
<td>0.09</td>
</tr>
<tr>
<td>1008 - 1016</td>
<td>F_S</td>
<td>0.067</td>
<td>+0.030, −0.027</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>0.77</td>
<td>+0.38, −0.23</td>
<td>0.08</td>
</tr>
<tr>
<td>1016 - 1020</td>
<td>F_S</td>
<td>0.008</td>
<td>+0.014, −0.007</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>0.51</td>
<td>+1.40, −0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>1020 - 1024</td>
<td>F_S</td>
<td>0.016</td>
<td>+0.012, −0.009</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>−0.51</td>
<td>+0.21, −0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>1024 - 1032</td>
<td>F_S</td>
<td>0.055</td>
<td>+0.027, −0.025</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>−0.46</td>
<td>+0.18, −0.26</td>
<td>0.05</td>
</tr>
<tr>
<td>1032 - 1050</td>
<td>F_S</td>
<td>0.167</td>
<td>+0.043, −0.042</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>$\delta_S - \delta_{\perp}$ [rad]</td>
<td>−0.65</td>
<td>+0.18, −0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Independent measurement of Δm_s

$$\Delta m_s = 17.70 \pm 0.10\,(stat) \pm 0.01\,(syst)\,ps^{-1}$$

Better sensitivity as CDF result
$B_s^0 \rightarrow J/\psi \phi$ systematics

Table 9: Statistical and systematic uncertainties.

| Source | Γ_s [ps$^{-1}$] | $\Delta \Gamma_s$ [ps$^{-1}$] | $|A_\perp|^2$ | $|A_0|^2$ | $|\delta_{\parallel}|$ [rad] | $|\delta_{\perp}|$ [rad] | ϕ_s [rad] | $|\lambda|$ |
|-----------------------------|-------------------------|--------------------------------|--------------|----------|----------------|----------------|-------------|----------|
| Stat. uncertainty | 0.0048 | 0.016 | 0.0086 | 0.0061 | $+0.13$ -0.21 | 0.22 | 0.091 | 0.031 |
| Background subtraction | 0.0041 | 0.002 | - | 0.0031 | 0.03 | 0.02 | 0.003 | 0.003 |
| $B^0 \rightarrow J/\psi K^0$ background | - | 0.001 | 0.0030 | 0.0001 | 0.01 | 0.02 | 0.004 | 0.005 |
| Ang. acc. reweighting | 0.0007 | - | 0.0052 | 0.0091 | 0.07 | 0.05 | 0.003 | 0.020 |
| Ang. acc. statistical | 0.0002 | - | 0.0020 | 0.0010 | 0.03 | 0.04 | 0.007 | 0.006 |
| Lower decay time acc. model | 0.0023 | 0.002 | - | - | - | - | - | - |
| Upper decay time acc. model | 0.0040 | - | - | - | - | - | - | - |
| Length and mom. scales | 0.0002 | - | - | - | - | - | - | - |
| Fit bias | - | - | 0.0010 | - | - | - | - | - |
| Quadratic sum of syst. | 0.0063 | 0.003 | 0.0064 | 0.0097 | 0.08 | 0.07 | 0.009 | 0.022 |
| Total uncertainties | 0.0079 | 0.016 | 0.0017 | 0.0114 | $+0.15$ -0.23 | 0.23 | 0.001 | 0.038 |

Table 10: Statistical and systematic uncertainties for S-wave fractions in bins of $m(K^+K^-)$.

<table>
<thead>
<tr>
<th>Source</th>
<th>bin 1</th>
<th>bin 2</th>
<th>bin 3</th>
<th>bin 4</th>
<th>bin 5</th>
<th>bin 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_S</td>
<td>F_S</td>
<td>F_S</td>
<td>F_S</td>
<td>F_S</td>
<td>F_S</td>
</tr>
<tr>
<td>Stat. uncertainty</td>
<td>+0.081</td>
<td>+0.030</td>
<td>+0.014</td>
<td>+0.012</td>
<td>+0.027</td>
<td>+0.043</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>-0.073</td>
<td>-0.027</td>
<td>-0.007</td>
<td>-0.009</td>
<td>-0.026</td>
<td>-0.042</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi K^0$ background</td>
<td>0.014</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>Angular acc. reweighting</td>
<td>0.010</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.018</td>
</tr>
<tr>
<td>Angular acc. statistical</td>
<td>0.004</td>
<td>0.006</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>Fit bias</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>Quadratic sum of syst.</td>
<td>0.020</td>
<td>0.009</td>
<td>0.005</td>
<td>0.006</td>
<td>0.008</td>
<td>0.021</td>
</tr>
<tr>
<td>Total uncertainties</td>
<td>-0.076</td>
<td>-0.029</td>
<td>-0.009</td>
<td>-0.011</td>
<td>-0.026</td>
<td>-0.047</td>
</tr>
</tbody>
</table>
$B_s^0 \rightarrow J/\psi \phi$ systematics

Table 11: Statistical and systematic uncertainties for S-wave phases in bins of $m(K^+K^-)$.

<table>
<thead>
<tr>
<th>Source</th>
<th>bin 1 $\delta_S - \delta_\perp$ [rad]</th>
<th>bin 2 $\delta_S - \delta_\perp$ [rad]</th>
<th>bin 3 $\delta_S - \delta_\perp$ [rad]</th>
<th>bin 4 $\delta_S - \delta_\perp$ [rad]</th>
<th>bin 5 $\delta_S - \delta_\perp$ [rad]</th>
<th>bin 6 $\delta_S - \delta_\perp$ [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat. uncertainty</td>
<td>$+0.78$</td>
<td>$+0.38$</td>
<td>$+1.40$</td>
<td>$+0.21$</td>
<td>$+0.18$</td>
<td>$+0.18$</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi K^0$ background</td>
<td>0.08</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Angular acc. reweighting</td>
<td>0.02</td>
<td>0.03</td>
<td>0.12</td>
<td>0.13</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Angular acc. statistical</td>
<td>0.033</td>
<td>0.023</td>
<td>0.067</td>
<td>0.036</td>
<td>0.019</td>
<td>0.015</td>
</tr>
<tr>
<td>Fit bias</td>
<td>0.005</td>
<td>0.043</td>
<td>0.112</td>
<td>0.049</td>
<td>0.022</td>
<td>0.016</td>
</tr>
<tr>
<td>C_{SP} factors</td>
<td>0.007</td>
<td>0.028</td>
<td>0.049</td>
<td>0.025</td>
<td>0.021</td>
<td>0.020</td>
</tr>
<tr>
<td>Quadratic sum of syst.</td>
<td>0.09</td>
<td>0.08</td>
<td>0.20</td>
<td>0.15</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Total uncertainties</td>
<td>$+0.79$</td>
<td>$+0.39$</td>
<td>$+1.41$</td>
<td>$+0.26$</td>
<td>$+0.19$</td>
<td>$+0.19$</td>
</tr>
</tbody>
</table>
Penguin pollution

- Angular analysis in $B_s^0 \to J/\psi K^*$ can give information about penguin contribution for $B_s^0 \to J/\psi\phi$

First step:
- Branching Fraction of $B_s^0 \to J/\psi K^*$ measured to be $4.4^{+0.5}_{-0.4} \pm 0.8 \times 10^{-5}$

Phys. Rev. D 86 (2012) 071102
B_s^0 \rightarrow J/\psi \phi & B_s^0 \rightarrow J/\psi \pi^+ \pi^- fit results

Table 12: Results of combined fit to the $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ datasets. The first uncertainty is statistical and the second is systematic.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_s [ps^{-1}]</td>
<td>$0.661 \pm 0.004 \pm 0.006$</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ [ps^{-1}]</td>
<td>$0.106 \pm 0.011 \pm 0.007$</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>δ_\parallel [rad]</td>
<td>$3.32 \pm 0.13 \pm 0.08$</td>
</tr>
<tr>
<td>δ_\perp [rad]</td>
<td>$3.04 \pm 0.20 \pm 0.07$</td>
</tr>
<tr>
<td>ϕ_s [rad]</td>
<td>$0.01 \pm 0.07 \pm 0.01$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
</tbody>
</table>

Table 13: Correlation matrix for statistical uncertainties on combined results.

	Γ_s [ps^{-1}] $\Delta \Gamma_s$ [ps^{-1}] $	A_\perp	^2$ $	A_0	^2$ δ_\parallel [rad] δ_\perp [rad] ϕ_s [rad] $	\lambda	$			
Γ_s	1.00	0.10	0.08	0.03	-0.08	-0.04	0.01	0.00		
$\Delta \Gamma_s$	0.10	1.00	-0.49	0.47	0.00	0.00	0.00	-0.01		
$	A_\perp	^2$	0.08	-0.49	1.00	-0.40	0.00	0.00	0.00	0.00
$	A_0	^2$	0.03	0.47	-0.40	1.00	0.00	0.00	0.00	0.00
δ_\parallel [rad]	-0.08	0.00	0.00	0.00	1.00	0.00	0.00	0.00		
δ_\perp [rad]	-0.04	0.00	0.00	0.00	0.00	1.00	0.00	0.00		
ϕ_s [rad]	-0.01	0.00	0.00	0.00	0.00	0.00	1.00	0.00		
$	\lambda	$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
Table 2: Fit results with statistical and systematic uncertainties. A 68% statistical confidence interval is quoted for ϕ_s. Amplitudes are defined at $t = 0$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>$\sigma_{\text{stat.}}$</th>
<th>$\sigma_{\text{syst.}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_s [rad] (68% CL)</td>
<td>$-2.37, -0.92$</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
<td>^2$</td>
<td>0.329</td>
</tr>
<tr>
<td>$</td>
<td>A_{\perp}</td>
<td>^2$</td>
<td>0.358</td>
</tr>
<tr>
<td>$</td>
<td>A_{S}</td>
<td>^2$</td>
<td>0.016</td>
</tr>
<tr>
<td>δ_1 [rad]</td>
<td>2.19</td>
<td>0.44</td>
<td>0.12</td>
</tr>
<tr>
<td>δ_2 [rad]</td>
<td>-1.47</td>
<td>0.48</td>
<td>0.10</td>
</tr>
<tr>
<td>δ_S [rad]</td>
<td>0.65</td>
<td>+0.89</td>
<td>-1.65</td>
</tr>
</tbody>
</table>