Sergey Panitkin¹, Fernando Barreiro Megino², Jose Caballero Bejar¹, Doug Benjamin³, Alessandro Di Girolamo², Ian Gable⁴, Val Hendrix⁵, John Hover¹, Katarzyna Kucharczyk², Ramon Medrano Llamas², Peter Love⁶, Henrik Ohman⁷, Michael Paterson⁴, Randall Sobie⁴, Ryan Taylor⁴, Rodney Walker⁸, Alexander Zaytsev¹

on behalf of the ATLAS Collaboration

1: Brookhaven National Laboratory, Upton, USA
2: CERN, Geneva, Switzerland
3: Duke University, Durham, USA
4: University of Victoria, Victoria, Canada
5: Lawrence Berkeley National Lab, Berkeley, USA
6: Lancaster University, Lancaster, UK
7: Uppsala University, Uppsala, Sweden
8: Ludwig-Maximillian Universitat, Munich, Germany

CHEP 2013
Amsterdam, The Netherlands
Outline

- Introduction
- Private and Academic Clouds
 - Cloud Scheduler and “Grid of Clouds”
 - ATLAS HLT farm
- Public and Hybrid Clouds
 - Amazon EC2
 - Google Compute Engine
A few years ago the ATLAS Experiment set up cloud computing project to exploit virtualization and clouds

- Utilize private and public clouds as an extra computing resource
- Mechanism to cope with peak loads on the Grid

Since then we gained experience with variety of cloud platforms

- Amazon EC2
- Helix Nebula project (CloudSigma, T-Systems and ATOS)
- FutureGrid in USA, Synnefo cloud (U. Victoria)
- Private clouds based on OpenStack, CloudStack, OpenNebula, etc…

In this talk we will discuss ATLAS Cloud R&D activities that took place since CHEP 2012
A “Grid of Clouds”

Cloud Flavour
- Nimbus, Xen (green)
- Nimbus, KVM (yellow)
- OpenStack, KVM (orange)

Cloud Status
- In use (circle)
- Testing/Commissioning (square)
A Python package for managing VMs on IaaS clouds, based on the requirements of HTCondor jobs

Users submit HTCondor jobs, with additional attributes specifying VM properties

Developed by UVic and NRC since 2009

Used by ATLAS, BaBar, CANFAR
 - And possibly Belle II in the future

More information about Cloud Scheduler:

- https://github.com/hep-gc/cloud-scheduler
- Research Computing in a Distributed Cloud Environment (Proc. of HPCS 2010)
- A Batch System For HEP Applications on a Distributed IaaS Cloud (Proc. of CHEP 2010)
Cloud Job Flow

User → Submit → Panda Queue → Run → Virtual Machine

Check Available Jobs

Pilot Factory → Submit → Condor

Cloud Scheduler

Cloud Interface → Request → Boot → Run → User Job

Pilot Job
Key Features of Cloud Scheduler

- Dynamically manages quantity and type of VMs in response to user demand
- Easily connects to many IaaS clouds, and aggregates their resources together
- Complete solution for harnessing IaaS resources in the form of an ordinary HTCondor batch system
- Generic tool, not grid-specific or HEP-specific
- `pip install cloud-scheduler`
Cloud Scheduler Image

- Dual hypervisor image. Can run on KVM or Zen
- Configuration management with Puppet
- Use one image on all (12+) clouds
- Customized CernVM batch node v2.7
- Use whole node VM for better efficiency
 - Cache sharing instead of disk contention
 - Fewer image downloads when ramping up
Production on IaaS Cloud

preliminary tests Oct. 2011
standard operation Apr. 2012

- GRIDPP_CLOUD: added May 2013
- CA-JADE: testing now

Over 1M jobs completed over past 18 months
(not including GRIDPP_CLOUD)
Long LHC shutdown provided an opportunity to utilize ATLAS High Level Trigger (HLT) farm for ATLAS offline computing

- Prototyping started in February 2013
- Production operation since June 2013
- Resources organized as an IaaS cloud using OpenStack
 - Resources are presented to users as a PanDA queue
 - ~1500 HLT compute nodes located at Point 1
 - ~17.1k batch slots are available (~2.1k VMs) for production
 - + 0.7k may become available in the near future
Production operation since June 2013

- Coordinated with ATLAS TDAQ activities. TDAQ has top priority
- The largest ATLAS Grid site when running
- As of now more than **1.4M** jobs were finished on HLT farm cloud
- **21.6%** job failure rate due to opportunistic nature of resources (hardware repurposed for TDAQ needs)
- That translates in **8.6%** CPU time loss over the period of running
- Workload related job failure rate is on the level of **0.1%**
Overall 55% of time was given to Sim@P1.
RACF BNL group has received grant allocation from Amazon EC2 in 2013

The idea of the project was to set up a hybrid cloud with some of the resources at BNL T1 and “elastic” part of the cloud on Amazon EC2

We wanted to try Amazon EC2 spot market
 - Cheapest resources, but price and availability fluctuations
 - Dynamic environment - opportunistic resources

We wanted to create one cloud spanning geographically distributed EC2 sites
Hybrid Cloud: BNL OpenStack + EC2

Static (Local or Remote)
- Panda
- SITE
 - Query Panda for Activated
- COLLECTOR HOST
 - Condor
 - Collector * 20
- APF: Local Pilot Submission
- APF: Remote VM Invocation
 - Schedd
 - Condor-G

Cloud/Dynamic
- Job Dispatch
- EC2 Cloud
- VM
- WN
- Dynamic VM invocation (EC2, etc.)

John Hover, BNL
Hybrid cloud on EC2 results

- Ran ~5000 EC2 VMs for about 3 weeks
- Used 3 EC2 zones – Virginia, California, Oregon
- Added to the pool ~250 VM on OpenStack at BNL
- Ran ATLAS Monte Carlo production jobs
- Total cost ~ $13k, only $750 for data transfer
- Actual spot price paid was very close to baseline – less than $0.01 per hour for m1.small type of instance
- Reliable operations of EC2 platform
- Poor job efficiency on EC2 due to long running jobs.
 - It’s better to run short jobs on the EC2 spot market!
ATLAS was invited to participate in GCE closed preview period in August 2012

- Brand new cloud platform, new cloud API, modern hardware
- Google agreed to allocate additional resources for ATLAS after the initial period
 - ~5M core-hours, 4k cores for about 2 months, (original preview allocation was 1k cores)
- Resources were organized as HTCondor based PanDA queue
 - Centos 6 based custom built images, with SL5 compatibility libraries to run ATLAS software, CVMFS
 - Whole-node, 8 core instances with ~3.4 TB of ephemeral storage
 - HTCondor head nodes and web proxies at BNL
 - Output automatically transferred to storage at BNL
- Transparent inclusion of the cloud resources into ATLAS Grid
- The idea was to test long term stability while running a cloud cluster similar in size to Tier 2 site in ATLAS
- Planned as a production type of run. Delivered to ATLAS as a resource and not as an R&D platform
Running on GCE

- We ran for about 8 weeks (2 weeks were planned for scaling up)
- We ran computationally intensive workloads
 - Physics event generators, Fast detector simulation, Full detector simulation
- Very stable running on the GCE side
- Most problems that we had were on the ATLAS side, not cloud related
- Overall failure rate ~6%, mostly during start up and debugging period
- Completed 458k jobs, generated and processed about 214M events
- Also ran several smaller projects
 - Large PROOF farms on GCE
 - Tested data transfer from Federated ATLAS Xroot (FAX)
- We were invited to give a talk at Google IO Conference in May 2013 about the project
Failed and Finished Jobs on GCE

- Most of the job failures occurred during start up and scale up phase – as expected
- Most of the failures were on the ATLAS side – file transfer, LFC problems, HTCondor
- No failures were due to GCE problems
Data transfers from FAX to GCE

- Data transfer from Federated ATLAS Xroot to GCE in multisource/multi-stream mode
- Xroot cluster on GCE using ephemeral storage with 1.7 TB volumes per node
- Average transfer rate: 57 MB/s (single source xrdcp rate 40 MB/s)
- Note, this is over public networks
ATLAS Cloud R&D has been an active and successful project

Significant computational resources were delivered to ATLAS in the form of IaaS clouds in the past 18 months

Production scale projects on private and academic clouds

- Cloud Scheduler/IaaS cloud has been running for the past 18 months on infrastructure distributed worldwide
- Large scale OpenStack installation on ATLAS HLT farm at CERN
 - Comparable to Tier 1 in CPU capacity (2.1k VMs, 17.1k batch slots)

Active engagement with commercial cloud providers

- Large scale production run on Amazon EC2
 - Successfully utilized EC2 spot priced resources at scale (~5k running VMs at one time)
 - Operated hybrid private-public cloud spanning EC2 and OpenStack at BNL
- Large scale production run on Google Compute Engine for about 2 months
 - ~500 VMs, ~4k cores on a new high performance cloud platform