Future Sensitivity Studies for Supersymmetry Searches at CMS at 14 TeV

Keith A. Ulmer

Department of Physics
University of Colorado, Boulder, CO 80309-0390

on behalf of the CMS Collaboration

The sensitivity for CMS searches for supersymmetry is evaluated in the context of an upgraded LHC at a center-of-mass energy of 14 TeV and an integrated luminosity of 300 fb$^{-1}$. Results for several key searches for supersymmetry are presented including direct and gluino-mediated stop and sbottom production and electroweak production of supersymmetric particles.

PRESENTED AT

DPF 2013
The Meeting of the American Physical Society
Division of Particles and Fields
Santa Cruz, California, August 13–17, 2013

1keith.ulmer@colorado.edu
1 Introduction

In the first three years of operation from 2010 to 2012 the Large Hadron Collider (LHC) at CERN and the Compact Muon Solinoid (CMS) experiment have performed remarkably well. A total of $\sim 25 \text{fb}^{-1}$ of data have been collected at center-of-mass energies up to 8 TeV, the highest ever achieved in a particle collider. After the discovery of the Higgs Boson, one of the most pressing questions to address at the LHC is what mechanism suppresses the quantum divergences that would appear as corrections to the Higgs mass. A natural solution to this hierarchy problem has justifiably become a key focus of current and future studies at the LHC.

A wide range of searches for beyond the standard model (BSM) physics has been performed at CMS and ATLAS, thus far with no evidence for BSM physics. The window for a natural solution to the hierarchy problem is near, with the data taken at the LHC after the current long shutdown expected to play a key role in discovering or ruling out such a scenario.

Projections for future sensitivity with up to 300fb^{-1} at $\sqrt{s} = 14$ TeV are presented here from several key searches for supersymmetry (SUSY) from the CMS experiment. Existing searches at 8 TeV are extrapolated for the projections by scaling the luminosity and taking into account the change in cross section with higher energy for signal and background. The projections are made based on 8 TeV Monte Carlo simulation samples and without optimizing the selections for searches at higher energies and high luminosities. The results may therefore be taken as conservative estimates as the true searches done at 14 TeV will be reoptimized.

The studies presented here were prepared as part of the CMS contribution to the Snowmass process to assess the long-term physics aspirations of the US high energy physics community. More details about these results and other CMS contributions to Snowmass may be found in the submitted whitepaper.

2 Squark discovery potential

A natural solution to the hierarchy problem is possible from supersymmetry if the partner of the top quark, the stop squark, provides a cancellation to the large radiative correction to the Higgs mass induced by top quark loops. To avoid fine tuning, the mass of the stop squark should be less than ~ 1 TeV. Performance in stop squark searches is benchmarked with the simplified model (SMS) of pair production of stops where each decays to a top quark and the lightest supersymmetric particle (LSP) with 100% branching fraction. All other sparticles are decoupled.

Future projections are based on the extrapolation of a CMS search at 8 TeV in final states with a single muon or electron. This analysis has a discovery reach for stop masses 300-500 GeV and a maximum neutralino (LSP) mass of 75 GeV for
center-of-mass energy of 8 TeV and an integrated luminosity of 20 fb$^{-1}$. The expected
event counts for signal and background are predicted by scaling the luminosity and
taking into account the change in cross section with higher energy. The systematic
uncertainty is considered in two scenarios. In “scenario A” the systematic uncertainty
on the background is scaled from the 8 TeV search by the ratio of the luminosities and
cross sections, as is done for the signal and background yields. In the less conservative
“scenario B” the uncertainty on the background is reduced by an additional factor
of the square root of the ratio of the luminosity and cross section for 8 and 14 TeV.
Scenario B is based on the assumption that increased statistics in the data control
regions will allow for better precision of the background estimation with additional
data. The results for both scenarios can be seen in the left plot of Fig. 1 where the
expected mass reach as functions of stop and LSP mass are shown for potential 5σ
discoveries.

In a natural SUSY scenario, the partner of the bottom quark, the sbottom, is also
expected to be light based on the SU(2) relationship to the stop. Future performance
for sbottom searches is benchmarked in the SMS with pair production of sbottom
squarks where each sbottom decays to a top quark and a chargino, with the chargino
subsequently decaying to a W and the LSP with 100% branching fraction. The
projection is extrapolated from the CMS search at 8 TeV for the final state with two
same-sign, isolated electrons or muons [8] with signal and background yields based
on scaling up the luminosity and cross section as in the stop search. Two scenarios
are considered for the systematic uncertainties on the background predictions. The
main contributions to the background are from two sources: rare standard model
events with two true same-sign leptons; and events with a non-prompt lepton, such
as from heavy flavor decays, that fakes the isolated lepton signature. The 8 TeV
result is limited by systematic uncertainties on both of these backgrounds with an
uncertainty of 50% for each. For scenario A the 50% uncertainty is retained. For a
less conservative scenario B, the uncertainty on the rare and fake backgrounds are
assumed to be able to be reduced to 30% and 40%, respectively. Results for the
sbottom projections in both scenarios are shown in the right plot of Fig. 1.

For both stops and sbottoms, the possible discovery reach is greatly extended for
a center-of-mass energy of 14 TeV with 300 fb$^{-1}$. Stop squark discovery reaches a
potential mass of ~ 900 GeV in the optimistic scenario with a massless LSP, while
potential sbottom discoveries are probed up to a sbottom mass of ~ 725 GeV.

3 Gluino discovery potential

In addition to light third generation squarks, naturalness also predicts gluinos that
are not much heavier than around 1 TeV. In the scenario with light stops and sbottoms,
and heavier other squarks, gluinos would decay into stops and sbottoms. In
In this section, we consider two such gluino decays where the squarks are offshell and represented by the three body gluino decays into q, q, LSP, where q represents either a top quark or a bottom quark.

For the gluino-mediated stop production scenario, an 8 TeV CMS analysis searching for final states with a single isolated electron or muon [9] is used to project sensitivity to gluino discovery at 14 TeV and 300 fb$^{-1}$. The numbers of signal and background events are scaled from the 8 TeV analysis as for the squark results. In this analysis the dominant uncertainty on the background yield is due to the statistical uncertainty of the number of events in relevant data control regions. This uncertainty will scale with the increase in statistics due to the higher luminosity and higher cross section, and therefore is expected to go down as the square root of the ratio of luminosity and cross section for the two scenarios. Other systematic contributions to the background yield are of minimal importance, and thus only one scenario is presented for this study. The 5σ discovery sensitivity reach for the projections are shown in the left plot of Fig. 2.

The CMS sensitivity for gluino-mediated sbottom production is studied by extrapolating from an all hadronic search performed at 8 TeV [10]. As for the other projections, the expected signal and background yields are estimated by scaling the 8 TeV results by the increased luminosity and cross sections. As for the gluino-mediated stop search, the uncertainty on the background yield is dominated by statistical uncertainties in data control regions, and thus is expected to scale as the square root of the ratio of the increased luminosity and cross sections between 8 and 14 TeV. The expected 5σ discovery reach is shown in the right plot of Fig. 2. For both of the gluino decays studied, the sensitivity is greatly extended for 300 fb$^{-1}$ at 14 TeV with the discovery reach in each case extending beyond gluinos with mass of 1.9 TeV.
4 Electroweak SUSY discovery potential

If gluinos and squarks are too heavy to be produced abundantly at the LHC, direct production of electroweak SUSY particles may offer the best discovery potential for supersymmetry. Electroweak production is benchmarked here by an SMS with direct production of a neutralino and a chargino ($\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$), where the neutralino decays into a Z boson and the LSP, while the chargino decays into a W boson and the LSP, each with 100% branching fraction. The future sensitivity for this channel is estimated by projecting an 8 TeV CMS search for a final state with three or more leptons [11].

Expected signal and background yields are projected as for the other searches, and two scenarios are considered for the uncertainty of the background yield as described for the direct stop search. The results of the projections for expected 5σ discovery sensitivity are shown in Fig. 3. The low cross section for electroweak SUSY production does not allow for a significant discovery reach with the 8 TeV search, while the projection to 300 fb$^{-1}$ at 14 TeV shows that discovery over a significant range will be possible.

5 Conclusions

The sensitivity of CMS searches for supersymmetry with an upgraded LHC at a center-of-mass energy of 14 TeV and 300 fb$^{-1}$ are presented. For each of gluino, squark and gaugino production the discovery potential is significantly extended in the upgraded scenario compared to the current (null) results obtained with the 8 TeV data. In particular, the region of parameter space of interest for discovering or ruling out a natural solution to the hierarchy problem will be probed.

Figure 2: Projected 5σ discovery reach for gluino to top, top, LSP (left) and gluino to bottom, bottom, LSP (right) simplified models.
Figure 3: Projected 5σ discovery reach for direct $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ production.

References

