Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Abstract

In this Letter, comprehensive results on $\pi^\pm$, $K^\pm$, $K^0_S$, $p(p)$ and $\Lambda(\bar{\Lambda})$ production at mid-rapidity ($0 < y_{CMS} < 0.5$) in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb–Pb collisions at the LHC. The measured $p_T$ distributions are compared to d–Au, Au–Au and Pb–Pb results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.

*See Appendix A for the list of collaboration members
1 Introduction

High-energy heavy-ion (AA) collisions offer a unique possibility to study nuclear matter under extreme conditions, in particular the deconfined quark-gluon plasma which has been predicted by quantum chromodynamics (QCD) [1, 2, 3, 4]. The interpretation of heavy-ion results depends crucially on the comparison with results from smaller collision systems such as proton-proton (pp) or proton-nucleus (pA).

The bulk matter created in high-energy nuclear reactions can be quantitatively described in terms of hydrodynamic and statistical models. The initial hot and dense partonic matter rapidly expands and cools down, ultimately undergoing a transition to a hadron gas phase [5]. The observed ratios of particle abundances can be described in terms of statistical models [6, 7], which are governed mainly by two parameters, the chemical freeze-out temperature $T_{ch}$ and the baryochemical potential $\mu_B$ which describes the net baryon content of the system. These models provide an accurate description of the data over a large range of center-of-mass energies (see e.g. [8]), but a surprisingly large deviation (about 50%) was found for the proton production yield at the LHC [9, 10]. During the expansion phase, collective hydrodynamic flow develops from the initially generated pressure gradients in the strongly interacting system. This results in a characteristic dependence of the shape of the transverse momentum ($p_T$) distribution on the particle mass, which can be described with a common kinetic freeze-out temperature parameter $T_{kin}$ and a collective average expansion velocity $\langle \beta_T \rangle$ [11].

Proton-nucleus (pA) collisions are intermediate between proton-proton (pp) and nucleus-nucleus (AA) collisions in terms of system size and number of produced particles. Comparing particle production in pp, pA, and AA reactions has frequently been used to separate initial state effects, linked to the use of nuclear beams or targets, from final state effects, linked to the presence of hot and dense matter. At the LHC, however, the pseudorapidity density of final state particles in pA collisions reaches values which can become comparable to semi-peripheral Au–Au (~60% most central) and Cu–Cu (~30% most central) collisions at top RHIC energy [12]. Therefore the assumption that final state dense matter effects can be neglected in pA may no longer be valid. In addition, pA collisions allow for the investigation of fundamental properties of QCD: the relevant part of the initial state nuclear wave function extends to very low fractional parton momentum $x$ and very high gluon densities, where parton shadowing and novel phenomena like saturation, e.g. as implemented in the Color Glass Condensate model (CGC), may become apparent [13, 14].

Recently, measurements at the LHC in high multiplicity pp and p–Pb collisions have revealed a near-side long-range “ridge” structure in the two-particle correlations [15, 16]. The observation of an unexpected “double-ridge” structure in the two-particle correlations in high-multiplicity p–Pb collisions has also been reported [17, 18, 19, 20]. This is flat and long-range in pseudo-rapidity $\Delta \eta$ and modulated in azimuth approximately like $\cos(2\Delta \phi)$, where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudo-rapidity $\eta$ and azimuthal angle $\phi$ between the two particles. Various mechanisms have been proposed to explain the origin of this double-ridge like structure. Both a CGC description [21], based on initial state nonlinear gluon interactions, as well as a model based on hydrodynamic flow [22, 23], assuming strong interactions between final state partons or hadrons, can give a satisfactory description of the p–Pb correlation data. However, the modeling of small systems such as p–Pb is complicated because uncertainties related to initial state geometrical fluctuations play a large role and because viscous corrections may be too large for hydrodynamics to be a reliable framework [24]. Additional experimental information is therefore required to reveal the origin of these correlations. The $p_T$ distributions and yields of particles of different mass at low and intermediate momenta of less than a few GeV/c (where the vast majority of particles is produced), can provide important information about the system created in high-energy hadron reactions.

Previous results on identified particle production in pp [25, 26, 27, 28, 29] and Pb–Pb [9, 10] collisions at the LHC have been reported. In this paper we report on the measurement of $\pi^\pm$, $K^\pm$, $K_S^0$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ production as a function of the event multiplicity in p–Pb collisions at a nucleon-nucleon center-of-mass...


| Event class | V0A range (arb. unit) | \(\frac{dN_{ch}}{d\eta}\) | |\(|\eta_{lab}| < 0.5\)| |
|--------------|------------------------|---------------------------|------------------------|
| 0–5%         | > 227                  | 45 ± 1                    | |
| 5–10%        | 187–227                | 36.2 ± 0.8                | |
| 10–20%       | 142–187                | 30.5 ± 0.7                | |
| 20–40%       | 89–142                 | 23.2 ± 0.5                | |
| 40–60%       | 52–89                  | 16.1 ± 0.4                | |
| 60–80%       | 22–52                  | 9.8 ± 0.2                 | |
| 80–100%      | < 22                   | 4.4 ± 0.1                 | |

Table 1: Definition of the event classes as fractions of the analyzed event sample and their corresponding \(\frac{dN_{ch}}{d\eta}\) within |\(\eta_{lab}| < 0.5\) (systematic uncertainties only, statistical uncertainties are negligible).

energy \(\sqrt{s_{NN}} = 5.02\) TeV. The results are presented over the following \(p_T\) ranges: 0.1-3, 0.2-2.5, 0-8, 0.3-4 and 0.6-8 GeV/c for \(\pi^\pm, K^\pm, K^0_S, p(\bar{p})\) and \(\Lambda(\bar{\Lambda})\), respectively. Results on \(\pi, K, p\) production in \(p\text{-}Pb\) collisions have been recently reported by the CMS collaboration [30].

2 Sample and Data analysis

The results presented in this letter are obtained from a sample of the data collected during the LHC p–Pb run at \(\sqrt{s_{NN}} = 5.02\) TeV in the beginning of 2013. Because of the 2-in-1 magnet design of the LHC [31], the energy of the two beams cannot be adjusted independently and is 4 ZTeV, leading to different energies due to the different Z/A. The nucleon-nucleon center-of-mass system, therefore, was moving in the laboratory frame with a rapidity of \(y_{NN} = -0.465\) in the direction of the proton beam. The number of colliding bunches was varied from 8 to 288. The total number of protons and Pb ions in the beams ranged from \(0.2 \times 10^{12}\) to \(6.5 \times 10^{12}\) and from \(0.1 \times 10^{12}\) to \(4.4 \times 10^{12}\), respectively. The maximum luminosity at the ALICE interaction point was for the data used in this paper \(5 \times 10^{27}\) cm\(^{-2}\)s\(^{-1}\) resulting in a hadronic interaction rate of 10 kHz. The interaction region had an r.m.s. of 6.3 cm along the beam direction and of about 60 \(\mu\)m in the direction transverse to the beam. For the results presented in this letter, a low-luminosity data sample has been analyzed where the event pile-up rate has been estimated to have negligible effects on the results. The integrated luminosity corresponding to the used data sample was about 14 \(\mu\)b\(^{-1}\) (7 \(\mu\)b\(^{-1}\)) for the neutral (charged) hadron analysis. The LHC configuration was such that the lead beam circulated in the “counter-clockwise” direction, corresponding to the ALICE A direction or positive rapidity as per the convention used in this paper.

A detailed description of the ALICE apparatus can be found in [32]. The minimum-bias trigger signal was provided by the VZERO counters, two arrays of 32 scintillator tiles each covering the full azimuth within \(2.8 < \eta_{lab} < 5.1\) (VZERO-A, Pb beam direction) and \(-3.7 < \eta_{lab} < -1.7\) (VZERO-C, p beam direction). The signal amplitude and arrival time collected in each tile were recorded. A coincidence of signals in both VZERO-A and VZERO-C detectors was required to remove contamination from single diffractive and electromagnetic events [33]. The time resolution is better than 1 ns, allowing discrimination of beam–beam collisions from background events produced outside of the interaction region. In the offline analysis, the background was further suppressed by the time information recorded in two neutron Zero Degree Calorimeters (ZDCs), which are located at +112.5 m (ZNA) and −112.5 m (ZNC) from the interaction point. A dedicated quartz radiator Cherenkov detector (T0) provided a measurement of the event time of the collision.

The ALICE central-barrel tracking detectors cover the full azimuth within |\(\eta_{lab}| < 0.9\). They are located inside a solenoidal magnet providing a magnetic field of 0.5 T. The innermost barrel detector is
Selection variable & Cut value \\
--- & --- \\
2D decay radius & > 0.50 cm \\
Daughter track DCA to prim. vertex & > 0.06 cm \\
DCA between daughter tracks & < 1.0 \sigma \\
Cosine of pointing angle ($K_S^0$) & $p_T$ dependent ($< 1\%$ signal loss) \\
Cosine of pointing angle ($\Lambda$ and $\bar{\Lambda}$) & $p_T$ dependent ($< 1\%$ signal loss) \\
Proper lifetime ($K_S^0$) & < 20 cm \\
Proper lifetime ($\Lambda$ and $\bar{\Lambda}$) & < 30 cm \\
$K_S^0$ mass rejection window ($\Lambda$ and $\bar{\Lambda}$) & $\pm 10$ MeV/$c$ \\
$\Lambda$ and $\bar{\Lambda}$ mass rejection window ($K_S^0$) & $\pm 5$ MeV/$c$ \\

Table 2: $V^0$ topological selection cuts (DCA: distance-of-closest approach).

the Inner Tracking System (ITS). It consists of six layers of silicon devices grouped in three individual detector systems which employ different technologies (from the innermost outwards): the Silicon Pixel Detector (SPD), the Silicon Drift Detector (SDD) and the Silicon Strip Detector (SSD). The Time Projection Chamber (TPC), the main central-barrel tracking device, follows outwards. Finally the Transition Radiation Detector (TRD) extends the tracking farther away from the beam axis. The primary vertex position was determined separately in the SPD [33] and from tracks reconstructed in the whole central barrel (global tracks). The events were further selected by requiring that the longitudinal position of the primary vertex was within 10 cm of the nominal interaction point and that the vertices reconstructed from SPD tracklets and from global tracks are compatible. In total from a sample of 29.8 (15.3) million triggered events about 24.7 (12.5) million events passing the selection criteria were used in the neutral (charged) hadron analysis.

In order to study the multiplicity dependence, the selected event sample was divided into seven event classes, based on cuts on the total charge deposited in the VZERO-A detector (V0A). The corresponding fractions of the data sample in each class are summarized in Tab. [1]. The mean charged-particle multiplicity densities ($\langle dN_{ch}/d\eta \rangle$) within $|\eta_{lab}| < 0.5$ corresponding to the different centrality bins are also listed in the table. These are obtained using the method presented in [33] and are corrected for acceptance and tracking efficiency as well as for contamination by secondary particles. The relative standard deviation of the track multiplicity distribution for the event classes defined in Table [1] ranges from 78\% to 29\% for the 80–100\% and 0–5\% classes, respectively. It should be noted that the average multiplicity in the 80-100% bin is well below the corresponding multiplicity in pp minimum-bias collisions [34] and therefore likely to be subject to a strong selection bias. Contrary to our earlier measurement of $\langle dN_{ch}/d\eta \rangle$ [33], the values in Tab. [1] are not corrected for trigger and vertex-reconstruction efficiency, which is of the order of 2\% for NSD events [33]. The same holds true for the $p_T$ distributions, which are presented in the next section.

Charged-hadron identification in the central barrel was performed with the ITS, TPC [35] and Time-Of-Flight (TOF) [36] detectors. The drift and strip layers of the ITS provide a measurement of the specific energy loss with a resolution of about 10\%. In a standalone tracking mode, the identification of pions, kaons, and protons is thus extended down to respectively 0.1, 0.2, 0.3 GeV/$c$ in $p_T$. The TPC provides particle identification at low momenta via specific energy loss $dE/dx$ in the fill gas by measuring up to 159 samples per track with a resolution of about 6\%. The separation power achieved in p–Pb collisions is identical to that in pp collisions [37]. Further outwards at about 3.7 m from the beam line, the TOF
array allows identification at higher $p_T$ measuring the particle speed with the time-of-flight technique. The total time resolution is about 85 ps for events in the multiplicity classes from 0% to $\sim 80\%$. In more peripheral collisions, where multiplicities are similar to pp, it decreases to about 120 ps due to a worse start-time (collision-time) resolution [37]. The start-time of the event was determined by combining the time estimated using the particle arrival times at the TOF and the time measured by the T0 detector [36]. Since the p–Pb center-of-mass system moved in the laboratory frame with a rapidity of $y_{NN}$ = −0.465, the nominal acceptance of the central barrel of the ALICE detector was asymmetric with respect to $y_{CMS}$ = 0. In order to ensure good detector acceptance and optimal particle identification performance, tracks were selected in the rapidity interval $0 < y_{CMS} < 0.5$ in the nucleon-nucleon center-of-mass system. Event generator studies and repeating the analysis in $|y_{CMS}| < 0.2$ indicate differences between the two rapidity selections smaller than 2% in the normalization and 3% in the shape of the transverse momentum distributions.

In this paper we present results for primary particles, defined as all particles produced in the collision,
including decay products, but excluding weak decays of strange particles. The analysis technique is described in detail in [9, 10, 38]. Here we briefly review the most relevant points.

Three approaches were used for the identification of $\pi^\pm$, $K^\pm$, and $p(\bar{p})$, called “ITS standalone”, “TPC/TOF” and “TOF fits” [9, 10] in the following. In the “ITS standalone” method, a probability for each particle species is calculated in each layer based on the measured energy loss signal and the known response function. The information from all layers is combined in a bayesian approach with iteratively determined priors. Finally, the type with the highest probability is assigned to the track. This method is used in the $p_T$ ranges $0.1 < p_T < 0.7$ GeV/c, $0.2 < p_T < 0.6$ GeV/c and $0.3 < p_T < 0.65$ GeV/c for $\pi^\pm$, $K^\pm$, and $p(\bar{p})$, respectively. In contrast to the analysis in the high multiplicity environment of central heavy-ion collisions, the contribution of tracks with wrongly associated clusters is negligible in p–Pb collisions. In the “TPC/TOF” method, the particle is identified by requiring that its measured $dE/dx$ and time-of-flight are within $\pm3\sigma$ from the expected values in the TPC and/or TOF. This method is used in the $p_T$ ranges $0.2 < p_T < 1.5$ GeV/c, $0.3 < p_T < 1.3$ GeV/c and $0.5 < p_T < 2.0$ GeV/c for $\pi^\pm$, $K^\pm$, and $p(\bar{p})$, respectively. In the third method the TOF time distribution is fitted to extract the yields, with the expected shapes based on the knowledge of the TOF response function for different particle species. This method is used in the $p_T$ range starting from 0.5 GeV/c up to 3, 2.5 and 4 GeV/c for $\pi^\pm$, $K^\pm$, and $p(\bar{p})$, respectively. Contamination from secondary particles was subtracted with a data-driven approach, based on the fit of the transverse distance-of-closest approach to the primary vertex (DCA$_{xy}$) distribution with the expected shapes for primary and secondary particles [9, 10]. The results of the three analyses were combined using the (largely independent) systematic uncertainties as weights in the overlapping ranges, after checking for their compatibility.

The $K_S^0$ and $\Lambda(\bar{\Lambda})$ particles were identified exploiting their “$V^0$” weak decay topology in the channels $K_S^0 \rightarrow \pi^+\pi^-$ and $\Lambda(\bar{\Lambda}) \rightarrow p\pi^-(\bar{p}\pi^+)$, which have branching ratios of 69.2% and 63.9%, respectively [39]. The selection criteria used to define two tracks as $V^0$ decay candidates are listed in Tab. 2 (see [26] for details). Since the cosine of pointing angle (the angle between the particle momentum associated with the $V^0$ candidate and a vector connecting the primary vertex and the $V^0$ position [26]) resolution changes significantly with momentum, the value used in the selection is $p_T$ dependent and such that no more than 1% of the primary particle signal is removed.

The typical reconstruction efficiencies (excluding branching ratios) are about 15% at low $p_T$ (~ 0.5

<table>
<thead>
<tr>
<th></th>
<th>$K_S^0$</th>
<th>$\Lambda(\bar{\Lambda})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper lifetime</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Material budget</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Track selection</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>TPC PID</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>$p_T$ (GeV/c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed-down correction</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>$p_T$ (GeV/c)</td>
<td>&lt; 3.7</td>
<td>&gt; 3.7</td>
</tr>
<tr>
<td>Total</td>
<td>6.5%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Table 4: Main sources of systematic uncertainty for the $K_S^0$ and $\Lambda(\bar{\Lambda})$. 


The multiplicity dependence of $\pi^{\pm}$, $K^{\pm}$, $K_S^0$, $p(\bar{p})$ and $\Lambda/\bar{\Lambda}$ in p–Pb and Pb–Pb collisions is studied by ALICE Collaboration. The signal is extracted from the reconstructed invariant mass distribution subtracting the background from the peak region with a bin counting method. The background and signal regions are defined on the basis of the mass resolution as the windows in $[-12\sigma, -6\sigma]$, $[6\sigma, 12\sigma]$ and $[-6\sigma, 6\sigma]$, respectively. The value of $\sigma$ changes with $p_T$ to account for the actual mass resolution and ranges from about 3 MeV/$c^2$ to 7 MeV/$c^2$ for $K^0_S$ and from about 1.4 MeV/$c^2$ to 2.5 MeV/$c^2$ for $\Lambda/\bar{\Lambda}$. More details on $V^0$ reconstruction can be found in [26, 38]. The contribution from weak decays of the charged and neutral $\Xi$ comes from $\Xi^0$ to account for the actual mass resolution and ranges from about 3 MeV/$c^2$ to 7 MeV/$c^2$ for $K^0_S$ and from about 1.4 MeV/$c^2$ to 2.5 MeV/$c^2$ for $\Lambda/\bar{\Lambda}$. More details on $V^0$ reconstruction can be found in [26, 38]. The contribution from weak decays of the charged and neutral $\Xi$ to the $\Lambda(\bar{\Lambda})$ yield has been corrected following a data-driven approach. The measured $\Xi^{-}\Xi^{+}$ spectrum is used as input in a simulation of the decay kinematics to evaluate the fraction of reconstructed $\Lambda(\bar{\Lambda})$ coming from $\Xi^{-}\Xi^{+}$ decays. The contribution from the decays of $\Xi^0$ is taken into account in the same way by assuming the ratio $\Xi^{-}\Xi^{+}/\Xi^0 = 1$, as supported by statistical models and Pythia or DMPJET Monte Carlo simulations [40, 41]. The raw transverse momentum distributions have been corrected for acceptance and reconstruction efficiency using a Monte Carlo simulation, based on the DPMJET 3.05 event generator [40] and a GEANT3.21 [42] model of the detector. As compared to the version used in [9, 10], GEANT3.21 was improved by implementing a more realistic parameterization of the anti-proton inelastic cross-section [43]. A correction factor based on FLUKA [44] estimates was applied to negative kaons as in [9, 10].

The study of systematic uncertainties follows the analysis described in [9, 10] for $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$. The main sources are the correction for secondary particles (4% for protons, 1% for pions, negligible for kaons), knowledge of the material budget (3% related to energy loss), hadronic interactions with the detector material (from 1% to 6%, more important at low $p_T$ and for protons), tracking efficiency (4%), TOF matching efficiency (from 3 to 6%, depending on the particle) and PID (from 2% to 25%, depending on the particle and the $p_T$ range). For the neutral $\Lambda$ and $K_S^0$ particles, the main sources are the level of knowledge of detector materials (resulting in a 4% uncertainty), track selections (up to 5%) and the feed-down correction for the $\Lambda$ and $\bar{\Lambda}$ (5%), while topological selections contribute 2-4% depending on transverse momentum. The main sources of systematic uncertainties for the analysis of charged and neutral particles are summarized in Tables 3 and 4 respectively. The study of systematic uncertainties was repeated for the different multiplicity bins in order to separate the sources of uncertainty which are dependent on multiplicity and uncorrelated across different bins (depicted as shaded boxes in the figures).

3 Results

The $p_T$ distributions of $\pi^{\pm}$, $K^{\pm}$, $K_S^0$, $p(\bar{p})$ and $\Lambda/\bar{\Lambda}$ in $0 < y_{CMS} < 0.5$ are shown in Fig. 1 for different multiplicity intervals, as defined in Tab. 1. Particle/antiparticle as well as charged/neutral kaon transverse momentum distributions are identical within systematic uncertainties.

The $p_T$ distributions show a clear evolution, becoming harder as the multiplicity increases. The change is most pronounced for protons and lambdas. They show an increase of the slope at low $p_T$, similar to the one observed in heavy-ion collisions [9, 10]. The stronger multiplicity dependence of the spectral shapes of heavier particles is evident when looking at the ratios $K/\pi = (K^+ + K^-)/(\pi^+ + \pi^-)$, $p/\pi = (p + p)/(\pi^+ + \pi^-)$ and $\Lambda/K_S^0$ as functions of $p_T$, shown in Fig. 2 for the 0–5% and 60–80% event classes. The ratios $p/\pi$ and $\Lambda/K_S^0$ show a significant enhancement at intermediate $p_T \sim 3$ GeV/$c$, qualitatively reminiscent of that measured in Pb–Pb collisions [9,10, 38]. The latter are generally discussed in terms of collective flow or quark recombination [45, 46, 47]. However, the magnitude of the observed effects differs significantly between p–Pb and in Pb–Pb. The maximum of the $p/\pi$ ( $\Lambda/K_S^0$) ratio reaches $\sim 0.8$ (1.5) in central Pb–Pb collisions, but only 0.4 (0.8) in the highest multiplicity p–Pb events. The highest multiplicity bin in p–Pb collisions exhibits ratios of $p/\pi$ and $\Lambda/K_S^0$ which have maxima close to the corresponding ratios in the 60-70% bin in Pb–Pb collisions but differ somewhat in shape at lower $p_T$. The value of $dN_{ch}/dy$ in central p–Pb collisions (45 ± 1) is a factor $\sim 1.7$ lower than the one in the 60-70% Pb–Pb bin. A similar enhancement of the $p/\pi$ ratio in high-multiplicity d–Au collisions has also
Fig. 1: (color online) Invariant $p_T$-differential yields of $\pi^\pm$, $K^\pm$, $K^0_S$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in different V0A multiplicity classes (sum of particle and antiparticle states where relevant) measured in the rapidity interval $0 < y_{CMS} < 0.5$. Top to bottom: central to peripheral; data scaled by $2^n$ factors for better visibility. Statistical (bars) and full systematic (boxes) uncertainties are plotted. Dashed curves: blast-wave fits to each individual distribution.
Fig. 2: (color online) Ratios $K/\pi = (K^+ + K^-)/(\pi^+ + \pi^-)$, $p/\pi = (p + \bar{p})/(\pi^+ + \pi^-)$ and $\Lambda/K^0_S$ as a function of $p_T$ in two multiplicity bins measured in the rapidity interval $0 < y_{CMS} < 0.5$ (left panels). The ratios are compared to results in Pb–Pb collisions measured at midrapidity, shown in the right panels. The empty boxes show the total systematic uncertainty; the shaded boxes indicate the contribution uncorrelated across multiplicity bins (not estimated in Pb–Pb).
Fig. 3: (color online) \( p/\pi \) ratio as a function of the charged-particle density \( \frac{dN_{ch}}{d\eta} \) in three \( p_T \) intervals in p–Pb (measured in the rapidity interval \( 0 < y_{CMS} < 0.5 \)) and Pb–Pb collisions (measured at midrapidity). The dashed lines show the corresponding power-law fit (top). Exponent of the \( p/\pi \) (middle) and \( \Lambda/K^0_S \) (bottom) power-law fit as a function of \( p_T \) in p–Pb and Pb–Pb collisions. The empty boxes show the total systematic uncertainty; the shaded boxes indicate the contribution uncorrelated across multiplicity bins (not estimated in Pb–Pb).
Multiplicity Dependence of $\pi^\pm$, $K^\pm$, $K_S^0$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in p–Pb Collisions

ALICE Collaboration

Fig. 4: (color online) Mean transverse momentum as a function of $dN_{ch}/d\eta$ in each V0A multiplicity class (see text for details) for different particle species measured in the rapidity interval $0 < y_{CMS} < 0.5$. The $dN_{ch}/d\eta$ values of $K_S^0$ are shifted for visibility. The empty boxes show the total systematic uncertainty; the shaded boxes indicate the contribution uncorrelated across multiplicity bins (not estimated in Pb–Pb).

It is worth noticing that the ratio $p/\pi$ as a function of $dN_{ch}/d\eta$ in a given $p_T$-bin follows a power-law behavior: $p(\pi) = A(p_T) \times [dN_{ch}/d\eta]^{B(p_T)}$. As shown in Fig. 3 (top), the same trend is also observed in Pb–Pb collisions. The exponent of the power-law function exhibits the same value in both collision systems (Fig. 3, middle). The same feature is also observed in the $\Lambda/K_S^0$ ratio (Fig. 3, bottom).

The $p_T$-integrated yields and $\langle p_T \rangle$ are computed using the data in the measured range and extrapolating them down to zero and to high $p_T$ (up to 10 GeV/c). The fraction of extrapolated yield for high (low) multiplicity events is about 8% (9%), 10% (12%), 7% (13%), 17% (30%) for $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$, $\Lambda$ and $\bar{\Lambda}$ respectively and is negligible for $K_S^0$. Several parametrizations have been tested, among which the blast-wave function [11] (see below) gives the best description of the data over the full $p_T$ range (Fig. 1). Other fit functions [49] (Boltzmann, $m_T$-exponential, $p_T$-exponential, Tsallis-Levy, Fermi-Dirac, Bose-Einstein) have been used to estimate the systematic uncertainty on the extrapolation, restricting the range to low $p_T$ for those functions not giving a satisfactory description of the data over the full range. The uncertainty on the extrapolation amounts to about 2% for $\pi^\pm$, $K^\pm$, $p(\bar{p})$, 3% (8% in low multiplicity events) for $\Lambda(\bar{\Lambda})$, and it is negligible for $K_S^0$ (since the $p_T$ coverage ranges down to 0).

The $\langle p_T \rangle$ increases with multiplicity, at a rate which is stronger for heavier particles, as shown in Fig. 4. A similar mass ordering is also observed in pp [28] and Pb–Pb [10] collisions as a function of multiplicity. In Fig. 5 the ratios to the pion yields are compared to Pb–Pb results at the LHC and Au–Au and d–Au results at RHIC [50, 49, 51, 48, 52, 53]. While the $p/\pi$ ratio shows no evolution from peripheral to central events, a small increase is observed in the $K/\pi$ and $\Lambda/\pi$ ratios, accounting for the bin-to-bin correlations of the uncertainties. A similar rise is observed in Pb–Pb, Au–Au and d–Au collisions. This is typically attributed to a reduced canonical suppression of strangeness production in larger freeze-out volumes [54] or to an enhanced strangeness production in a quark-gluon plasma [55].

The observations reported here are not strongly dependent on the actual variable used to select multiplicity classes. Alternative approaches, such as using the total charge in both VZERO-A and VZERO-C detectors, the energy deposited in the ZNA (which originates from neutrons of the Pb nucleus) and
Fig. 5: (color online) Particle yields $dN/dy$ of kaons, protons, and lambdas normalized to pions as a function of $dN_{ch}/d\eta$ in each V0A multiplicity class (see text for details) measured in the rapidity interval $0 < y_{CMS} < 0.5$. The values are compared to results obtained from Pb–Pb collisions at the LHC and Au–Au and d–Au collisions at RHIC measured at midrapidity. The empty boxes show the total systematic uncertainty; the shaded boxes indicate the contribution uncorrelated across multiplicity bins (not estimated in Pb–Pb).
Fig. 6: (color online) Results of blast-wave fits, compared to Pb–Pb data and MC simulations from PYTHIA8 with and without color reconnection. Charged-particle multiplicity increases from left to right. Uncertainties from the global fit are shown as correlation ellipses.

the number of clusters in the first ITS layers reveal very similar trends. In the cases where the largest deviation is observed, the $p/\pi$ ratio is essentially the same in 0-5% events and it is $\sim 15\%$ higher at $p_T \sim 3$ GeV/$c$ in the 60-80% class. Part of this difference is due to the mild correlation of events at forward and central rapidity: the lowest multiplicity class selected with ZNA leads to a larger multiplicity at midrapidity than the corresponding class selected with the VZERO-A.

4 Discussion

In heavy-ion collisions, the flattening of transverse momentum distribution and its mass ordering find their natural explanation in the collective radial expansion of the system [56]. This picture can be tested in a blast-wave framework with a simultaneous fit to all particles for each multiplicity bin. This parameterization assumes a locally thermalized medium, expanding collectively with a common velocity field and undergoing an instantaneous common freeze-out. The blast-wave functional form is given by [11]

$$\frac{1}{p_T} \frac{dN}{dp_T} \propto \int_0^R \int_0^{m_T} l_0 \left( \frac{p_T \sinh \rho}{T_{\text{kin}}} \right) K_1 \left( \frac{m_T \cosh \rho}{T_{\text{kin}}} \right),$$

(1)

where the velocity profile $\rho$ is described by

$$\rho = \tanh^{-1} \beta_T = \tanh^{-1} \left( \left( \frac{r}{R} \right)^n \beta_s \right).$$

(2)

Here, $m_T = \sqrt{p_T^2 + m^2}$ is the transverse mass, $l_0$ and $K_1$ are the modified Bessel functions, $r$ is the radial distance from the center of the fireball in the transverse plane, $R$ is the radius of the fireball, $\beta_T(r)$ is the transverse expansion velocity, $\beta_s$ is the transverse expansion velocity at the surface, $n$ is the exponent of the velocity profile and $T_{\text{kin}}$ is the kinetic freeze-out temperature. The free parameters in the fit are $T_{\text{kin}}$, $\beta_s$, $n$ and a normalization parameter.

In contrast with the individual fits discussed above, the simultaneous fit to all particle species under consideration can provide insight on the (common) kinetic freeze-out properties of the system. It has
to be kept in mind, however, that the actual values of the fit parameters depend substantially on the fit range \[10\]. In spite of this limitations, the blast-wave model still provides a handy way to compare the transverse momentum distributions and their evolution in different collision systems.

The fit presented in this Letter is performed in the same range as in [9, 10], also including \(K^0_S\) and \(\Lambda(\bar{\Lambda})\). The ranges 0.5–1 GeV/c, 0.2–1.5 GeV/c, 0–1.5 GeV/c, 0.3–3 GeV/c and 0.6–3 GeV/c have been used for \(\pi^\pm\), \(K^\pm\), \(K^0_S\), \(p(\bar{p})\) and \(\Lambda(\bar{\Lambda})\) respectively. They have been defined according to the available data at low \(p_T\) and based on the agreement with the data at high \(p_T\), justified considering that the assumptions underlying the blast-wave model are not expected to be valid at high \(p_T\). Excluding the \(K^0_S\) and \(\Lambda(\bar{\Lambda})\) from the fit causes a negligible difference in the fit parameters.

The results are reported in Tab. 5 and Fig. 6. Variations of the fit range lead to large shifts (\(\sim 10\%\)) of the fit results (correlated across centralities), as discussed for Pb–Pb data in [9, 10].

As can be seen in Fig. 6, the parameters show a similar trend as the ones obtained in Pb–Pb. Within the limitations of the blast-wave model, this observation is consistent with the presence of radial flow in p–Pb collisions. A detailed comparison of the resulting fit parameters between Pb–Pb [9, 10] and p–Pb (Tab. 5) collisions shows that at similar \(dN_{ch}/dy\) the values of parameters for \(T_{kin}\) are similar for the two systems, whereas the \(\langle \beta_T \rangle\) values are significantly higher in p–Pb collisions. While in Pb–Pb
collisions high multiplicity events are obtained through multiple soft interactions, in p–Pb collisions the high multiplicity selection biases the sample towards harder collisions [57]. This could lead to the larger variations of the parameters using the different fit ranges as done in [9, 10] are also reported.

In a hydrodynamically expanding system, the flow coefficients \( \nu_n \) are also expected to exhibit a characteristic mass-dependent ordering depending on the transverse expansion velocity. To probe this picture, the \( p_T \) distributions are fitted simultaneously with the elliptic flow coefficient extracted from two particle correlations \( \nu_2 \) of \( \pi^\pm, K^\pm, p(\bar{p}) \) measured in [59], with the extension of the blast-wave model of [60]. This global fit is found to describe the \( \nu_2 \) of pions, kaons and protons relatively well, even if the quality of the fit is slightly worse than that of similar fits in Pb–Pb collisions, in particular for the proton \( \nu_2 \). Compared to the case where only the particle \( p_T \)-differential yields are used, the fit results of \( T_{\text{kin}} \) and \( \langle \beta_T \rangle \) differ by about 2% only.

Other processes not related to hydrodynamic collectivity could also be responsible for the observed results. This is illustrated in Fig. 6 which shows the results obtained by applying the same fitting procedure to transverse momentum distributions from the simulation of pp collisions at \( \sqrt{s} = 7 \) TeV with the PYTHIA8 event generator (tune 4C) [61], a model not including any collective system expansion. PYTHIA8 events are divided into several classes according to the charged-particle multiplicity at midrapidity \( |\eta_{\text{lab}}| < 0.3 \), namely \( N_{\text{ch}} \geq 5, 5 \leq N_{\text{ch}} < 10, 10 \leq N_{\text{ch}} < 15, 15 \leq N_{\text{ch}} < 20 \) and \( N_{\text{ch}} \geq 20 \). The fit results are shown for PYTHIA8 simulations performed both with and without the color reconnection mechanism [62, 63]. This mechanism is necessary in PYTHIA to describe the evolution of \( \langle p_T \rangle \) with multiplicity in pp collisions [57]. With color reconnection the evolution of PYTHIA8 transverse momentum distributions follows a similar trend as the one observed for p–Pb and Pb–Pb collisions at the LHC, while without color reconnection it is not as strong. This generator study shows that other final state mechanisms, such as color reconnection, can mimic the effects of radial flow [64].

The \( p_T \) distributions in the 5–10% bin are compared in Fig. 7 with calculations from the DPMJET, Kraków [65] and EPOS LHC 1.99 v3400 [66] models. The QCD-inspired DPMJET [40] generator, which is based on the Gribov-Glauber approach, treats soft and hard scattering processes in a unified way. It has been found to successfully reproduce the pseudorapidity distribution of charged particles in NSD p–Pb collisions at the LHC as reported in [33]. On the other hand, it cannot reproduce the \( p_T \) distribution [67] and the \( \langle p_T \rangle \) of charged particles [57]. In the Kraków hydrodynamic model, fluctuating initial conditions are implemented based on a Glauber model using a Monte Carlo simulation. The expansion of the system is calculated event-by-event in a 3+1 dimensional viscous hydrodynamic approach and the

<table>
<thead>
<tr>
<th>Event class</th>
<th>( \langle \beta_T \rangle )</th>
<th>( T_{\text{kin}} ) (GeV/c)</th>
<th>( n )</th>
<th>( \chi^2/\text{ndf} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5%</td>
<td>0.547 ± 0.006 +/-0.01</td>
<td>0.143 ± 0.005 +/-0.01</td>
<td>1.07 ± 0.03 +/-0.08</td>
<td>0.27</td>
</tr>
<tr>
<td>5–10%</td>
<td>0.531 ± 0.006 +/-0.01</td>
<td>0.147 ± 0.005 +/-0.01</td>
<td>1.14 ± 0.03 +/-0.1</td>
<td>0.33</td>
</tr>
<tr>
<td>10–20%</td>
<td>0.511 ± 0.007 +/-0.01</td>
<td>0.151 ± 0.005 +/-0.02</td>
<td>1.24 ± 0.04 +/-0.2</td>
<td>0.36</td>
</tr>
<tr>
<td>20–40%</td>
<td>0.478 ± 0.007 +/-0.02</td>
<td>0.157 ± 0.005 +/-0.02</td>
<td>1.41 ± 0.05 +/-0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>40–60%</td>
<td>0.428 ± 0.009 +/-0.03</td>
<td>0.164 ± 0.004 +/-0.02</td>
<td>1.73 ± 0.07 +/-0.4</td>
<td>0.43</td>
</tr>
<tr>
<td>60–80%</td>
<td>0.36 ± 0.01 +/-0.04</td>
<td>0.169 ± 0.004 +/-0.02</td>
<td>2.4 ± 0.11 +/-0.6</td>
<td>0.54</td>
</tr>
<tr>
<td>80–100%</td>
<td>0.26 ± 0.01 +/-0.03</td>
<td>0.166 ± 0.003 +/-0.02</td>
<td>3.9 ± 0.3 +/-0.7</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Table 5: Blast-wave parameters for simultaneous p–Pb fit of \( \pi^\pm, K^\pm, K_S^0, p(\bar{p}) \) and \( \Lambda(\bar{\Lambda}) \) in the fit ranges 0.5–1 GeV/c, 0.2–1.5 GeV/c, 0–1.5 GeV/c, 0.3–3 GeV/c and 0.6–3 GeV/c, respectively. Positive and negative variations of the parameters using the different fit ranges as done in [9, 10] are also reported.
freeze-out follows statistical hadronization in a Cooper-Frye formalism. In the EPOS model, founded on “parton-based Gribov Regge theory”, the initial hard and soft scattering creates “flux tubes” which either escape the medium and hadronize as jets or contribute to the bulk matter, described in terms of hydrodynamics. The version of the model used here implements a simplified treatment of the collective expansion [66]. EPOS predictions including the full hydrodynamic calculation [68] are not available at the time of writing.

The transverse momentum distributions in the 5-10% multiplicity class are compared to the predictions by Kraków for 11 \( \leq N_{\text{part}} \leq 17\), since the \( dN_{\text{ch}}/d\eta \) from the model matches best with the measured value in this class. DPMJET and EPOS events have been selected according to the charged particle multiplicity in the VZERO-A acceptance in order to match the experimental selection. DPMJET distributions are softer than the measured ones and the model overpredicts the production of all particles for \( p_T \) lower than about 0.5–0.7 GeV/c and underpredicts it at higher momenta. At high-\( p_T \), the \( p_T \) spectra shapes of pions and kaons are rather well reproduced for momenta above 1 and 1.5 GeV/c respectively. Final state effects may be needed in order to reproduce the data. In fact, The Kraków model reproduces reasonably well the spectral shapes of pions and kaons below transverse momenta of 1 GeV/c where hydrodynamic effects are expected to dominate. For higher momenta, the observed deviations for pions and kaons could be explained in a hydrodynamic framework as due to the onset of a non-thermal component. EPOS can reproduce the pion and proton distributions within 20% over the full measured range, while larger deviations are seen for kaons and lambdas. The yield and the shape of the \( p_T \) distributions of protons are rather well described by both models. In contrast to a similar comparison for Pb–Pb collisions [9, 10], in the Kraków calculation the yield of pions and kaons seems to be overestimated. It is interesting to notice that when final state interactions are disabled in EPOS, the description of many pp and p–Pb observables worsens significantly [69].

5 Conclusions

In summary, we presented a comprehensive measurement of \( \pi^\pm, K^\pm, K^0_S, p(\bar{p}) \) and \( \Lambda(\bar{\Lambda}) \) in p–Pb collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \) TeV at the LHC. These data represent a crucial set of constraints for the modeling of proton-lead collisions at the LHC. The transverse momentum distributions show a clear evolution with multiplicity, similar to the pattern observed in high-energy pp and heavy-ion collisions, where in the latter case the effect is usually attributed to collective radial expansion. Models incorporating final state effects give a better description of the data.

6 Acknowledgements

We are grateful to P. Bozek, T. Pierog, and K. Werner for the useful discussion and for providing the results of their calculations. The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

- State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia;
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);
- Ministry of Education and Youth of the Czech Republic;
- Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;
The European Research Council under the European Community’s Seventh Framework Programme;
Helsinki Institute of Physics and the Academy of Finland;
French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;
German BMBF and the Helmholtz Association;
General Secretariat for Research and Technology, Ministry of Development, Greece;
Hungarian OTKA and National Office for Research and Technology (NKTH);
Department of Atomic Energy and Department of Science and Technology of the Government of India;
Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro
Studi e Ricerche “Enrico Fermi”, Italy;
MEXT Grant-in-Aid for Specially Promoted Research, Japan;
Joint Institute for Nuclear Research, Dubna;
National Research Foundation of Korea (NRF);
CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin
American Network)
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Netherlands;
Research Council of Norway (NFR);
Polish Ministry of Science and Higher Education;
National Authority for Scientific Research - NASR (Autoritatea Naţională pentru Cercetare Știinţifică -
ANCS);
Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Fed-
eral Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian
Foundation for Basic Research;
Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy
Agency);
Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council (STFC);
The United States Department of Energy, the United States National Science Foundation, the State of
Texas, and the State of Ohio.

References

Multiplicity Dependence of $\pi^\pm$, $K^\pm$, $K^0_S$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in p–Pb Collisions

ALICE Collaboration

A  The ALICE Collaboration

Multiplicity Dependence of $\pi^\pm$, $K^\pm$, $K^0_S$, $p(f)$ and $\Lambda(\Lambda)$ in p-pBb Collisions

ALICE Collaboration

O. Ivanitskly, A. Jacholkowska, C. Jahnh, H.J. Jang, M.A. Janit, P.H.S.Y. Jayarathna,
S. Jeni, R.T. Jimenez Bustamante, P.G. Jones, J.H. Jung, A. Jusko, S. Kalchev, P. Kaliňák,
A. Kalwein, H. Kang, V. Kaplin, S. Kashiwagi, A. Karasu Uysal, O. Karavichev, T. Karavicheva,
E. Karpechev, A. Kantzev, U. Kebschull, R. Keide, B. Keiter, M.M. Khan, P. Kharitonov,
S. A. Khan, A. Kanzadee, Y. Kharlov, B. Kileng, T. Kim, B. Kim, D.J. King,
D.W. Kim, J.S. Kim, M. Kim, M. Kim, S. Kim, S. Kirsch, I. Kisele, S. Kiselev,
A. Kisie, G. Kiss, J.L. Kla, J. Klein, C. Klein-Bösing, A. Klug, M.L. Kniske,
A.G. Kneso, C. Kobbaj, M.K. Köhler, T. Kollegger, A. Kolovar, V. Kondratieva,
N. Kondratyeva, A. Konyshev, I. Kovalenko, M. Kowalski, K. Kozlov,
G. Koyzitha, Meethaleveed, J. Kraf, I. Králí, F. Krame, P. Kravčáka, M. Krelin,
M. Kret, M. Krivda, F. Krizek, P. Krzosek, M. Krzewick, V. Kucer,
Y. Kucheriav, T. Kugathasan, C. Kuhn, P.G. Kuijer, I. Kulakow, J. Kuma, J. Kurshil,
A.B. Kurepin, A. Kurepin, A. Kuryakin, V. Kushpi, S. Kushpi, M.J. Kweer, Y. Kwol,
P. Ladron de Guevara, C. Lagana Fernande, I. Lakomov, L. Lang, C. Lara,
A. Lardest, R.C. Lenmon, M. Lenhardt, V. Lent, M. Leoncini, I. Leon Monzoń, P. Lévy,
A. Lattuca, S.L. La Pointe, P. La Rocca, R. Leli, M. Lechman, S.C. Lei, G.R. Lee, I. Legran,
J. Lehner, R.C. Lenmon, M. Lenhardt, V. Lent, M. Leoncini, I. Leon Monzoń, P. Lévy,
S. L. Li, J. Lie, J. Li, J. Li, T. Lietav, S. Lindau, V. Lindenstruth, C. Lippmann, M.A. Lis,
H.M. Ljunggren, D.F. Lodati, P.J. Loena, V.R. Loggin, V. Logino, D. Lohne, N. Loizides,
X. Lope, E. López Torres, G. Lovbøhald, X.G. Li, L. Lu, P. Luettich, M. Lunardon, L.J. Luo,
G. Luparello, C. Luczi, P.M. Jacob, R. Main, A. Maevskaya, M. Mage, D.P. Mahapatra,
A. Main, M. Malae, I. Maldonado Cervantes, L.M. Malina, D.M. Mal Kević, P. Malzacher,
A. Mamontov, V. Manceau, W.F. Manke, P. Manso, V. Manzari, O. Marchisone,
A. March, G.V. Margiotti, A. Margotti, A. Martin, N. Marker, M. Marquard, I. Martshvili,
N.A. Martí, P. Martinengo, M.I. Martínez, G. Martínez García, J. Martin Blancho, Y. Martynov,
A. Mascioch, S. Masciocchi, M. Masfer, A. Mason, L. Massacrier, A. Mastroser, A. Matyal,
J. Mazet, R. Mazumder, F. Mazza, M.A. Mazzon, F. Medal, A. Menchaca-Rocha, R. Mercado Pérez,
M. Mereu, Y. Miakd, K. Mikhaylov, L. Milanov, P. Milosevic, A. Mischke, A.N. Mishra,
D. Miškowie, C. Mitu, J. Mlynář, B. Mohanty, L. Molnar, L. Montañez, T. Montes,
M. Monten, E. Monte, M. Morand, D.A. Moreira De Godoy, S. Moretti, A. Morreaux,
A. Morsch, V. Muccifora, E. Mudnic, S. Muhuri, M. Mukherje, J.H. Mülle, M.M. Munhoz,
S. Murray, L. Mus, B.K. Nand, R. Nani, E. Napp, C. Nattrass, T.K. Nayak,
S. Nazareno, A. Nedosekin, B. Netti, K. Nett, M. Niculescu, N. Nicolas, B.S. Nielsen, S. Nikolai,
S. Nikiš, V. Nikiš, B.S. Nilsen, M.S. Nilsson, F. Noferini, G. Noore, G. Norrkn,
A.C. Oliveira Da Silva, J. Onderwaart, C. Opped, A. Ortiz Velasque, A. Oscarsson,
J. Otwonowsk, K. Oyama, P. Pachmayr, M. Pachy, P. Pagani, G. Paid, F. Painke, C. Pajare,
S.K. Pal, A. Palad, A. Palmer, V. PapikVar, G.S. Pappalard, W.J. Pan, M. Passfeld,
D.I. Patalaakb, V. Paticch, M. Pau, P. Pawlak, T. Peitzm, H. Pereira Da Costa,
E. Pereira De Oliveira Filho, D. Peresont, C.E. Pérez Lara, D. Perrin, W. Perry, Y. Pesce,
Y. Pesot, V. Petrače, M. Petran, M. Petrini, G. Petrov, M. Petrovic, C. Pettit, S. Pian,
S. Pikna, P. Pillo, O. Pinazzo, P. Pinczyn, L. Pinski, N. Pin, D.B. Piyarathna, J. Planin,
M. Plokov, J. Plut, S. Pochybova, P.L.M. Podesta-Lerma, M.G. Poghosyan, B. Polichotoul,
A. Pot, S. Portoeuf-Houssai, V. Postpili, B. Potukchi, S.K. Prasad, R. Preghenell,
F. Prino, C.A. Prunea, I. Psenichnov, G. Puddu, V. Punin, J. Putsch, H. Qvigstad,
A. Rachevskiab, R. Rademakers, J.J. Ral, R. Rakotozaifindrab, L. Ramelli, S. Raniwal,
R. Raniwal, S.S. Raisen, T.B. Rascant, D. Rathe, W. Rauch, A.W. Rau, V. Razaz,
K.F. Read, J.J. Rea, K. Redlich, R.J. Reed, A. Rehrman, P. Reichel, M. Reichel,
F. Reid, G. Renford, D.R. Reolof, A.R. Resheti, F. Retting, J.P. Revo, K. Revers,
L. Riccati, R.A. Ricci, T. Richet, M. Richert, P. Riedel, W. Riegler, F. Riggs, A. Rivetto,
M. Rodgriguez Cahuantzi, A. Rodriguez Manse, P. Roe, E. Rogochay, S. Rohr, D. Röhrig,
D. Röhrig, R. Romiti, S. Ronchetti, P. Rosse, S. Rossegger, A. Ross, P. Roy, C. Roy,
R. Saho, P.K. Saho, J. Sain, H. Sakaguch, S. Saka, S. Sakat, J.A. Calda, C. Salgad,
J. Salzwede, S. Sambay, V. Sanon, C. Sanchez Castro, L. Sándor, A. Sandová,
M. Sandor, G. Santagiul, R. Santoro, D. Sarkard, E. Scapparoni, P. Scarlassara,
Collaboration Institutes

1 A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Budker Institute for Nuclear Physics, Novosibirsk, Russia
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l’IN2P3, Villeurbanne, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
10 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
11 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
12 Chicago State University, Chicago, United States
13 Commissariat à l’Energie Atomique, IRFU, Saclay, France
14 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

Affiliation notes

1 Deceased
2 Also at: M.V.Lomonosov Moscow State University, D.V.Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
3 Also at: University of Belgrade, Faculty of Physics and “Vinča” Institute of Nuclear Sciences, Belgrade, Serbia
4 Permanent address: Konkuk University, Seoul, Korea
5 Also at: Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

Multiplicity Dependence of $\pi^\pm$, $K^\pm$, $K^0_S$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in p–Pb Collisions

ALICE Collaboration
Multiplicity Dependence of $\pi^\pm$, $K^\pm$, $K_S^0$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in p–Pb Collisions

ALICE Collaboration

15 Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics and Technology, University of Bergen, Bergen, Norway
18 Department of Physics, Ohio State University, Columbus, Ohio, United States
19 Department of Physics, Sejong University, Seoul, South Korea
20 Department of Physics, University of Oslo, Oslo, Norway
21 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
22 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
24 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
29 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
30 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
31 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
32 Eberhard Karls Universität Tübingen, Tübingen, Germany
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Faculty of Engineering, Bergen University College, Bergen, Norway
35 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
36 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
37 Faculty of Science, P.J. Šafářik University, Košice, Slovakia
38 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
39 Gangneung-Wonju National University, Gangneung, South Korea
40 Helsinki Institute of Physics (HIP), Helsinki, Finland
41 Hiroshima University, Hiroshima, Japan
42 Indian Institute of Technology Bombay (IIT), Mumbai, India
43 Indian Institute of Technology Indore, India (IITI)
44 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
45 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
46 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
47 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
48 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
49 Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
50 Institute for High Energy Physics, Protvino, Russia
51 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
52 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
53 Institute for Theoretical and Experimental Physics, Moscow, Russia
54 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
55 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
56 Institute of Physics, Bhubaneswar, India
57 Institute of Space Science (ISS), Bucharest, Romania
58 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
59 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
60 iThemba LABS, National Research Foundation, Somerset West, South Africa
61 Joint Institute for Nuclear Research (JINR), Dubna, Russia
62 Korea Institute of Science and Technology Information, Daejeon, South Korea
63 KTO Karatay University, Konya, Turkey
64 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France
Multiplicity Dependence of $\pi^{\pm}$, $K^{\pm}$, $K_0^0$, $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ in p–Pb Collisions

ALICE Collaboration

65 Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
66 Laboratori Nazionali di Frascati, INFN, Frascati, Italy
67 Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
68 Lawrence Berkeley National Laboratory, Berkeley, California, United States
69 Lawrence Livermore National Laboratory, Livermore, California, United States
70 Moscow Engineering Physics Institute, Moscow, Russia
71 National Centre for Nuclear Studies, Warsaw, Poland
72 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
73 National Institute of Science Education and Research, Bhubaneswar, India
74 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
75 Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
76 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
77 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
78 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
79 Petersburg Nuclear Physics Institute, Gatchina, Russia
80 Physics Department, Creighton University, Omaha, Nebraska, United States
81 Physics Department, Panjab University, Chandigarh, India
82 Physics Department, University of Athens, Athens, Greece
83 Physics Department, University of Cape Town, Cape Town, South Africa
84 Physics Department, University of Jammu, Jammu, India
85 Physics Department, University of Rajasthan, Jaipur, India
86 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
87 Politecnico di Torino, Turin, Italy
88 Purdue University, West Lafayette, Indiana, United States
89 Pusan National University, Pusan, South Korea
90 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
91 Rudjer Bošković Institute, Zagreb, Croatia
92 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
93 Russian Research Centre Kurchatov Institute, Moscow, Russia
94 Saha Institute of Nuclear Physics, Kolkata, India
95 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
96 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
97 Sezione INFN, Bari, Italy
98 Sezione INFN, Bologna, Italy
99 Sezione INFN, Cagliari, Italy
100 Sezione INFN, Catania, Italy
101 Sezione INFN, Padova, Italy
102 Sezione INFN, Rome, Italy
103 Sezione INFN, Trieste, Italy
104 Sezione INFN, Turin, Italy
105 SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
106 Suranaree University of Technology, Nakhon Ratchasima, Thailand
107 Technical University of Split FESB, Split, Croatia
108 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
109 The University of Texas at Austin, Physics Department, Austin, TX, United States
110 Universidad Autónoma de Sinaloa, Culiacán, Mexico
111 Universidade de São Paulo (USP), São Paulo, Brazil
112 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
113 University of Houston, Houston, Texas, United States
114 University of Jyväskylä, Jyväskylä, Finland
115 University of Tennessee, Knoxville, Tennessee, United States
116 University of Tokyo, Tokyo, Japan
117 University of Tsukuba, Tsukuba, Japan
118 University of Zagreb, Zagreb, Croatia