Measurement of the production cross section for a W boson and two b jets in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

The production cross section for a W boson and two b jets is measured using proton-proton collisions at $\sqrt{s} = 7$ TeV in a data sample collected with the CMS experiment at the LHC corresponding to an integrated luminosity of 5.0 fb$^{-1}$. The $W + b\bar{b}$ events are selected in the $W \rightarrow \mu\nu$ decay mode by requiring a muon with transverse momentum $p_T > 25$ GeV and pseudorapidity $|\eta| < 2.1$, and exactly two b-tagged jets with $p_T > 25$ GeV and $|\eta| < 2.4$. The measured $W + b\bar{b}$ production cross section in the fiducial region, calculated at the level of final-state particles, is $\sigma(pp \rightarrow W + b\bar{b}) \times B(W \rightarrow \mu\nu) = 0.53 \pm 0.05$ (stat.) ± 0.09 (syst.) ± 0.06 (th.) ± 0.01 (lum.) pb, in agreement with the standard model prediction. In addition, kinematic distributions of the $W + b\bar{b}$ system are in agreement with the predictions of a simulation using MADGRAPH and PYTHIA.

Submitted to Physics Letters B
1 Introduction

This Letter reports a study of the production of a W boson and two b jets in proton-proton collisions, where the W boson is observed via its decay to a muon and a neutrino, and each b jet is identified by the presence of a b hadron with a displaced decay vertex. This production channel provides an important testing ground for standard model (SM) predictions. Previous measurements of vector boson production with associated b-quark jets have shown varying levels of agreement with theoretical calculations [1–3]. The production mechanism of b\(\bar{b}\) pairs together with W or Z bosons has been the subject of extensive theoretical studies and is included in different simulation programs [4–6] but is still not thoroughly understood. According to the SM, the primary contribution for b\(\bar{b}\) production in association with a W boson is due to the splitting of a gluon into a b\(\bar{b}\) pair. Two different models for b-quark production are available, depending on whether there are four or five quark flavors in the proton parton distribution functions (PDFs) [7]. Therefore, a precise experimental measurement of the W\(\rightarrow\mu\nu\) + b\(\bar{b}\) production cross section provides important input to the refinement of theoretical calculations in perturbative quantum chromodynamics (QCD), as well as the validation of Monte Carlo (MC) techniques.

A key feature of this analysis compared to others [1–3] is the b\(\bar{b}\) phase space covered. Previous measurements have concentrated on W-boson production with at least one observed b-quark jet, for which the predictions differ from the experimental results. This difference is larger in the production of events with a collinear b\(\bar{b}\) pair that is reconstructed as one jet [8, 9], a topology afflicted by significant theoretical uncertainties. Focusing on the observation of W-boson production with two well-separated b-quark jets, this analysis provides a complementary approach by probing a kinematic regime that is better understood theoretically.

The production of W + b\(\bar{b}\) events is an irreducible background in analyses involving two separated and well-identified b jets, such as SM Higgs boson production in association with an electroweak gauge boson and subsequent decay to b\(\bar{b}\). The discovery of a Higgs boson with a mass of approximately 125 GeV by the ATLAS and CMS Collaborations [10–12] motivates further studies to determine the coupling of this new boson to b quarks.

Other SM processes produce events with an experimental signature similar to the one studied here. These include production of top quark-antiquark pairs (t\(\bar{t}\)), associated production of a W boson with light jets misidentified as b-quark jets, single-top-quark production, multijet production (henceforth labeled “QCD multijet”), Drell–Yan production associated with jets, and electroweak diboson production.

2 CMS detector and event samples

This analysis uses a sample of proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 7\) TeV, collected in 2011 with the Compact Muon Solenoid (CMS) experiment at the LHC, and corresponding to an integrated luminosity \(\int \mathcal{L} dt = 5.0\) fb\(^{-1}\). While the CMS detector is described in detail elsewhere [13], the key components for this analysis are summarized below. The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle \(\theta\) is measured from the positive z axis and the azimuthal angle \(\phi\) is measured in the x-y plane in radians. The magnitude of the transverse momentum \(p_T\) is calculated as \(p_T = \sqrt{p_x^2 + p_y^2}\). A superconducting solenoid is the central feature of the CMS detector, providing an axial magnetic field of 3.8 T parallel to the beam direction. A silicon pixel and
strip tracker, a crystal electromagnetic calorimeter, and a brass/scintillator hadron calorimeter are located within the solenoid. A quartz-fiber Cherenkov calorimeter extends the coverage to $|\eta| < 5.0$ where $\eta = -\ln[\tan(\theta/2)]$. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events using information from the calorimeters and muon detectors. A high-level trigger processor farm decreases the event rate to a few hundred hertz, before data storage.

A number of MC event generators are used to simulate the signal and background event samples. Vector boson + jets and $t\bar{t}$ + jets production are generated at leading order (LO) using MADGRAPH 5.1 [6] interfaced with PYTHIA 6.4.24 [14] for hadronization. The W + jets sample was generated using the five-flavor scheme, which includes massless b quarks in the initial state. Single-top-quark event samples are generated at next-to-leading order (NLO) with POWHEG 2.0 [15–17]. Diboson (W^+W^-, WZ, ZZ) and QCD multijet event samples are generated with PYTHIA 6.4.24. For LO generators, the default PDF set used is CTEQ6L [18], while for NLO generators the Showering of partons and hadronization are simulated with PYTHIA using the Z2 tune [19]. For all processes, the detector response is simulated using a detailed description of the CMS detector based on GEANT4 [20]. The reconstruction of simulated events is performed with the same algorithms used for the analyzed data sample. The simulated event samples include additional minimum-bias interactions per bunch crossing (pileup).

3 Event reconstruction

Individual particles emerging from each collision are reconstructed with the particle-flow (PF) technique [21, 22]. This approach uses the information from all subdetectors to identify and reconstruct individual particle candidates in the event, classifying them into mutually exclusive categories: charged hadrons, neutral hadrons, photons, electrons, and muons.

Muons are reconstructed by combining the information from the tracker and the muon spectrometer [23]. The muon candidates are required to originate from the primary vertex of the event, chosen as the vertex with the highest $\sum p_T^2$ of the charged particles associated with it. The muon relative isolation is defined as with i running over PF candidates (hadrons, electrons, photons) in a cone around the muon direction defined by $\Delta R < 0.4$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

The p_T of a muon passing the identification and isolation requirements is combined with the missing transverse energy E_T^{miss} of the event to form a W candidate. We define E_T^{miss} as the negative vector sum of the transverse momenta of all reconstructed particle candidates in the event. The value of E_T^{miss} is corrected for noise in the electromagnetic and hadron calorimeters using the procedure described in Ref. [24], which is based on a parametrization of the recoil energy measured in $Z \rightarrow \mu\mu$ events. The reconstructed transverse mass of the system, M_T, is calculated from the p_T of the isolated muon and the E_T^{miss} of the event;

$$M_T = \sqrt{2 p_T(\mu) E_T^{miss} (1 - \cos \Delta \phi)},$$

where $\Delta \phi$ is the difference in azimuth between E_T^{miss} and $p_T(\mu)$. In $W \rightarrow \mu\nu$ decays, the M_T distribution exhibits a Jacobian peak with a kinematic endpoint at the W mass. It is therefore a natural discriminator against non-W final states, such as QCD multijet events, that have a lepton candidate and E_T^{miss} and a relatively low value of M_T.

Jets are constructed using the anti-k_T clustering algorithm [25], as implemented in the FASTJET package [26, 27], with a distance parameter of 0.5. Jets are required to pass identification criteria that eliminate jets originating from noisy channels in the hadron calorimeter [28].
originating from pileup interactions are rejected by requiring consistency of the jets with the primary interaction vertex. Small corrections to jet energy—relative and absolute calibrations of the detector—are applied as a function of the p_T and η of the jet [29].

The combined secondary vertex (CSV) b-tagging algorithm [30] exploits the long lifetime and relatively large mass of b hadrons to provide optimized b-quark jet discrimination. The CSV algorithm combines information about impact parameter significance, secondary vertex (SV) kinematic properties, and jet kinematic properties in a likelihood-ratio technique. Jets are b-tagged by imposing a minimum threshold on the CSV discriminator value. This threshold provides an efficiency of approximately 50% for identifying jets containing b-flavored hadrons, while limiting the misidentification probability for light-quark and gluon jets to 0.1% and for c-quark jets to 3%. Furthermore, to increase the purity of the sample, a selected jet is required to have a well-reconstructed SV. This additional requirement has a small impact on the selected b-quark jets (93% efficiency with respect to the b-tag selection) while reducing the misidentification probability for non-b-quark jets to $<0.1\%$.

4 W + b\overline{b} event selection

Candidate events are selected online by a single-muon trigger that requires a reconstructed muon with $p_T > 24\text{ GeV}$ and $|\eta| < 2.1$. The offline W + b\overline{b} event selection requires an isolated muon with $I_{\text{rel}} < 0.12$, $p_T > 25\text{ GeV}$, $|\eta| < 2.1$, and exactly two jets with $p_T > 25\text{ GeV}$ and $|\eta| < 2.4$, where both selected jets must contain a SV and pass the b-tagging requirement. To reduce the contribution from Z-boson production, the event is rejected if a second muon forms an invariant mass $m_{\mu\mu} > 60\text{ GeV}$ with the isolated muon. There are no requirements on the isolation or p_T of the second muon. The t\overline{t} background is reduced by requiring that there be no additional isolated electrons or muons with $p_T > 20\text{ GeV}$ in the event and no additional jets with $p_T > 25\text{ GeV}$ and $2.4 < |\eta| < 4.5$. To reduce the contribution from QCD multijet events, $M_T > 45\text{ GeV}$ is required. The total number of observed events in the data sample after all selection requirements are applied is 1230.

We estimate the normalized distributions for the signal and each type of background and perform a global fit to determine the fraction of each background in the candidate sample. The shapes of the signal and background distributions for the variables we use in the fit are evaluated using simulation, except for the QCD multijet background, which is derived from data. The cross sections for the W + jets and Z + jets processes are calculated with the predictions from FEWZ [31] evaluated at next-to-next-to-leading order (NNLO) using the MSTW08 NNLO PDF set [32]. Single-top-quark and diboson production cross sections are normalized to the NLO cross section predictions from MCFM [33, 34] using the MSTW08 NLO PDF set. The t\overline{t} cross section is taken at NNLO as calculated in Ref. [35].

For each background simulation we impose requirements identical to those of the candidate sample to generate the relevant distributions for fitting. To verify the background simulations we select specific data samples that correspond to relatively pure background processes and match the simulation results with these data samples.

The shapes of the distributions for multijet events are taken directly from a multijet-enriched data sample obtained using the previous selection requirements and, in addition, requiring a nonisolated muon: $I_{\text{rel}} > 0.2$. The yield of multijet events is obtained from a fit performed on a second multijet background data sample that is selected from events with $M_T < 40\text{ GeV}$, which is below the Jacobian peak of the $W \to \mu\nu$. The resulting normalization is extrapolated to the signal region, $M_T > 45\text{ GeV}$. The relative uncertainty in the yield of QCD multijet events
is estimated to be ±50%, taking into account both the fit result and the extrapolation to the high-\(M_T\) range. This relative uncertainty also covers shape mismodelings of the small multijet contribution in the final sample.

The \(W +\) light-quark jets process, where the jets are not initiated by \(b\) or \(c\) quarks, is the dominant background before applying the selection requirements on the SV and on \(b\)-tagging. The \(b\)-tagging algorithm reduces the contamination of light-quark and \(c\)-quark jets in the selected sample to the order of 2% of the total expected yield.

A \(t\bar{t}\) background data sample is formed by allowing more than one lepton and by requiring two jets in addition to the two highest-\(p_T\) \(b\)-tagged jets. This higher jet multiplicity requirement selects a sample that is dominated by \(t\bar{t}\) events. Figure 1 (left) shows the invariant mass \(m_{J3J4}\) of the two highest-\(p_T\) additional jets (third- and fourth-highest \(p_T\) in the event). In \(t\bar{t}\) events this observable is correlated to the mass of the hadronically decaying \(W\) boson. This \(t\bar{t}\) background data sample is used in the final fit for the signal yield to constrain the \(t\bar{t}\) background normalization in the signal region. The simulation describes the observed distributions well, both in terms of shape and normalization.

A \(Z +\) jets background data sample is defined by requiring the standard selection criteria with the additional requirement of a second muon with opposite charge such that the invariant mass of the dimuon system is consistent with a \(Z\) boson (70 < \(m_{\mu\mu}\) < 100 GeV). This sample is used to validate the \(Z +\) jets background estimate. The simulation describes the experimental distributions well in this control data sample.

A single-top-quark background sample is defined by selecting events in which the \(W\) boson is accompanied by exactly one \(b\)-quark jet, which passes the tagging criteria, and an additional forward jet with \(|\eta| > 2.8\). No further rejection of additional light jets or leptons is imposed. The simulation describes the single-top-quark background data sample well, and therefore it is used to estimate the yield and shape of the distributions of kinematic variables in the signal region.

The expected yield in the signal region for the SM Higgs boson of \(M_H = 125\) GeV associated with a \(W\) boson where the Higgs boson decays to \(b\bar{b}\) pairs and the \(W\) boson decays to a muon and a neutrino has been computed using the \textsc{Powheg} event generator. It would account for <0.2% of the total expected yield in the signal region and is not considered for this measurement.

5 Signal extraction

After all the selection requirements, the largest background contributions are the production of \(t\bar{t}\) pairs and single top quarks. Contributions to the background from \(W +\) jets, \(Z +\) jets, diboson production, and QCD multijet events are much smaller, as shown in the middle column of Table 1.

The composition of the candidate data sample is extracted via a binned extended maximum-likelihood fit. Because the \(t\bar{t}\) background is large (larger in fact than the signal), it is essential to constrain tightly both the signal and the \(t\bar{t}\) background with a simultaneous fit to the \(p_T\) of the leading jet (\(p_{T1}\)) in the signal region after all selection requirements are applied, and to the \(m_{J3J4}\) distribution obtained from the \(t\bar{t}\) control sample. The \(p_T\) of the leading jet is chosen as the final fit variable because of its discrimination power against top-related backgrounds. Figure 1 shows the fitted distributions: \(p_{T1}\) in the signal region (right) and \(m_{J3J4}\) in the \(t\bar{t}\) control sample (left); the yields shown for the different processes are those resulting from the fit. The \(\chi^2\) of
Figure 1: The distribution of the invariant mass $m_{J_3J_4}$ of the two additional light jets in the tt background data sample (left). The p_T distribution of the highest-p_T jet, $p_{T_{J_1}}$, in the signal region (right). Signal and background yields are taken from the maximum-likelihood fit to CMS data described in the text. The uncertainty band corresponds to the total uncertainty on the fitted yields. The last bin in both figures includes overflow events. The lower panels show the ratio of observed data events to the total fitted yield.
the fit is 16.9, for 29 degrees of freedom (χ^2/dof $= 0.58$). The fitted yields for all the processes are listed in Table 1 and compared to the predictions. All observed yields are found to be in agreement with the expectations.

The systematic uncertainties, including those in the predicted background yields, are introduced as nuisance parameters in the fit with constraints around the estimated central value. Any cross section or acceptance uncertainty in the background processes is introduced as a log-normal constraint on the rate of the process. Alternate binned templates are obtained by varying the different sources of systematic uncertainty; the nominal and alternate templates are then interpolated depending on the nuisance parameter values. One of the largest systematic uncertainties comes from the relative uncertainty in the b-tagging efficiency (6% per jet). This and other uncertainties in the light-quark and c-quark jet mistagging efficiencies are taken from Ref. [30]. The jet energy and muon p_T scales are allowed to vary within their uncertainties (1–3% and 0.2%, respectively). Relative uncertainties in the muon efficiency estimation (trigger, reconstruction, identification, isolation) are estimated to be 1%.

The average number of pileup events in the data sample analyzed is 9. The uncertainty associated with the pileup in the simulation is studied by shifting the overall mean number of interactions per bunch crossing up or down by 0.6, which has a negligible effect on the measurement. To account for the uncertainty in the description of the E_T^{miss} spectrum, the component of E_T^{miss} that is not clustered in jets is shifted by ±10%. The normalizations of the background processes are also taken into account, with an uncertainty assigned to each process according to previous CMS measurements or estimated from the multijet data sample. The overall relative uncertainty in the signal selection efficiency due to the choice of PDF set is estimated by following the PDF4LHC recommendation and found to be approximately 1% [32, 36–39]. The varying of the factorization (μ_F) and renormalization (μ_R) scales, also based on the PDF4LHC recommendation, leads to an uncertainty of 10%. A similar procedure is followed to estimate the effect of scale variations on the signal shape, yielding an uncertainty in the cross section smaller than 1%. The relative integrated luminosity uncertainty is 2.2% [40].

<table>
<thead>
<tr>
<th>Process</th>
<th>Predicted yield</th>
<th>Fitted yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W + b\bar{b}$</td>
<td>332±99</td>
<td>301±59</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>621±36</td>
<td>653±37</td>
</tr>
<tr>
<td>Single top quark</td>
<td>160±13</td>
<td>167±13</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>33±17</td>
<td>33±16</td>
</tr>
<tr>
<td>$W + c, W + c\bar{c}$</td>
<td>21±4</td>
<td>20±10</td>
</tr>
<tr>
<td>$Z + \text{jets}$</td>
<td>31±3</td>
<td>32±3</td>
</tr>
<tr>
<td>WW, WZ</td>
<td>19±3</td>
<td>19±3</td>
</tr>
<tr>
<td>$W + \text{light-quark jets}$</td>
<td>1.5±0.2</td>
<td>1±1</td>
</tr>
<tr>
<td>Total</td>
<td>1219±79</td>
<td>1226±73</td>
</tr>
<tr>
<td>Observed events</td>
<td>1230</td>
<td></td>
</tr>
</tbody>
</table>

The number of events in the candidate sample, 1230, is in agreement with the expected and fitted total yields, although it is not explicitly included in the fitting process. The number
Figure 2: The distribution of the sum of the masses reconstructed from all the particles originating at the SVs, $m_{SV, J_1} + m_{SV, J_2}$, (left) and the distribution for the variable H_T (right) in the alternative looser b-tag selection. These two distributions are the projections of the two-dimensional fit performed as a cross-check and described in the text. Signal and background yields correspond to the post-fit results. The uncertainty band corresponds to the total uncertainty in the fitted yields. The last bin in both figures includes overflow events. The lower panels show the ratio of observed data events to the total fitted yield.
of signal events obtained from the binned maximum-likelihood fit is $N_S = 301 \pm 30 \text{ (stat.)} \pm 51 \text{ (syst.)}$.

To cross-check these results, an independent study is performed with looser b-tagging criteria, corresponding to an efficiency of 70% for selecting a jet containing b-flavored hadrons, while the misidentification probability for light-quark and gluon jets is 1% and for c-quark jets is 11%. All other selection criteria for the signal and control samples remain unchanged. Since the c-quark jet contribution becomes significant with these looser criteria, it is essential to use variables in the fit that can discriminate against both $W + c\bar{c}$ and top-quark-initiated processes.

The invariant mass measured using all particles originating at the SVs of the highest-p_T (m_{SV, J_1}) and second-highest-p_T (m_{SV, J_2}) jets can distinguish between $W + b\bar{b}$ and $W + c\bar{c}$. The scalar sum of the transverse momenta of the jets, H_T, is used to distinguish $W + j$ events from top-quark contributions. The $W + b\bar{b}$ signal is extracted in a two-dimensional fit using the two variables $m_{SV, J_1} + m_{SV, J_2}$ and H_T and constraining the $t\bar{t}$ contribution in the $t\bar{t}$ background data sample as described above. The distributions of the variables $m_{SV, J_1} + m_{SV, J_2}$ and H_T, which are projections of the two-dimensional distributions fitted in this cross-check, are shown in Fig. 2 with yields as given by the fit. The central value of the cross section computed with this method differs by less than 3% from the primary fit result.

6 Results

The $W + b\bar{b}$ cross section within the reference fiducial phase space is obtained using the expression

$$
\sigma(pp \to W + b\bar{b}) \times B(W \to \mu\nu) = \frac{N_S}{\int L \, dt \, \epsilon_{sel}},
$$

where the efficiency of the selection requirements, $\epsilon_{sel} = (11.2 \pm 1.0)\%$, is computed using the MADGRAPH + PYTHIA MC sample. The uncertainty in this selection efficiency comes from the PDF and scale variation uncertainties mentioned above.

The fiducial volume is defined by requiring a final-state muon with $p_T > 25 \text{ GeV}$ and $|\eta| < 2.1$ and exactly two final-state particle jets, reconstructed using the anti-k_T jet algorithm with a distance parameter of 0.5, with $p_T > 25 \text{ GeV}$ and $|\eta| < 2.4$ and with each containing at least one b hadron with $p_T > 5 \text{ GeV}$. Events with extra jets are vetoed. The measured fiducial cross section is

$$
\sigma(pp \to W + b\bar{b}) \times B(W \to \mu\nu) = 0.53 \pm 0.05 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.06 \text{ (th.)} \pm 0.01 \text{ (lum.)} \text{ pb}.
$$

This measured value cannot be directly compared to the SM NLO cross section calculated with MCFM because the latter pertains to jets of partons, not jets of hadrons, and does not include the production of $b\bar{b}$ pairs from double-parton scattering (DPS). MCFM predicts a cross section of $0.52 \pm 0.03 \text{ pb}$ at the parton level, using the MSTW2008 NNLO PDF set and setting the factorization and renormalization scales to $\mu_F = \mu_R = m_W + 2m_b$. The 0.03 pb uncertainty in the theoretical cross section is estimated by varying the scales μ_F, μ_R simultaneously up and down by a factor of two. This uncertainty also takes into account the PDF uncertainties following the PDF4LHC recommendation. This uncertainty in the theoretical cross section may be underestimated because of the requirement of exactly two jets in the final state. Therefore, a more conservative estimate of this uncertainty in the theoretical prediction is computed, following the procedure described in Ref. [41], and the total theoretical uncertainty is found to be 30%.
Two corrections are needed to link the theoretical prediction to the measurement, a hadronization correction and a DPS correction. At the parton level, the events are required to have a muon of $p_T > 25$ GeV and $|\eta| < 2.1$ and exactly two parton jets of $p_T > 25$ GeV and $|\eta| < 2.4$, each containing a b quark. The hadronization correction factor $C_{b\to B} = 0.92 \pm 0.01$, calculated using a five-flavor MADGRAPH + PYTHIA reference MC, is used to extrapolate the cross section computed at the level of parton jets to the level of final-state particle jets. The uncertainty assigned to this correction is obtained by comparing the corresponding factors computed with a four-flavored MADGRAPH MC simulation. The simulated MADGRAPH + PYTHIA events include DPS production of $b\bar{b}$ pairs and they reproduce these processes adequately as measured by CMS [42]. The contribution of DPS events to the cross section at the parton-jet level is estimated to be $\sigma_{DPS} = (\sigma_W \times \sigma_{bb}) / \sigma_{eff} = 0.08 \pm 0.05$ pb. The value of the effective cross section, σ_{eff}, is taken from Ref. [43], and is assumed to be independent of the process and interaction scale. The uncertainty in σ_{DPS} takes into account both the uncertainty in the measurement of σ_{eff} and the uncertainty in the fiducial $b\bar{b}$ cross section. The theoretical cross section at hadron level can be extrapolated from the MCFM parton-jet prediction by applying the hadronization correction and adding the DPS contribution, resulting in 0.55 ± 0.03 (MCFM) ± 0.01 (had.) pb. This value is in agreement with the measured value.

![Figure 3: The distribution of the angular distance ΔR between the two selected b jets (left) and the distribution of the transverse mass M_T of the muon-E_T^{miss} system (right). Signal and background yields are taken from the binned maximum-likelihood fit described in the text. The uncertainty band corresponds to the uncertainty in the yields as given by the fit. The last bin in both plots includes overflow events. The lower panels show the ratio of observed data events to the total fitted yield.](image_url)

In addition to this measurement of the production cross section, we have explored the kinematics of the $W + b\bar{b}$ system. The angular distance between the two selected b jets, $\Delta R_{J_1J_2} = \sqrt{(\Delta \eta_{J_1J_2})^2 + (\Delta \phi_{J_1J_2})^2}$, is compared to the SM prediction in Fig. 3 (left). The minimum separation of 0.5 between the two jets is an important aspect of the phase space definition, as
discussed in the introduction. Figure 3 (right) compares the M_T distribution to the SM predictions. Figure 4 shows the invariant mass of the two selected b-quark jets ($m_{J_1J_2}$) as well as the transverse momentum of the system formed by the two b-quark jets (p_T, J_1J_2). The simulation describes the observed distributions well.

7 Summary

In summary, we have presented a measurement of the $W + b\bar{b}$ production cross section in proton-proton collisions at 7 TeV. The $W + b\bar{b}$ events have been selected in the $W \rightarrow \mu\nu$ decay mode with a muon of $p_T > 25$ GeV and $|\eta| < 2.1$, and two b jets of $p_T > 25$ GeV and $|\eta| < 2.4$. The data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$. The measured fiducial cross section for production of a W boson and two b jets, $\sigma(pp \rightarrow W + b\bar{b}) \times B(W \rightarrow \mu\nu) = 0.53 \pm 0.05$ (stat.) ± 0.09 (syst.) ± 0.06 (th.) ± 0.01 (lum.) pb, is in agreement with the SM prediction of 0.55 ± 0.03 (MCFM) ± 0.01 (had.) ± 0.05 (DPS) pb, which accounts for double-parton scattering production and hadronization effects.

This study provides the first measurement for $pp \rightarrow W + b\bar{b}$ production at 7 TeV in this particular phase space, thereby complementing previous measurements performed at the LHC [3], which focused on the production of W bosons accompanied by one identified b jet. The precision of the measured cross section approaches that of theoretical predictions at NNLO, thus enabling sensitive tests of perturbative calculations in the SM.

Figure 4: The distribution of the invariant mass $m_{J_1J_2}$ of the two selected b jets (left) and the distribution of the transverse momentum of the dijet system, p_T, J_1J_2 (right). Signal and background yields are taken from the binned maximum-likelihood fit described in the text. The uncertainty band corresponds to the total uncertainty in the fitted yields. The last bin in both figures includes overflow events. The lower panels show the ratio of observed data events to the total fitted yield.
Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.
References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Belily, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, São Paulo, Brazil
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, Y. Assran, S. Elglamal, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze17

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradis

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, N. Wickramage

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a, b, L. Barbone a, b, C. Calabria a, b, S.S. Chhibra a, b, A. Colaleo a, D. Creanza a, c, N. De Filippis a, c, M. De Palma a, b, L. Fiore a, G. Iaselli a, c, G. Maggi a, c, M. Maggi a, B. Marangelli a, b, S. My a, c, S. Nuzzo a, b, N. Pacifico a, A. Pompili a, b, G. Pugliese a, c, R. Radogna a, b, G. Selvaggi a, b, L. Silvestris a, G. Singh a, b, R. Venditti a, b, P. Verwilligen a, G. Zito a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, A.C. Benvenuti a, D. Bonacorsi a, b, S. Brabant-Giacomelli a, b, L. Brigliadori a, b, R. Campanini a, b, P. Capiluppi a, b, A. Castro a, b, F.R. Cavallo a, G. Codispoti a, b, M. Cuffiani a, b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a, b, D. Fasanella a, b, P. Giacomelli a, C. Grandi a, L. Guiducci a, b, S. Marcellini a, G. Masetti a, M. Meneghelli a, b, A. Montanari a, F.L. Navarra a, b, F. Odrorici a, A. Perrotta a, F. Primavera a, b, A.M. Rossi a, b, T. Roveri a, b, G.P. Sirola a, b, N. Tosi a, b, R. Travaglini a, b

INFN Sezione di Catania a, Università di Catania b, CSFNSM c, Catania, Italy
S. Albergoni a, b, G. Cappello a, b, M. Chiorboli a, b, S. Costa a, b, F. Giordano a, c, d, R. Potenza a, b, A. Tricomi a, b, C. Tuve a, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagli a, V. Ciulli a, b, C. Cividini a, R. D’Alessandro a, b, E. Focardi a, b, E. Gallo a, S. Gonzi a, b, V. Gori a, b, P. Lenzi a, b, M. Meschini a, S. Paolotti a, G. Sguazzoni a, A. Tropiano a, b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi a, S. Bianco a, F. Fabbrini a, F. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
P. Fabbricatore a, R. Ferretti a, b, F. Ferro a, M. Lo Vetere a, b, R. Miani a, R. Robutti a, S. Tosi a, b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, M.E. Dinardo a, b, S. Fiorendi a, b, S. Gennai a, A. Ghezzi a, b, P. Govoni a, b, M.T. Lucchini a, b, S. Malvezzi a, R.A. Manzoni a, b, A. Martelli a, b, D. Menasce a, L. Moroni a, M. Paganoni a, b, D. Pedrini a, S. Ragazzi a, b, N. Redaelli a, T. Tabarelli de Fatis a, b

INFN Sezione di Napoli a, Università di Napoli Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Roma) d, Napoli, Italy
S. Buontempo a, N. Cavallo a, c, F. Fabozzi a, c, A.O.M. Iorio a, b, L. Lista a, S. Meola a, d, 2, M. Merola a, M. Paolucci a, 2
INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, A. Santocchia, A. Spiezia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Turin, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy

Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyeongpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
I. Grigelionis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas2, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, J.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lajic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libreiro, I. Volobouev

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Joint Institute for Nuclear Research, Dubna, Russia
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at The University of Kansas, Lawrence, USA
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
23: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Sharif University of Technology, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
32: Also at Purdue University, West Lafayette, USA
33: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
34: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
35: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Cag University, Mersin, Turkey
44: Also at Mersin University, Mersin, Turkey
45: Also at Izmir Institute of Technology, Izmir, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Kafkas University, Kars, Turkey
48: Also at Suleyman Demirel University, Isparta, Turkey
49: Also at Ege University, Izmir, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Kahramanmaras Sütçü İmam University, Kahramanmaras, Turkey
52: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
53: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
54: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
55: Also at Utah Valley University, Orem, USA
56: Also at Institute for Nuclear Research, Moscow, Russia
57: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
58: Also at Argonne National Laboratory, Argonne, USA
59: Also at Erzincan University, Erzincan, Turkey
60: Also at Yıldız Technical University, Istanbul, Turkey
61: Also at Texas A&M University at Qatar, Doha, Qatar
62: Also at Kyungpook National University, Daegu, Korea