Measurements of $B \to DK$ decays to constrain the CKM Unitarity Triangle angle γ and related results at LHCb

Daniel Craik

Department of Physics
University of Warwick, Coventry, UK

Constraints on the CKM angle γ are presented from GLW, ADS, and GGSZ analyses of $B^\pm \to DK^{\pm}$ at the LHCb experiment. The branching fractions of $B^0 \to D^0 K^+\pi^-$ and $B^0_s \to D^0 K^-\pi^+$ are also reported, measured relative to the related mode $B^0 \to \bar{D}^0 \pi^+\pi^-$.

PRESENTED AT

DPF 2013
The Meeting of the American Physical Society
Division of Particles and Fields
Santa Cruz, California, August 13–17, 2013

1On behalf of the LHCb Collaboration.
1 Measurements of γ from $B^{\pm} \to DK^{\pm}$

The CKM angle $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ is currently the least well-constrained angle in the Unitarity Triangle. So far, the most-sensitive measurements of γ from a single experiment have been performed by Belle [1] and BaBar [2]. These measurements yield values of $(68^{+15}_{-14})^\circ$ and $(69^{+17}_{-16})^\circ$, respectively.

Tree-level processes such as $B^{\pm} \to DK^{\pm}$ provide a theoretically clean measurement of γ with no contributions from new physics processes. This measurement can be compared with measurements from loop-mediated processes, which are sensitive to new physics, to provide a test of the Standard Model. The current limits on the CKM Unitarity Triangle due to tree-level and loop processes, as calculated by the CKMFitter group [3], are shown in Fig. 1.

Figure 1: Constraints on the CKM Unitarity Triangle due to (left) tree-level processes and (right) loop-mediated processes.

1.1 GLW/ADS analysis of $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$

The GLW method [4] uses D decays to CP eigenstates such as K^+K^- and $\pi^+\pi^-$. Decays can proceed either via a D^0 or a \bar{D}^0 with a phase difference of $\delta_{B^{\pm}} + \gamma$. Suppression in the decay via D^0 with respect to the \bar{D}^0 decay limits interference to $O(10\%)$ in $B^{\pm} \to DK^{\pm}$ and $O(1\%)$ in $B^{\pm} \to D\pi^{\pm}$.

The ADS method [5] uses D decays to quasi-flavour-specific states such as π^+K^- and $\pi^-K^+\pi^+\pi^-$. Here the suppression of one of the B decays is partially balanced by the suppression of one of the D decays, giving larger interference terms while also introducing an additional phase shift of δ_D.

Analyses have been performed on $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$ with the D meson reconstructed from the final states K^+K^-, $\pi^+\pi^-$, $K^+\pi^-$, π^+K^-, $\pi^-K^+\pi^+\pi^-$ and $\pi^-K^+\pi^+\pi^-$ using LHCb data corresponding to 1 fb$^{-1}$ of pp collisions at a centre of mass energy of 7 TeV [6,7]. The invariant mass distributions of the two- and four-body suppressed ADS modes are shown in Fig. 2 and Fig. 3, respectively. The
Figure 2: Fits to the invariant mass distributions of the two-body suppressed ADS mode $\pi^\pm K^\pm$ in (top) $B^+ \rightarrow DK^+$ and (bottom) $B^- \rightarrow D\pi^+$. The $B^+ \rightarrow DK^+$ and $B^- \rightarrow D\pi^+$ components are shown in red and green, respectively. The shaded component indicates partially reconstructed background, the dashed magenta line corresponds to partially reconstructed $\Lambda^0_b \rightarrow \Lambda^+_c h^-$ and the total shape also includes a combinatoric background.

The values obtained for each of these observables can be found in Refs. [6, 7]. These variables serve as inputs for the combined γ measurements in Section 1.3 and Section 1.4.

1.2 GGSZ analysis of $B^\pm \rightarrow DK^\pm$

The GGSZ method [8] exploits the variation of the strong phase δ_D across the Dalitz plot in D decays to three-body self-conjugate states such as $K_S^0\pi^+\pi^-$ and $K_S^0K^+K^-$. The Dalitz plot is divided into bins, as shown in Fig. 4, chosen to maximise statistical sensitivity. The populations of B^+ and B^- decays in each bin are given by
Figure 3: Fits to the invariant mass distributions of the four-body suppressed ADS mode $\pi^{\mp}K^{\pm}\pi^{\mp}\pi^{\pm}$ in (top) $B^{\mp} \rightarrow DK^{\mp}$ and (bottom) $B^{\mp} \rightarrow D\pi^{\mp}$. The $B^{\mp} \rightarrow DK^{\mp}$ and $B^{\mp} \rightarrow D\pi^{\mp}$ components are shown in red and green, respectively. The shaded component indicates partially reconstructed background, the dashed magenta line corresponds to partially reconstructed $B^{0}_{s} \rightarrow DK^{-}\pi^{+}$ and the total shape also includes a combinatoric background.

\[N^{+}_{\pm i} = h_{B^{+}} \left(K^{+}_{\pm i} + (x_{+}^2 + y_{+}^2)K_{\pm i} + 2\sqrt{K^{+}_{\pm i}}(x_{+}c_{\pm i} + y_{+}s_{\pm i}) \right), \]
\[N^{-}_{\pm i} = h_{B^{-}} \left(K^{-}_{\pm i} + (x_{-}^2 + y_{-}^2)K_{\mp i} + 2\sqrt{K^{-}_{\pm i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i}) \right), \]

where $K_{\pm i}$ is the efficiency corrected yield in bin $\pm i$ due to D^{0} flavour tagged events from BaBar [9,10] and $c_{\pm i}$ and $s_{\pm i}$ are the cosine and sine of the strong phase δ_{D} in bin $\pm i$ from CLEO-c [11].

The remaining parameters are left free in the fit to the data: $h_{B^{\pm}}$ are normalisation factors for B^{\pm}, and $x_{\pm} = r_{B}\cos(\delta_{B} \pm \gamma)$ and $y_{\pm} = r_{B}\sin(\delta_{B} \pm \gamma)$ are the Cartesian parameters, which are sensitive to γ.

Analyses have been performed on $B^{\pm} \rightarrow DK^{\pm}$ with the D meson reconstructed in the final states $K^{0}_{s}\pi^{+}\pi^{-}$ and $K^{0}_{s}K^{+}K^{-}$ using LHCb data corresponding to 1 fb$^{-1}$ of pp collisions at a centre of mass energy of 7 TeV [12] and 2 fb$^{-1}$ of pp collisions at a centre of mass energy of 8 TeV [13]. The values obtained for the Cartesian parameters in the 8 TeV analysis are

\[x_{+} = (-8.7 \pm 3.1\text{(stat.)} \pm 1.6\text{(syst.)} \pm 0.6\text{(ext.)}) \times 10^{-2}, \]
\[x_{-} = (5.3 \pm 3.2\text{(stat.)} \pm 0.9\text{(syst.)} \pm 0.9\text{(ext.)}) \times 10^{-2}, \]
\[y_{+} = (0.1 \pm 3.6\text{(stat.)} \pm 1.4\text{(syst.)} \pm 1.9\text{(ext.)}) \times 10^{-2}, \]
\[y_{-} = (9.9 \pm 3.6\text{(stat.)} \pm 2.2\text{(syst.)} \pm 1.6\text{(ext.)}) \times 10^{-2}, \]
Figure 4: Binning schemes used for the Dalitz plots of (left) \(D \to K_S^0 \pi^+ \pi^- \) and (right) \(D \to K_S^0 K^+ K^- \). Bins in the top-left half of the plots \(m_{K^0 h^-}^2 > m_{K^0 h^+}^2 \) are identified as \(+i\) and bins in the bottom-right half are labeled \(-i\).

where the third uncertainty is due to the CLEO-c strong phase measurements used in the fit.

Combining these values with the results from the 7 TeV analysis and fitting for \(\gamma, r_B \) and \(\delta_B \) yields values of \((57 \pm 16)^\circ, (8.8^{+2.3}_{-2.4}) \times 10^{-2} \) and \((124^{+15}_{-17})^\circ\), respectively, where the values for \(\gamma \) and \(\delta_B \) are modulo \(180^\circ\). Two-dimensional projections of the confidence regions for these parameters are shown in Fig. 5.

Figure 5: Two-dimensional projections of the confidence regions onto the (left) \((\gamma, r_B)\) and (right) \((\gamma, \delta_B)\) planes. Contours indicate the 1, 2 and 3\(\sigma\) boundaries and diamonds mark the central values.

1.3 Combination of results from 1 fb\(^{-1}\) measurements

The results in Section 1.1 and Section 1.2 are combined using a frequentist approach to obtain a more constraining measurement of \(\gamma \) [14]. In addition to these results
Table 1: Best-fit values and confidence intervals for γ from the combination of D_K and D_π measurements.

<table>
<thead>
<tr>
<th>combination</th>
<th>γ</th>
<th>68% CL</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_K</td>
<td>72.0°</td>
<td>[56.4, 86.7]°</td>
<td>[42.6, 99.6]°</td>
</tr>
<tr>
<td>D_π</td>
<td>18.9°</td>
<td>[7.4, 99.2]° \cup [167.9, 176.4]°</td>
<td>-</td>
</tr>
<tr>
<td>D_K and D_π</td>
<td>72.6°</td>
<td>[55.4, 82.3]°</td>
<td>[40.2, 92.7]°</td>
</tr>
</tbody>
</table>

Further measurements are included to improve the fit: measurements of the strong phases and coherence factors for $D \to \bar{K}\pi$ and $D \to K\pi\pi\pi$ decays from CLEO-c [15], CP asymmetry measurements of the neutral D mesons from the Heavy Flavour Averaging Group [16] and charm mixing parameters from LHCb [17]. A likelihood is constructed from the measured observables as

$$\mathcal{L}(\tilde{\alpha}) = \prod_i \xi_i(A_{obs}^i|\tilde{\alpha}),$$

where the sum is over the different measurements, $\tilde{\alpha}$ is the set of parameters and ξ_i denotes the likelihood probability density functions (PDFs) of the observables A_{obs}^i. For most observables a Gaussian PDF is assumed, however, where highly non-Gaussian behaviour is observed, the experimental likelihood is used.

A combined γ measurement has been performed including the results from Section 1.1 and a subset of the results from Section 1.2 corresponding to 1 fb$^{-1}$ of pp collisions at a centre of mass energy of 7 TeV [12]. The best-fit values and confidence intervals (modulo 180°) of γ are given in Table 1 and the $1-\text{CL}$ curves for γ are shown in Fig. 6.

Figure 6: $1-\text{CL}$ curves for γ from the combined 1 fb$^{-1}$ GLW/ADS and 1 fb$^{-1}$ GGSZ measurements using (left) only D_K, (centre) only D_π and (right) both decay modes.

1.4 Combination including 3 fb$^{-1}$ GGSZ measurement

Another combination [18] has been performed that incorporates all of the results reported in Section 1.2 but only those observables from Section 1.1 corresponding
Table 2: Best-fit values and confidence intervals for γ, r_B and δ_B from the combination of DK measurements including GGSZ measurements from 3 fb$^{-1}$ of data.

<table>
<thead>
<tr>
<th>quantity</th>
<th>value</th>
<th>68% CL</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>67.2°</td>
<td>[55.1, 79.1]°</td>
<td>[43.9, 89.5]°</td>
</tr>
<tr>
<td>r_B</td>
<td>0.0923</td>
<td>[0.0843, 0.1001]</td>
<td>[0.0762, 0.1075]</td>
</tr>
<tr>
<td>δ_B</td>
<td>114.3°</td>
<td>[101.3, 126.3]°</td>
<td>[88.7, 136.3]°</td>
</tr>
</tbody>
</table>

to $B^\pm \to DK^\pm$ decays. Mixing in the neutral D mesons is also neglected in the equations used for the observables in this combination.

The best-fit values and confidence intervals (all modulo 180°) for γ, r_B and δ_B are given in Table 2. Figure 7 and Figure 8 show the 1 − CL curve for γ, and the 2D projection of the likelihood in γ and r_B, respectively.

Figure 7: 1 − CL curve for γ from the combined 1 fb$^{-1}$ GLW/ADS and 3 fb$^{-1}$ GGSZ measurements.

2 Measurement of $B^{0}_{(s)} \to DK\pi$ branching fractions

The decay mode $B^{0} \to DK^{+}\pi^{-}$ has potential for a significant future measurement of γ [10][21]. Sensitivity to γ comes from the interference of $b \to c$ and $b \to u$ amplitudes of a similar magnitude. $B^{0}_{s} \to DK^{-}\pi^{+}$ and the related mode $B^{0}_{s} \to D^{*}K^{-}\pi^{+}$ form important backgrounds to this mode, therefore, an understanding of these modes is necessary.

Branching fraction measurements of $B^{0} \to DK^{+}\pi^{-}$ and $B^{0}_{s} \to DK^{-}\pi^{+}$, relative to the normalisation mode $B^{0} \to D^{\pi^{+}\pi^{-}}$, have been made using LHCb data corresponding to 1 fb$^{-1}$ of pp collisions at a centre of mass energy of 7 TeV [22].
The invariant mass distributions of $D\pi\pi$ and $DK\pi$ candidates where the D is reconstructed from $\bar{D}^0 \to K^+\pi^-$ are shown in Fig. 9. The measured relative branching fractions are

$$\frac{B\left(B^0 \to \bar{D}^0 K^+\pi^-\right)}{B\left(B^0 \to \bar{D}^0 \pi^+\pi^-\right)} = 0.106 \pm 0.007 \text{ (stat.)} \pm 0.008 \text{ (syst.)},$$

$$\frac{B\left(B^0_{s} \to \bar{D}^0 K^-\pi^+\right)}{B\left(B^0 \to \bar{D}^0 \pi^+\pi^-\right)} = 1.18 \pm 0.05 \text{ (stat.)} \pm 0.12 \text{ (syst.)}.$$

Figure 9: Fits to the $B^0_{(s)}$ candidate invariant mass distributions for the (a) $D\pi\pi$ and (b) $DK\pi$ samples. Data points are shown in black, the full fitted PDFs as solid blue lines and the components as detailed in the legends.
These relative measurements yield absolute branching fractions of

\[
\mathcal{B}\left(B^0 \to D^0 K^+\pi^-\right) = (9.0 \pm 0.6 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.9(\mathcal{B})) \times 10^{-5},
\]

\[
\mathcal{B}\left(B^0_s \to D^0 K^-\pi^+\right) = (1.00 \pm 0.04 \text{ (stat.)} \pm 0.10 \text{ (syst.)} \pm 0.10(\mathcal{B})) \times 10^{-3},
\]

where the third uncertainty arises from the uncertainties on \(\mathcal{B}(B^0 \to D^0 \pi^+\pi^-)\). This is the most precise measurement of \(\mathcal{B}(B^0 \to D^0 K^+\pi^-)\) to date and the first measurement of \(\mathcal{B}(B^0_s \to D^0 K^-\pi^+)\).

Although no quantitative analysis of the Dalitz plots has yet been attempted, the Dalitz plot distributions obtained (corrected for efficiency) are presented in Fig. 10.

Figure 10: Efficiency corrected Dalitz plot distributions for (a) \(B^0 \to D^0 \pi^+\pi^-\), (b) \(B^0 \to D^0 K^+\pi^-\) and (c) \(B^0_s \to D^0 K^-\pi^+\) candidates obtained from the signal weights.

3 Conclusions and prospects

The \(B^\pm \to D K^\pm\) decay mode offers an excellent opportunity to measure the CKM angle \(\gamma\) from Standard Model processes. The combination in Section 1.4 gives the most sensitive measurement of \(\gamma\) from a single experiment so far, yielding a value of \((67 \pm 12)^\circ\). This measurement is expected to improve further with the completion of a GLW/ADS analysis on the remaining 2 fb\(^{-1}\) of LHCb data currently available. In addition, other modes such as \(B^0 \to D K^+\pi^-\) offer great prospects for future \(\gamma\) measurements.

ACKNOWLEDGMENTS

This work is funded in part by the European Research Council under FP7 and by the United Kingdom’s Science and Technology Facilities Council.
References

